Skip to main content

Advertisement

Log in

An Evaluation of the Potential Use of Microbial Fuel Cells for Energy Production and Simultaneous Acid Mine Drainage Treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Acid mine drainage (AMD) is a leachate that may occur naturally or be produced at mining sites and tailings deposits. Characteristically, AMD consists of effluents with extremely low pH (4.0) and a high concentration of heavy metals; therefore, it is highly toxic. Due to the impact that these effluents have on the environment, effective and low-cost methods for AMD treatment have been developed. As an important strategy for pH increase and metal-ion precipitation, there are biological treatment methods, in which bioreactors containing biocatalysts, such as sulfate-reducing bacteria, are applied. Regarding the applicability of microbial fuel cells (MFCs) for the treatment of effluents, this technology can be an innovative and promising alternative for AMD treatment. This paper aims to review the biological treatments already employed for the treatment of effluents containing sulfates and/or metals and to evaluate the adaptability of such methodologies for AMD treatment, using MFCs. Studies indicate that the MFC technology has a very promising application in the treatment of water with high concentrations of sulfate and heavy metals. It shows great advantage over other strategies, since it does not require the addition of chemical compounds, besides generating energy, thus being self-sustainable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study, only articles published in scientific databases were read, analyzed, and referenced.

Abbreviations

AMD:

Acid mine drainage

MFC:

Microbial fuel cell

SRB:

Sulfate-reducing bacteria

SOB:

Sulfide-oxidizing bacteria

WS:

Wetland systems

PEM:

Proton-exchange membrane

AEM:

Anion-exchange membrane

N/A:

Not applied

References

  • Ai, C., Yan, Z., Hou, S., Zheng, X., Zeng, Z., Amanze, C., Dai, Z., Chai, L., Qiu, G., & Zeng, W. (2020). Effective treatment of acid mine drainage with microbial fuel cells: An emphasis on typical energy substrates. Minerals, 10, 443. https://doi.org/10.3390/min10050443

    Article  CAS  Google Scholar 

  • Akcil, A., & Koldas, S. (2006). Acid mine drainage (AMD): Causes, treatment and case studies. J Clean Prod, 14(12), 1139–1145. https://doi.org/10.1016/j.jclepro.2004.09.006

    Article  Google Scholar 

  • Alegbe, M. J., Ayanda, O. S., Ndungu, P., Nechaev, A., Fatoba, O. O., & Petrik, L. F. (2019). Physicochemical characteristics of acid mine drainage, simultaneous remediation and use as feedstock for value added products. J Environ Chem Eng, 7, 103097. https://doi.org/10.1016/j.jece.2019.103097

    Article  CAS  Google Scholar 

  • Bai, H., Kang, Y., Quan, H., Han, Y., Sun, J., & Feng, Y. (2013). Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. BioresourceTechnology., 128, 818–822. https://doi.org/10.1016/j.biortech.2012.10.070

    Article  CAS  Google Scholar 

  • Cai, L., Zhang, H., Feng, Y., Wang, Y., & Mingchuan, Y. (2018). Sludge decrement and electricity generation of sludge microbial fuel cell enhanced by zero valent iron. J Clean Prod, 174, 35–41. https://doi.org/10.1016/j.jclepro.2017.10.300

    Article  CAS  Google Scholar 

  • Castro Neto, E. S., Aguiar, A. B. S., Rodriguez, R. P., & Sancinetti, G. P. (2018). Acid mine drainage treatment and metal removal based on a biological sulfate-reducing process. Braz J Chem Eng. https://doi.org/10.1590/0104-6632.20180352s20160615

  • Cheng, S., Dempsey, B. A., & Logan, B. E. (2007). Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Environ Sci Technol, 41, 8149–8153.

    Article  CAS  Google Scholar 

  • Cheng, S., Jang, J-H., Dempsey, B. A., & Logan, B. E. (2011). Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies, Water Research, Volume 45(1), 303–307, ISSN 0043-1354. https://doi.org/10.1016/j.watres.2010.07.054.

  • Choudhury, P., Shankar, U., Uday, P., Mahata, N., & Nath, O. (2017). Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives. Renew Sust Energ Rev, 79, 372–389. https://doi.org/10.1016/j.rser.2017.05.098

    Article  Google Scholar 

  • Costa, R. B., Godoi, L. A. G., Braga, A. F. M., Delforno, T. P., & Bevilaqua, D. (2021). Sulfate removal rate and metal recovery as settling precipitates in bioreactors: Influence of electron donors. J Hazard Mater, 403, 123622. https://doi.org/10.1016/j.jhazmat.2020.123622

    Article  CAS  Google Scholar 

  • Dvorak, D. H., Edenborn, H. M., Hedin, R. S., and McIntire, P. E. (1991). Treatment of metal-contaminated water using bacterial sulfate reduction. Results from pilot-scale reactors. In Preprint - Society of Mining Engineers of AIME. 10.21000/jasmr91010109.

  • Feng, Y., He, W., Liu, J., Wang, X., Youpeng, Q., & Ren, N. (2014). A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour Technol. https://doi.org/10.1016/j.biortech.2013.12.104

  • Foudhaili, T., Rakotonimaro, T. V., Neculita, C. M., Coudert, L., & Lefebvre, O. (2019). Comparative efficiency of microbial fuel cells and electrocoagulation for the treatment of iron-rich acid mine drainage. J Environ Chem Eng, 7, 103149. https://doi.org/10.1016/j.jece.2019.103149

    Article  CAS  Google Scholar 

  • García-muñoz, J., Amils, R., Fernández, V. M., De Lacey, A. L., & Malki, M. (2011). Electricity generation by microorganisms in the sediment-water interface of an extreme acidic microcosm. Int Microbiol, 73–81. https://doi.org/10.2436/20.1501.01.137

  • Gibert, O., Rötting, T., Luis, J., De Pablo, J., Ayora, C., & Carrera, J. (2011). In-situ remediation of acid mine drainage using a permeable reactive barrier in Aznalcóllar (Sw Spain). J Hazard Mater, 191(1–3), 287–295. https://doi.org/10.1016/j.jhazmat.2011.04.082

    Article  CAS  Google Scholar 

  • Ghangrekar, M. M., Murthy, S. S. R., Behera, M., & Duteanu, N. (2010). Effect of sulfate concentration in the wastewater on microbial fuel cell performance. Environ Eng Manag J, 9(9), 1227–1234. https://doi.org/10.30638/eemj.2010.159

    Article  CAS  Google Scholar 

  • Chen, G., Ye, Y., Yao, N., Hu, N., Zhang, J., & Huang, Y. (2021). A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage. J Clean Prod, 329, 129666. https://doi.org/10.1016/J.JCLEPRO.2021.129666

    Article  CAS  Google Scholar 

  • Gude, V. G. (2016). Wastewater treatment in microbial fuel cells – An overview. J Clean Prod, 122, 287–307. https://doi.org/10.1016/j.jclepro.2016.02.022

    Article  CAS  Google Scholar 

  • Hai, T., Wen-cheng, P., Chang-feng, C., Jian-ping, X., & Wen-jun, H. (2016). Remediation of acid mine drainage based on a novel coupled membrane-free microbial fuel cell with permeable reactive barrier system. Pol J Environ Stud, 25, 107–112. https://doi.org/10.15244/pjoes/60891

    Article  CAS  Google Scholar 

  • Hamilton, W. A. (1984). The sulphate-reducing bacteria. Br Corros J, 19(2). https://doi.org/10.1179/000705984798273407

  • Huntsman, B.E., Solch, J.G., Porter, E.M.D. (1978). Utilization of a Sphagnum species dominated bog for coal acid mine drainage abatement Abstracts with Programs - Geological Society of America.

  • Ighalo, J. O., Kurniawan, S. B., Iwuozor, K. O., Aniagor, C. O., Ajala, O. J., Oba, S. N., Iwuchukwu, F. U., Ahmadi, S., & Igwegbe, C. A. (2022). A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process Saf Environ Prot, 157, 37–58. https://doi.org/10.1016/J.PSEP.2021.11.008

    Article  CAS  Google Scholar 

  • Kabutey, F. T., Antwi, P., Ding, J., Zhao, Q., & Quashie, F. K. (2019). Enhanced bioremediation of heavy metals and bioelectricity generation in a macrophyte-integrated cathode sediment microbial fuel cell (mSMFC). Environ Sci Pollut Res, 26, 26829–26843. https://doi.org/10.1007/s11356-019-05874-9

    Article  CAS  Google Scholar 

  • Kiran, M. G., Pakshirajan, K., & Das, G. (2017). Heavy metal removal from multicomponent system by sulfate reducing bacteria: Mechanism and cell surface characterization. J Hazard Mater, 324. https://doi.org/10.1016/j.jhazmat.2015.12.042

  • Kumar, M., Nandi, M., & Pakshirajan, K. (2021). Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation. J Environ Manag, 278(P2), 111555. https://doi.org/10.1016/j.jenvman.2020.111555

    Article  CAS  Google Scholar 

  • Kuyucak, N., Chabot, F., and Martschuk, J. (2006). Successful implementation and operation of a passive treatment system in an extremely cold climate, Northern Quebec, Canada. In 7th international conference on acid rock drainage 2006, ICARD - Also serves as the 23rd annual meetings of the American Society of Mining and Reclamation. 10.21000/jasmr06020980.

  • Lee, D., Lee, C., & Chang, J. (2012). Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture. J Hazard Mater, 243, 67–72. https://doi.org/10.1016/j.jhazmat.2012.09.071

    Article  CAS  Google Scholar 

  • Lee, D., Liu, X., & Weng, H. (2014). Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm. Bioresour Technol, 156, 14–19. https://doi.org/10.1016/j.biortech.2013.12.129

    Article  CAS  Google Scholar 

  • Lee, D.-J., Lee, C.-Y., Chang, J.-S., Liao, Q., & e Su, A. (2015). Treatment of sulfate/sulfide-containing wastewaters using a microbial fuel cell: Single and two-anode systems. Intl J Green Energy, 12(10), 998–1004. https://doi.org/10.1080/15435075.2014.910780

    Article  CAS  Google Scholar 

  • Lefebvre, O., Neculita, C. M., Yue, X., & Ng, H. Y. (2012). Bioelectrochemical treatment of acid mine drainage dominated with iron. J Hazard Mater, 241–242, 411–417. https://doi.org/10.1016/j.jhazmat.2012.09.062

    Article  CAS  Google Scholar 

  • Leiva, E., Leiva-Aravena, E., & Vargas, e. I. (2016). Acid water neutralization using microbial fuel cells: An alternative for acid mine drainage treatment. Water (Switzerland). https://doi.org/10.3390/w8110536

  • Liang, P., Duan, R., Jiang, Y., Zhang, X., Qiu, Y., & Huang, X. (2018). One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Res, 141. https://doi.org/10.1016/j.watres.2018.04.066

  • Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environ Sci Technol. https://doi.org/10.1021/es0605016

  • Logroño, W., Ramírez, G., Recalde, C., Echeverría, M., and Cunachi, A. (2015). Bioelectricity generation from vegetables and fruits wastes by using single chamber microbial fuel cells with high Andean soils. In Energy Procedia. Vol. 75. https://doi.org/10.1016/j.egypro.2015.07.259.

  • Luo, H., Fu, S., Liu, G., Zhang, R., Bai, Y., & Luo, X. (2014). Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells, Bioresource Technology167, 462–468, ISSN 0960-8524. https://doi.org/10.1016/j.biortech.2014.06.058.

  • Lyew, D., & Sheppard, J. (1999). Sizing considerations for gravel beds treating acid mine drainage by sulfate reduction. J Environ Qual, 28(3). https://doi.org/10.2134/jeq1999.00472425002800030037x

  • Magowo, W. E., Sheridan, C., & e Rumbold, K. (2020). Global co-occurrence of acid mine drainage and organic rich industrial and domestic effluent: Biological sulfate reduction as a co-treatment-option. J Water Process Eng, 38, 101650. https://doi.org/10.1016/j.jwpe.2020.101650

    Article  Google Scholar 

  • Masindi, V., Osman, M. S., & Shingwenyana, R. (2019). Valorization of acid mine drainage (AMD): A simplified approach to reclaim drinking water and synthesize valuable minerals-Pilot study. J Environ Chem Eng, 7(3), 103082. https://doi.org/10.1016/j.jece.2019.103082

    Article  CAS  Google Scholar 

  • Mays, P. A., & Edwards, E. G. S. (2001). Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecol Eng, 16(4). https://doi.org/10.1016/S0925-8574(00)00112-9

  • Mccullough, C. D., & Lund, M. A. (2011). Bioremediation of acidic and metalliferous drainage (AMD) through organic carbon amendment by municipal sewage and green waste. J Environ Qual Manag, 92, 2419–2426. https://doi.org/10.1016/j.jenvman.2011.04.011

    Article  CAS  Google Scholar 

  • Miran, W., Jang, J., Nawaz, M., Shahzad, A., Eun, S., Ok, C., & Sung, D. (2017). Chemosphere mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper. Chemosphere, 189, 134–142. https://doi.org/10.1016/j.chemosphere.2017.09.048

    Article  CAS  Google Scholar 

  • Mohammed, H., Hamza, C., Duraisamy, P., Periyasamy, S., & Muthuchamy, M. (2017). Simultaneous electricity generation and heavy metals reduction from distillery effluent by microbial fuel cell. Chemosphere., 10, 1–13.

    Google Scholar 

  • Neculita, C.-M., Zagury, G. J., & Bussière, B. (2007). Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. J Environ Qual, 36(1), 1–16. https://doi.org/10.2134/jeq2006.0066

    Article  CAS  Google Scholar 

  • Nielsen, G., Coudert, L., Janin, A., Francois, J., & Guy, B. (2019). Influence of organic carbon sources on metal removal from mine impacted water using sulfate-reducing bacteria bioreactors in cold climates. Mine Water Environ, 38(1), 104–118. https://doi.org/10.1007/s10230-018-00580-3

    Article  CAS  Google Scholar 

  • Nikhil, G. N., Krishna Chaitanya, D. N. S., Srikanth, S., Swamy, Y. V., & Venkata Mohan, S. (2018). Applied resistance for power generation and energy distribution in microbial fuel cells with rationale for maximum power point. Chem Eng J, 335. https://doi.org/10.1016/j.cej.2017.10.139

  • Nogueira, E. W., de Godoi, L. A. G., Yabuki, L. N. M., Brucha, G., & Damianovic, M. H. R. Z. (2021). Sulfate and metal removal from acid mine drainage using sugarcane vinasse as electron donor: Performance and microbial community of the down-flow structured-bed bioreactor. Bioresour Technol, 330(March). https://doi.org/10.1016/j.biortech.2021.124968

  • Oliveira, V. B., Simões, M., Melo, L. F., & Pinto, A. M. F. R. (2013). A 1D mathematical model for a microbial fuel cell. Energy. https://doi.org/10.1016/j.energy.2013.08.055

  • Pinto, P. X., Al-Abed, S. R., & McKernan, J. (2018). Comparison of the efficiency of chitinous and ligneous substrates in metal and sulfate removal from mining-influenced water. J Environ Manag, 227. https://doi.org/10.1016/j.jenvman.2018.08.113

  • Peng, X., Tang, T., Zhu, X., Jia, G., Ding, Y., & Chen, Y. (2017). Remediation of acid mine drainage using microbial fuel cell based on sludge anaerobic fermentation 3330. Environ Technol, 38(19), 2400–2409. https://doi.org/10.1080/09593330.2016.1262462

    Article  CAS  Google Scholar 

  • Reisman, D J, J J Gusek, M Bishop, and Balkema Aa Balkema; Aa. 2003. A pre-treatability study to provide data for construction of a demonstration bioreactor. Tailings and mine waste ’03.

  • Rodrigues, I. C. B., & Leão, V. A. (2020). Producing electrical energy in microbial fuel cells based on sulphate reduction: A review. Environ Sci Pollut Res, 27(29), 36075–36084. https://doi.org/10.1007/s11356-020-09728-7

    Article  CAS  Google Scholar 

  • Rückert, C. (2016). Sulfate reduction in microorganisms — Recent advances and biotechnological applications. Curr Opin Microbiol. https://doi.org/10.1016/j.mib.2016.07.007

  • Sánchez-Andrea, I., Triana, D., & Sanz, J. L. (2012). Bioremediation of acid mine drainage coupled with domestic wastewater treatment. Water Sci Technol, 66(11). https://doi.org/10.2166/wst.2012.477

  • Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. J Power Sources, 356, 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109

    Article  CAS  Google Scholar 

  • Santos, A. L., & Barrie Johnson, D. (2017). The effects of temperature and pH on the kinetics of an acidophilic sulfidogenic bioreactor and indigenous microbial communities. Hydrometallurgy, 168. https://doi.org/10.1016/j.hydromet.2016.07.018

  • Sen, A. M., & Johnson, E. B. (1999). Acidophilic sulphate-reducing bacteria: Candidates for bioremediation of acid mine drainage. Process Metallurgy, 9(C). https://doi.org/10.1016/S1572-4409(99)80073-X

  • Sencindiver, J.C., Bhumbla, D.K., 1988. Effects of cattails (Typha) on metal removal from mine drainage. journal of the American Society and mining Reclam. 1988. 10.21000/jasmr88010359.

  • Sheoran, A. S., Sheoran, V., & Choudhary, R. P. (2010). Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: A review. Miner Eng. https://doi.org/10.1016/j.mineng.2010.07.001

  • Wang, Y-P., Zhang, H-L., Li, W-W., Liu, X-W, Sheng, G-P., Yu, H-Q. (2014). Improving electricity generation and substrate removal of a MFC–SBR system through optimization of COD loading distribution, Biochemical Engineering Journal85, 15–20, ISSN 1369-703X. https://doi.org/10.1016/j.bej.2014.01.008

    Article  CAS  Google Scholar 

  • Liu, S.-H., Yu-Hui, S., Chen, C.-C., Lin, C.-W., & Huang, W.-J. (2022). Simultaneous enhancement of copper removal and power production using a sediment microbial fuel cell with oxygen separation membranes. Environ Technol Innov, 26, 102369. https://doi.org/10.1016/j.eti.2022.102369

    Article  CAS  Google Scholar 

  • Skousen, J. G., Ziemkiewicz, P. F., & McDonald, L. M. (2019). Acid mine drainage formation, control and treatment: Approaches and strategies. Extract Indust Soc. https://doi.org/10.1016/j.exis.2018.09.008

  • Skousen, J., Zipper, C. E., Rose, A., Ziemkiewicz, P. F., Nairn, R., McDonald, L. M., & Kleinmann, R. L. (2017). Review of passive systems for acid mine drainage treatment. Mine Water Environ, 36(1), 133–153. https://doi.org/10.1007/s10230-016-0417-1

    Article  CAS  Google Scholar 

  • Slate, A. J., Whitehead K. A., Brownson, D. A. C., & Banks, C. E. (2019). Microbial fuel cells: An overview of current technology. Renewable and Sustainable Energy Reviews, 101, 60–81, ISSN 1364–0321. https://doi.org/10.1016/j.rser.2018.09.044.

  • Tetteh, F., Ding, J., Zhao, Q., Antwi, P., & Koblah, F. (2019). Pollutant removal and bioelectricity generation from urban river sediment using a macrophyte cathode sediment microbial fuel cell (mSMFC). Bioelectrochemistry, 128, 241–251. https://doi.org/10.1016/j.bioelechem.2019.01.007

    Article  CAS  Google Scholar 

  • Varanasi, J. L., Sinha, P., & Das, D. (2017). Maximizing power generation from dark fermentation effluents in microbial fuel cell by selective enrichment of exoelectrogens and optimization of anodic operational parameters. Biotechnol Lett, 39(5). https://doi.org/10.1007/s10529-017-2289-2

  • Vasquez, Y., Escobar, M. C., Neculita, C. M., Arbeli, Z., & Fabio, R. (2016). Selection of reactive mixture for biochemical passive treatment of acid mine drainage. Environmental Earth Sciences, 75(7), 576. https://doi.org/10.1007/s12665-016-5374-2.

  • Vélez-Pérez, L. S., Ramirez-Nava, J., Hernández-Flores, G., Talavera-Mendoza, O., Escamilla-Alvarado, C., Poggi-Varaldo, H. M., Solorza-Feria, O., & López-Díaz, J. A. (2020). Industrial acid mine drainage and municipal wastewater co-treatment by dual-chamber microbial fuel cells. Int J Hydrog Energy, 45, 13757–13766. https://doi.org/10.1016/j.ijhydene.2019.12.037

    Article  CAS  Google Scholar 

  • Wildeman, T. R., Updegraff, D. M. (1997). Passive bioremediation of metals and inorganic contaminants. In Perspective in environmental chemistry.

  • Wu, M. S. (2017). Simultaneous removal of heavy metals and biodegradation of organic matter with sediment microbial fuel cells. RSC Adv, 53433–53438. https://doi.org/10.1039/c7ra11103g

  • Zaluski, M H, Trudnowski, J M., Bless, D R. and Able, T., (2003). Post-mortem findings on the performance of engineered SRB field-bioreactors for acid mine drainage control. In 6th international conference on acid rock drainage.

  • Zhang, J., Zhang, B., Tian, C., Ye, Z., Liu, Y., Lei, Z., Huang, W., & Feng, C. (2013). Simultaneous sulfide removal and electricity generation with corn stover biomass as co-substrate in microbial fuel cells. Bioresour Technol, 138, 198–203. https://doi.org/10.1016/j.biortech.2013.03.167

    Article  CAS  Google Scholar 

  • Zhang, M., & Wang, H. (2016). Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis. Min Energy, 92, 63–71. https://doi.org/10.1016/j.mineng.2016.02.008

    Article  CAS  Google Scholar 

  • Zhang, M., Wang, H., & Han, X. (2016). Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment. Chemosphere, 154, 215–223. https://doi.org/10.1016/j.chemosphere.2016.03.103

    Article  CAS  Google Scholar 

  • Zhang, H., Da, Z., Feng, Y., Yuezhu Wang, L., & Cai, H. C. (2018). Enhancing the electricity generation and sludge reduction of sludge microbial fuel cell with graphene oxide and reduced graphene oxide. J Clean Prod, 186. https://doi.org/10.1016/j.jclepro.2018.02.159

Download references

Acknowledgements

To the Research and Innovation Support Foundation of Santa Catarina State—FAPESC/SC—Brazil.

To the Federal University of Santa Catarina—UFSC.

To the Graduate Program in Energy and Sustainability—PPGES.

To National Council for Scientific and Technological Development—CNPq.

To the Laboratory for Innovative Biotechnological Processes—Lab. PROBIOTEC.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the review conception; Luiz Henrique Zim Alexandre performed the literature search, data analysis, and drafted the first version of manuscript; Tatiana Pineda-Vásquez, Elise Sommer Watzko, Derce de Oliveira Souza Recouvreux, and Regina Vasconcellos Antônio drafted and critically revised the work; all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tatiana Gisset Pineda-Vásquez.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandre, L.H.Z., Pineda-Vásquez, T.G., Watzko, E.S. et al. An Evaluation of the Potential Use of Microbial Fuel Cells for Energy Production and Simultaneous Acid Mine Drainage Treatment. Water Air Soil Pollut 233, 399 (2022). https://doi.org/10.1007/s11270-022-05755-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05755-x

Keywords

Navigation