Skip to main content

Advertisement

Log in

Pre-cultivation with Herbaceous Plants Assists in the Revegetation Process of Iron Mining Tailings with Enterolobium contortisiliquum

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the process of recovering degraded areas, the establishment of succession of arboreal plants after the planting of herbs is an efficient strategy for diversifying vegetation cover and improving soil quality. In this sense, the objective of this research was to evaluate, in microcosm, the effect of herbaceous pre-cultivation on the initial development of Enterolobium contortisiliquum and on the rehabilitation of the physical, chemical, and biological characteristics of the iron mining tailings from the Fundão dam, Mariana, Brazil. Five different herbaceous pre-cultivation systems were applied: control without pre-cultivation (T/E); Urochloa ruziziensis (U/E); U. ruziziensis + Crotalaria spectabilis (U + C/E); U. ruziziensis + Guizotia abyssinica (U + G/E); and U. ruziziensis + C. spectabilis + G. abyssinica (U + C + G/E). After 120 days of cultivation, we evaluated the tree development and the physical, chemical, and biological attributes of the tailings. The dry mass of the total shoot and the stem of E. contortisiliquum did not differ between the pre-cultures, whereas the dry mass of the leaf was lower in U + C/E. In general, the biological attributes of the tailings were the most sensitive to the changes that occurred due to the different herbaceous pre-cultivation arrangements. In the treatments U/E, U + C/E, and U + G/E, greater efficiency was observed in the production of microbial biomass carbon and in the total enzymatic activity of the soil. E. contortisiliquum proved to be efficient in the absorption of sodium (Na), copper (Cu), zinc (Zn), chromium (Cr), and nickel (Ni), demonstrating that this tree species has the potential to be used in the revegetation of tailings. The use of fast-growing plants activates the soil microbiota and favors the arboreal being an efficient strategy for the tailings rehabilitation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

The authors declare that data supporting the findings of this study are available within the article and its supplementary information files.

References

  • Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services – A global review. Geoderma, 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009

    Article  CAS  Google Scholar 

  • Alef, K. (1995). Estimation of soil respiration. In K. Alef & P. Nannipieri (Eds.), Methods in Applied Soil Microbiology and Biochemistry (pp. 214–219). Academic Press.

    Google Scholar 

  • Almeida, C. A., Oliveira, A. F., Pacheco, A. A., Lopes, R. P., Neves, A. A., & Queiroz, M. E. L. R. (2018). Characterization and evaluation of sorption potential of the iron mine waste after Samarco dam disaster in Doce River basin – Brazil. Chemosphere, 209, 411–420. https://doi.org/10.1016/j.chemosphere.2018.06.071

    Article  CAS  Google Scholar 

  • Alves, M. C., Suzuki, L. G. A. S., & Suzuki, L. E. A. S. (2007). Densidade do solo e infiltração de água como indicadores da qualidade física de um Latossolo Vermelho distrófico em recuperação. Revista Brasileira de Ciência do Solo, 31, 617–625.

    Article  Google Scholar 

  • Anderson, T. H., & Domsch, K. H. (1993). Themetabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry, 25, 393–395. https://doi.org/10.1016/0038-0717(93)90140-7

    Article  Google Scholar 

  • Andrade, G. F., Paniz, F. P., Martins, A. C., Jr., Rocha, B. A., Lobato, A. K. S., Rodrigues, J. L., Cardoso-Gustavson, P., Masuda, H. P., & Batista, B. L. (2018). Agricultural use of Samarco’s spilled mud assessed by rice cultivation: A promising residue use? Chemosphere, 193, 892–902. https://doi.org/10.1016/j.chemosphere.2017.11.099

    Article  CAS  Google Scholar 

  • Arumugam, G., Rajendran, R., Ganesan, A., & Sethu, R. (2018). Bioaccumulation and translocation of heavy metals in mangrove rhizosphere sediments to tissues of Avicenia marina – A field study from tropical mangrove forest. Environmental Nanotechnology, Monitoring & Management, 10, 272–279. https://doi.org/10.1016/j.enmm.2018.07.005

    Article  Google Scholar 

  • Batista, É. R., Carneiro, J. J., Pinto, F. A., Santos, J. V., & Carneiro, M. A. C. (2020). Environmental drivers of shifts on microbial traits in sites disturbed by a large-scale tailing dam collapse. Science of the Total Environment., 139453,. https://doi.org/10.1016/j.scitotenv.2020.139453

  • Batista, É. R., Franco, A. J., Silva, A. P. V., Silva, J. A. G. F., Tavares, D. S., Souza, J. K., Silva, A. O., Barbosa, M. V., Santos, J. V., & Carneiro, M. A. C. (2022). Organic substrate availability and enzyme activity affect microbial-controlled carbon dynamics in areas disturbed by a mining dam failure. Applied Soil Ecology, 169, 104169. https://doi.org/10.1016/j.apsoil.2021.104169

    Article  Google Scholar 

  • Blake, G. R., Hartge, K. H. (1986). Bulk Density. In: Klute A. (Ed.). Methods of soil analysis: Physical and mineralogical methods. Part 1. (pp. 363–375). Madison: American Society of Agronomy.

  • Brunner, I., Luster, J., Günthardt-Goerg, M. S., & Frey, B. (2008). Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environmental Pollution., 152, 559–568. https://doi.org/10.1016/j.envpol.2007.07.006

    Article  CAS  Google Scholar 

  • Carneiro, M. A. C., Siqueira, J. O., Moreira, F. M. S., & Soares, A. L. L. (2008). Carbono orgânico, nitrogênio total, biomassa e atividade microbiana do solo em duas cronosseqüências de reabilitação após a mineração de bauxita. Revista Brasileira De Ciência Do Solo, 32, 621–632. https://doi.org/10.1590/S0100-06832008000200017

    Article  CAS  Google Scholar 

  • Carvalho Filho, A., Inda, A. V., Fink, J. R., & Curi, N. (2015). Iron oxides in soils of different lithological origins in Ferriferous Quadrilateral (Minas Gerais, Brazil). Applied Clay Science, 118, 1–7. https://doi.org/10.1016/j.clay.2015.08.037

    Article  CAS  Google Scholar 

  • Coelho, D. G., Marinato, C. S., Matos, L. P., Andrade, H. M., Silva, V. M., Neves, P. H. S., & Oliveira, J. A. (2020). Evaluation of metals in soil and tissues of economic-interest plants grown in sites affected by the Fundão Dam failure in Mariana, Brazil. Integrated Environmental Assessment and Management., 16, 596–607. https://doi.org/10.1002/ieam.4253

    Article  CAS  Google Scholar 

  • Conselho Estadual de Política Ambiental (COPAM) (2011). Deliberação Normativa COPAM no 166, de 29 de junho de 2011

  • Cruz, F. V. S., Gomes, M. P., Bicalho, E. M., Torre, F. D., & Garcia, Q. S. (2020). Does Samarco’s spilled mud impair the growth of native trees of the Atlantic Rainforest? Ecotoxicology and Environmental Safety, 189, 110021. https://doi.org/10.1016/j.ecoenv.2019.110021

    Article  CAS  Google Scholar 

  • Danielson, R. E., & Sutherland, P. L. (1986). Porosity. In: Klute, A. (Ed.). Methods of soil analysis: Physical and mineralogical methods. 2.ed. (pp.443–461). Madison, American Society of Agronomy; Soil Science Society of America.

  • Davila, R. B., Fontes, M. P. F., Pacheco, A. A., & Ferreira, M. S. (2020). Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. Science of the Total Environment, 709, 136151. https://doi.org/10.1016/j.scitotenv.2019.136151

    Article  CAS  Google Scholar 

  • Deng, J., Bai, X., Zhou, Y., Zhu, W., & Yin, Y. (2020). Variations of soil microbial communities accompanied by different vegetation restoration in an open-cut iron mining area. Science of the Total Environment, 704, 135243. https://doi.org/10.1016/j.scitotenv.2019.135243

    Article  CAS  Google Scholar 

  • Dick, R. P., Breakwell, D. P., & Turco, R. F. (1996). Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In J. W. Doran & A. J. Jones (Eds.), Methods for Assessing Soil Quality (pp. 247–272). Soil Science Society of America.

    Google Scholar 

  • Esteves, G. F., Souza, K. R. D., Bressanin, L. A., Andrade, P. C. C., VeronezeJúnior, V., Reis, P. E., Silva, A. B., Mantovani, J. R., Magalhães, P. C., Pasqual, M., & Souza, T. C. (2020). Vermicompost improves maize, millet and sorghum growth in iron mine tailings. Journal of Environmental Management, 264, 110468. https://doi.org/10.1016/j.jenvman.2020.110468

    Article  Google Scholar 

  • Gastauer, M., Caldeira, C. F., Ramos, S. J., Trevelin, L. C., Jaffé, R., Oliveira, G., Vera, M. P. O., Pires, E., Santiago, F. L. A., Carneiro, M. A. C., Coelho, F. T. A., Silva, R., Souza-Filho, P. W. M., & Siqueira, J. O. (2020). Integrating environmental variables by multivariate ordination enables the reliable estimation of mineland rehabilitation status. Journal of Environmental Management, 256, 109894. https://doi.org/10.1016/j.jenvman.2019.109894

    Article  Google Scholar 

  • Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235–244. https://doi.org/10.1016/S0007-1536(63)80079-0

    Article  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soil and plants (3ed). CRC Press. 331p.

    Google Scholar 

  • Klute, A. (1986). Water retention: Laboratory method. In: Klute, A. (Ed.). Methods of soil analysis: Physical and mineralogical methods (2.ed., pp.635–660). Madison, American Society of Agronomy; Soil Science Society of America.

  • Kumar, A., Maiti, S. K., Tripti, P., & M. N. V., & Singh, R. S. (2017). Grasses and legumes facilitate phytoremediation of metalliferous soils in the vicinity of an abandoned chromite-asbestos mine. Journal of Soils and Sediments, 17, 1358–1368. https://doi.org/10.1007/s11368-015-1323-z

    Article  CAS  Google Scholar 

  • Malavolta, E., Vitti, G. C., Oliveira, S. A. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações (2nd ed.). Potafos Piracicaba (in Portuguese).

  • Matos, L. P., Andrade, H. M., Marinato, C. S., Prado, I. G. O., Coelho, D. G., Montoya, S. G., Kasuya, M. C. M., & Oliveira, J. A. (2020). Limitations to use of Cassia grandis L. in the revegetation of the areas impacted with mining tailings from Fundão Dam. Water, Air, & Soil Pollution, 231, 127. https://doi.org/10.1007/s11270-020-04479-0

    Article  CAS  Google Scholar 

  • Mehlich, A. (1953). Determination of P, Ca, Mg, K, Na and NH4. North Carolina Soil Testing Division, Raleigh, pp. 195.

  • Nunes, S., Gastauer, M., Cavalcante, R. B. L., Ramos, S. J., Caldeira, C. F., Jr., Silva, D., Rodrigues, R. R., Salomão, R. S., Oliveira, M., Souza-Filho, P. W. M., & Siqueira, J. O. (2020). Challenges and opportunities for large-scale reforestation in the Eastern Amazon using native species. Forest Ecology and Management, 466, 118120. https://doi.org/10.1016/j.foreco.2020.118120

    Article  Google Scholar 

  • Prado, I. G. O., Silva, M. C. S., Prado, D. G. O., Kemmelmeier, K., Pedrosa, B. G., Silva, C. C., & Kasuya, M. C. M. (2019). Revegetation process increases the diversity of total and arbuscular mycorrhizal fungi in areas affected by the Fundão dam failure in Mariana, Brazil. Applied Soil Ecology, 141, 84–95. https://doi.org/10.1016/j.apsoil.2019.05.008

    Article  Google Scholar 

  • Queiroz, H. M., Nóbrega, G. N., Ferreira, T. O., Almeida, L. S., Romero, T. B., Santaella, S. T., Bernardino, A. F., & Otero, X. L. (2018). The Samarco mine tailing disaster: A possible time-bomb for heavy metals contamination? Science of the Total Environment, 637–638, 498–506. https://doi.org/10.1016/j.scitotenv.2018.04.370

    Article  CAS  Google Scholar 

  • R Development Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available online at https://www.R-project.org/

  • Reichert, J. M., Reinert, D. J., & Braida, J. A. (2003). Qualidade dos solos e sustentabilidade de sistemas agrícolas. Ciência & Ambiente, 27, 29–48.

    Google Scholar 

  • Reichert, J. M., Suzuki, L. E. A. S., & Reinert, D. J. (2007). Compactação do solo em sistemas agropecuários e florestais: Identificação, efeitos, limites críticos e mitigação. Tópicos em Ciência do Solo (pp. 49–134).

  • Remigio, A. C., Chaney, R. L., Baker, A. J. M., Edraki, M., Erskine, P. D., Echevarria, G., & van der Ent, A. (2020). Phytoextraction of high value elements and contaminants from mining and mineral wastes: Opportunities and limitations. Plant and Soil, 449, 11–37. https://doi.org/10.1007/s11104-020-04487-3

    Article  CAS  Google Scholar 

  • Renova (2018). Monitoramento das intervenções prioritárias: Relatório de resultado do primeiro ano de monitoramento. Fundação Renova, Belo Horizonte, MG. https://www.fundacaorenova.org

  • Santos, O. S. H., Avellar, F. C., Alves, M., Trindade, R. C., Menezes, M. B., Ferreira, M. C., França, G. S., Cordeiro, J., Sobreira, F. G., Yoshida, I. M., Moura, P. M., Baptista, M. B., & Scotti, M. R. (2019). Understanding the environmental impact of a mine dam rupture in Brazil: Prospects for remediation. Journal of Environmental Quality, 48, 439–449. https://doi.org/10.2134/jeq2018.04.0168

    Article  CAS  Google Scholar 

  • Scotti, M. R., Gomes, A. R., Lacerda, T. L., Ávila, S. S., Silva, S. L. L., Antão, A., Santos, A. G. P., Medeiros, M. B., Alvarenga, S., Santos, C. H., & Rigobelo, E. C. (2020). Remediation of a riparian site in the Brazilian Atlantic forest reached by contaminated tailings from the collapsed Fundão dam with native woody species. Integrated Environmental Assessment and Management, 16, 669–675. https://doi.org/10.1002/ieam.4272

    Article  Google Scholar 

  • Segura, F. R., Nunes, E. A., Paniz, F. P., Paulelli, A. C. C., Rodrigues, G. B., Braga, G. U. L., Pedreira Filho, W. R., Barbosa, F., Cerchiaro, G., Silva, F. F. F. F., & Batista, B. L. (2016). Potential risks of the residue from Samarco’s mine dam burst (Bento Rodrigues, Brazil). Environmental Pollution, 218, 813–825. https://doi.org/10.1016/j.envpol.2016.08.005

    Article  CAS  Google Scholar 

  • Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., Dumat, C., & Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513–533.

    Article  CAS  Google Scholar 

  • Silva, A. O., Costa, A. M., Teixeira, A. F. S., Guimarães, A. A., Santos, J. V., & Moreira, F. M. S. (2018). Soil microbiological attributes indicate recovery of an iron mining area and of the biological quality of adjacent phytophysiognomies. Ecological Indicator, 93, 142–151. https://doi.org/10.1016/j.ecolind.2018.04.073

    Article  CAS  Google Scholar 

  • Silva, A. O., Guimarães, A. A., Lopez, B. D. O., Zanchi, C. S., Vega, C. F. P., Batista, É. R., Moreira, F. M. S., Souza, F. R. C., Pinto, F. A., Santos, J. V., Carneiro, J. J., Siqueira, J. O., Kemmelmeier, K., Guilherme, L. R. G., Rufini, M., Dias Junior, M. S., Aragão, O. O. S., Borges, P. H. C., Oliveira-Longatti, S. M., & Carneiro, M. A. C. (2021). Chemical, physical, and biological attributes in soils affected by deposition of iron ore tailings from the Fundão Dam failure. Environmental Monitoring and Assessment, 193, 462. https://doi.org/10.1007/s10661-021-09234-4

    Article  CAS  Google Scholar 

  • Teixeira, A. F. S., Kemmelmeier, K., Marascalchi, M. N., Stürmer, S. L., Carneiro, M. A. C., & Moreira, F. M. S. (2017). Arbuscular mycorrhizal fungal communities in an iron mining area and its surroundings: Inoculum potential, density, and diversity of spores related to soil properties. Ciência e Agrotecnologia, 41, 511–525. https://doi.org/10.1590/1413-70542017415014617

    Article  CAS  Google Scholar 

  • Thavamani, P., Samkumar, R. A., Satheesh, V., Subashchandrabose, S. R., Ramadass, K., Naidu, R., Venkateswarlu, K., & Megharaj, M. (2017). Microbes from mined sites: Harnessing their potential for reclamation of derelict mine sites. Environmental Pollution, 230, 495–505. https://doi.org/10.1016/j.envpol.2017.06.056

    Article  CAS  Google Scholar 

  • U.S. Environmental PROTECTION AGENCY - USEPA,. (2007). Method 3051A (SW-846): Microwave assisted acid digestion of sediments, sludges, and oils, Revision (1st ed., p. 2007). USEPA.

    Google Scholar 

  • Vance, E. D., Brooks, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Veloso, C. A. C., Muraoka, T., Malavolta, E., & Carvalho, J. G. (1995). Influência do manganês sobre a nutrição mineral e crescimento da pimenteira do reino (Piper nigrum L.). Scientia Agricola, 52, 376–383. https://doi.org/10.1590/S0103-90161995000200028

    Article  CAS  Google Scholar 

  • Vrhovnik, P., Dolenec, M., Serafimovski, T., Tasev, G., & Arrebola, J. P. (2016). Assessment of essential and nonessential dietary exposure to trace elements from homegrown foodstuffs in a polluted area in Makedonska Kamenica and the Kočani region (FYRM). Science of the Total Environment, 559, 204–211. https://doi.org/10.1016/j.scitotenv.2016.03.197

    Article  CAS  Google Scholar 

  • Wahsha, M., Nadimi-Goki, M., Fornasier, F., Al-Jawasreh, R., Hussein, E. I., & Bini, C. (2017). Microbial enzymes as an early warning management tool for monitoring mining site soils. CATENA, 148, 40–45. https://doi.org/10.1016/j.catena.2016.02.021

    Article  CAS  Google Scholar 

  • Wang, L., Ji, B., Hu, Y., Liu, R., & Sun, W. (2017). A review on in situ phytoremediation of mine tailings. Chemosphere, 184, 594–600. https://doi.org/10.1016/j.chemosphere.2017.06.025

    Article  CAS  Google Scholar 

  • Wohlenberg, E. V., Reichert, J. M., Reinert, D. J., & Blume, E. (2004). Dinâmica da agregação de um solo franco-arenoso em cinco sistemas de culturas em rotação e em sucessão. Revista Brasileira De Ciência Do Solo, 28, 891–900. https://doi.org/10.1590/S0100-06832004000500011

    Article  Google Scholar 

  • Xiao, X. Y., Wang, M. W., Zhu, H. W., Guo, Z. H., Han, X. Q., & Zeng, P. (2017). Response of soil microbial activities and microbial community structure to vanadium stress. Ecotoxicology and Environmental Safety, 142, 200–206. https://doi.org/10.1016/j.ecoenv.2017.03.047

    Article  CAS  Google Scholar 

  • Zago, V. C. P., Dores, N. C., & Watts, B. A. (2019). Strategy for phytomanagement in an area affected by iron ore dam rupture: A study case in Minas Gerais State, Brazil. Environmental Pollution, 249, 1029–1037. https://doi.org/10.1016/j.envpol.2019.03.060

    Article  CAS  Google Scholar 

  • Zanchi, C. S., Batista, É. R., Silva, A. O., Barbosa, M. V., Pinto, F. A., Santos, J. V., & Carneiro, M. A. C. (2021). Recovering soils affected by iron mining tailing using herbaceous species with mycorrhizal inoculation. Water, Air, and Soil Pollution, 232, 110. https://doi.org/10.1007/s11270-021-05061-y

    Article  CAS  Google Scholar 

  • Zeng, P., Guo, Z., Xiao, X., & Peng, C. (2019). Dynamic response of enzymatic activity and microbial community structure in metal(loid)-contaminated soil with tree-herb intercropping. Geoderma, 345, 5–16. https://doi.org/10.1016/j.geoderma.2019.03.013

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support and scholarships from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnologia (CNPq), and the Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG-APQ-01661–16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Aurélio Carbone Carneiro.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanchi, C.S., Silva, A.O., Batista, É.R. et al. Pre-cultivation with Herbaceous Plants Assists in the Revegetation Process of Iron Mining Tailings with Enterolobium contortisiliquum. Water Air Soil Pollut 233, 231 (2022). https://doi.org/10.1007/s11270-022-05696-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05696-5

Keywords