Abstract
In the process of recovering degraded areas, the establishment of succession of arboreal plants after the planting of herbs is an efficient strategy for diversifying vegetation cover and improving soil quality. In this sense, the objective of this research was to evaluate, in microcosm, the effect of herbaceous pre-cultivation on the initial development of Enterolobium contortisiliquum and on the rehabilitation of the physical, chemical, and biological characteristics of the iron mining tailings from the Fundão dam, Mariana, Brazil. Five different herbaceous pre-cultivation systems were applied: control without pre-cultivation (T/E); Urochloa ruziziensis (U/E); U. ruziziensis + Crotalaria spectabilis (U + C/E); U. ruziziensis + Guizotia abyssinica (U + G/E); and U. ruziziensis + C. spectabilis + G. abyssinica (U + C + G/E). After 120 days of cultivation, we evaluated the tree development and the physical, chemical, and biological attributes of the tailings. The dry mass of the total shoot and the stem of E. contortisiliquum did not differ between the pre-cultures, whereas the dry mass of the leaf was lower in U + C/E. In general, the biological attributes of the tailings were the most sensitive to the changes that occurred due to the different herbaceous pre-cultivation arrangements. In the treatments U/E, U + C/E, and U + G/E, greater efficiency was observed in the production of microbial biomass carbon and in the total enzymatic activity of the soil. E. contortisiliquum proved to be efficient in the absorption of sodium (Na), copper (Cu), zinc (Zn), chromium (Cr), and nickel (Ni), demonstrating that this tree species has the potential to be used in the revegetation of tailings. The use of fast-growing plants activates the soil microbiota and favors the arboreal being an efficient strategy for the tailings rehabilitation process.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data Availability
The authors declare that data supporting the findings of this study are available within the article and its supplementary information files.
References
Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services – A global review. Geoderma, 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009
Alef, K. (1995). Estimation of soil respiration. In K. Alef & P. Nannipieri (Eds.), Methods in Applied Soil Microbiology and Biochemistry (pp. 214–219). Academic Press.
Almeida, C. A., Oliveira, A. F., Pacheco, A. A., Lopes, R. P., Neves, A. A., & Queiroz, M. E. L. R. (2018). Characterization and evaluation of sorption potential of the iron mine waste after Samarco dam disaster in Doce River basin – Brazil. Chemosphere, 209, 411–420. https://doi.org/10.1016/j.chemosphere.2018.06.071
Alves, M. C., Suzuki, L. G. A. S., & Suzuki, L. E. A. S. (2007). Densidade do solo e infiltração de água como indicadores da qualidade física de um Latossolo Vermelho distrófico em recuperação. Revista Brasileira de Ciência do Solo, 31, 617–625.
Anderson, T. H., & Domsch, K. H. (1993). Themetabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry, 25, 393–395. https://doi.org/10.1016/0038-0717(93)90140-7
Andrade, G. F., Paniz, F. P., Martins, A. C., Jr., Rocha, B. A., Lobato, A. K. S., Rodrigues, J. L., Cardoso-Gustavson, P., Masuda, H. P., & Batista, B. L. (2018). Agricultural use of Samarco’s spilled mud assessed by rice cultivation: A promising residue use? Chemosphere, 193, 892–902. https://doi.org/10.1016/j.chemosphere.2017.11.099
Arumugam, G., Rajendran, R., Ganesan, A., & Sethu, R. (2018). Bioaccumulation and translocation of heavy metals in mangrove rhizosphere sediments to tissues of Avicenia marina – A field study from tropical mangrove forest. Environmental Nanotechnology, Monitoring & Management, 10, 272–279. https://doi.org/10.1016/j.enmm.2018.07.005
Batista, É. R., Carneiro, J. J., Pinto, F. A., Santos, J. V., & Carneiro, M. A. C. (2020). Environmental drivers of shifts on microbial traits in sites disturbed by a large-scale tailing dam collapse. Science of the Total Environment., 139453,. https://doi.org/10.1016/j.scitotenv.2020.139453
Batista, É. R., Franco, A. J., Silva, A. P. V., Silva, J. A. G. F., Tavares, D. S., Souza, J. K., Silva, A. O., Barbosa, M. V., Santos, J. V., & Carneiro, M. A. C. (2022). Organic substrate availability and enzyme activity affect microbial-controlled carbon dynamics in areas disturbed by a mining dam failure. Applied Soil Ecology, 169, 104169. https://doi.org/10.1016/j.apsoil.2021.104169
Blake, G. R., Hartge, K. H. (1986). Bulk Density. In: Klute A. (Ed.). Methods of soil analysis: Physical and mineralogical methods. Part 1. (pp. 363–375). Madison: American Society of Agronomy.
Brunner, I., Luster, J., Günthardt-Goerg, M. S., & Frey, B. (2008). Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environmental Pollution., 152, 559–568. https://doi.org/10.1016/j.envpol.2007.07.006
Carneiro, M. A. C., Siqueira, J. O., Moreira, F. M. S., & Soares, A. L. L. (2008). Carbono orgânico, nitrogênio total, biomassa e atividade microbiana do solo em duas cronosseqüências de reabilitação após a mineração de bauxita. Revista Brasileira De Ciência Do Solo, 32, 621–632. https://doi.org/10.1590/S0100-06832008000200017
Carvalho Filho, A., Inda, A. V., Fink, J. R., & Curi, N. (2015). Iron oxides in soils of different lithological origins in Ferriferous Quadrilateral (Minas Gerais, Brazil). Applied Clay Science, 118, 1–7. https://doi.org/10.1016/j.clay.2015.08.037
Coelho, D. G., Marinato, C. S., Matos, L. P., Andrade, H. M., Silva, V. M., Neves, P. H. S., & Oliveira, J. A. (2020). Evaluation of metals in soil and tissues of economic-interest plants grown in sites affected by the Fundão Dam failure in Mariana, Brazil. Integrated Environmental Assessment and Management., 16, 596–607. https://doi.org/10.1002/ieam.4253
Conselho Estadual de Política Ambiental (COPAM) (2011). Deliberação Normativa COPAM no 166, de 29 de junho de 2011
Cruz, F. V. S., Gomes, M. P., Bicalho, E. M., Torre, F. D., & Garcia, Q. S. (2020). Does Samarco’s spilled mud impair the growth of native trees of the Atlantic Rainforest? Ecotoxicology and Environmental Safety, 189, 110021. https://doi.org/10.1016/j.ecoenv.2019.110021
Danielson, R. E., & Sutherland, P. L. (1986). Porosity. In: Klute, A. (Ed.). Methods of soil analysis: Physical and mineralogical methods. 2.ed. (pp.443–461). Madison, American Society of Agronomy; Soil Science Society of America.
Davila, R. B., Fontes, M. P. F., Pacheco, A. A., & Ferreira, M. S. (2020). Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. Science of the Total Environment, 709, 136151. https://doi.org/10.1016/j.scitotenv.2019.136151
Deng, J., Bai, X., Zhou, Y., Zhu, W., & Yin, Y. (2020). Variations of soil microbial communities accompanied by different vegetation restoration in an open-cut iron mining area. Science of the Total Environment, 704, 135243. https://doi.org/10.1016/j.scitotenv.2019.135243
Dick, R. P., Breakwell, D. P., & Turco, R. F. (1996). Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In J. W. Doran & A. J. Jones (Eds.), Methods for Assessing Soil Quality (pp. 247–272). Soil Science Society of America.
Esteves, G. F., Souza, K. R. D., Bressanin, L. A., Andrade, P. C. C., VeronezeJúnior, V., Reis, P. E., Silva, A. B., Mantovani, J. R., Magalhães, P. C., Pasqual, M., & Souza, T. C. (2020). Vermicompost improves maize, millet and sorghum growth in iron mine tailings. Journal of Environmental Management, 264, 110468. https://doi.org/10.1016/j.jenvman.2020.110468
Gastauer, M., Caldeira, C. F., Ramos, S. J., Trevelin, L. C., Jaffé, R., Oliveira, G., Vera, M. P. O., Pires, E., Santiago, F. L. A., Carneiro, M. A. C., Coelho, F. T. A., Silva, R., Souza-Filho, P. W. M., & Siqueira, J. O. (2020). Integrating environmental variables by multivariate ordination enables the reliable estimation of mineland rehabilitation status. Journal of Environmental Management, 256, 109894. https://doi.org/10.1016/j.jenvman.2019.109894
Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235–244. https://doi.org/10.1016/S0007-1536(63)80079-0
Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soil and plants (3ed). CRC Press. 331p.
Klute, A. (1986). Water retention: Laboratory method. In: Klute, A. (Ed.). Methods of soil analysis: Physical and mineralogical methods (2.ed., pp.635–660). Madison, American Society of Agronomy; Soil Science Society of America.
Kumar, A., Maiti, S. K., Tripti, P., & M. N. V., & Singh, R. S. (2017). Grasses and legumes facilitate phytoremediation of metalliferous soils in the vicinity of an abandoned chromite-asbestos mine. Journal of Soils and Sediments, 17, 1358–1368. https://doi.org/10.1007/s11368-015-1323-z
Malavolta, E., Vitti, G. C., Oliveira, S. A. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações (2nd ed.). Potafos Piracicaba (in Portuguese).
Matos, L. P., Andrade, H. M., Marinato, C. S., Prado, I. G. O., Coelho, D. G., Montoya, S. G., Kasuya, M. C. M., & Oliveira, J. A. (2020). Limitations to use of Cassia grandis L. in the revegetation of the areas impacted with mining tailings from Fundão Dam. Water, Air, & Soil Pollution, 231, 127. https://doi.org/10.1007/s11270-020-04479-0
Mehlich, A. (1953). Determination of P, Ca, Mg, K, Na and NH4. North Carolina Soil Testing Division, Raleigh, pp. 195.
Nunes, S., Gastauer, M., Cavalcante, R. B. L., Ramos, S. J., Caldeira, C. F., Jr., Silva, D., Rodrigues, R. R., Salomão, R. S., Oliveira, M., Souza-Filho, P. W. M., & Siqueira, J. O. (2020). Challenges and opportunities for large-scale reforestation in the Eastern Amazon using native species. Forest Ecology and Management, 466, 118120. https://doi.org/10.1016/j.foreco.2020.118120
Prado, I. G. O., Silva, M. C. S., Prado, D. G. O., Kemmelmeier, K., Pedrosa, B. G., Silva, C. C., & Kasuya, M. C. M. (2019). Revegetation process increases the diversity of total and arbuscular mycorrhizal fungi in areas affected by the Fundão dam failure in Mariana, Brazil. Applied Soil Ecology, 141, 84–95. https://doi.org/10.1016/j.apsoil.2019.05.008
Queiroz, H. M., Nóbrega, G. N., Ferreira, T. O., Almeida, L. S., Romero, T. B., Santaella, S. T., Bernardino, A. F., & Otero, X. L. (2018). The Samarco mine tailing disaster: A possible time-bomb for heavy metals contamination? Science of the Total Environment, 637–638, 498–506. https://doi.org/10.1016/j.scitotenv.2018.04.370
R Development Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available online at https://www.R-project.org/
Reichert, J. M., Reinert, D. J., & Braida, J. A. (2003). Qualidade dos solos e sustentabilidade de sistemas agrícolas. Ciência & Ambiente, 27, 29–48.
Reichert, J. M., Suzuki, L. E. A. S., & Reinert, D. J. (2007). Compactação do solo em sistemas agropecuários e florestais: Identificação, efeitos, limites críticos e mitigação. Tópicos em Ciência do Solo (pp. 49–134).
Remigio, A. C., Chaney, R. L., Baker, A. J. M., Edraki, M., Erskine, P. D., Echevarria, G., & van der Ent, A. (2020). Phytoextraction of high value elements and contaminants from mining and mineral wastes: Opportunities and limitations. Plant and Soil, 449, 11–37. https://doi.org/10.1007/s11104-020-04487-3
Renova (2018). Monitoramento das intervenções prioritárias: Relatório de resultado do primeiro ano de monitoramento. Fundação Renova, Belo Horizonte, MG. https://www.fundacaorenova.org
Santos, O. S. H., Avellar, F. C., Alves, M., Trindade, R. C., Menezes, M. B., Ferreira, M. C., França, G. S., Cordeiro, J., Sobreira, F. G., Yoshida, I. M., Moura, P. M., Baptista, M. B., & Scotti, M. R. (2019). Understanding the environmental impact of a mine dam rupture in Brazil: Prospects for remediation. Journal of Environmental Quality, 48, 439–449. https://doi.org/10.2134/jeq2018.04.0168
Scotti, M. R., Gomes, A. R., Lacerda, T. L., Ávila, S. S., Silva, S. L. L., Antão, A., Santos, A. G. P., Medeiros, M. B., Alvarenga, S., Santos, C. H., & Rigobelo, E. C. (2020). Remediation of a riparian site in the Brazilian Atlantic forest reached by contaminated tailings from the collapsed Fundão dam with native woody species. Integrated Environmental Assessment and Management, 16, 669–675. https://doi.org/10.1002/ieam.4272
Segura, F. R., Nunes, E. A., Paniz, F. P., Paulelli, A. C. C., Rodrigues, G. B., Braga, G. U. L., Pedreira Filho, W. R., Barbosa, F., Cerchiaro, G., Silva, F. F. F. F., & Batista, B. L. (2016). Potential risks of the residue from Samarco’s mine dam burst (Bento Rodrigues, Brazil). Environmental Pollution, 218, 813–825. https://doi.org/10.1016/j.envpol.2016.08.005
Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., Dumat, C., & Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513–533.
Silva, A. O., Costa, A. M., Teixeira, A. F. S., Guimarães, A. A., Santos, J. V., & Moreira, F. M. S. (2018). Soil microbiological attributes indicate recovery of an iron mining area and of the biological quality of adjacent phytophysiognomies. Ecological Indicator, 93, 142–151. https://doi.org/10.1016/j.ecolind.2018.04.073
Silva, A. O., Guimarães, A. A., Lopez, B. D. O., Zanchi, C. S., Vega, C. F. P., Batista, É. R., Moreira, F. M. S., Souza, F. R. C., Pinto, F. A., Santos, J. V., Carneiro, J. J., Siqueira, J. O., Kemmelmeier, K., Guilherme, L. R. G., Rufini, M., Dias Junior, M. S., Aragão, O. O. S., Borges, P. H. C., Oliveira-Longatti, S. M., & Carneiro, M. A. C. (2021). Chemical, physical, and biological attributes in soils affected by deposition of iron ore tailings from the Fundão Dam failure. Environmental Monitoring and Assessment, 193, 462. https://doi.org/10.1007/s10661-021-09234-4
Teixeira, A. F. S., Kemmelmeier, K., Marascalchi, M. N., Stürmer, S. L., Carneiro, M. A. C., & Moreira, F. M. S. (2017). Arbuscular mycorrhizal fungal communities in an iron mining area and its surroundings: Inoculum potential, density, and diversity of spores related to soil properties. Ciência e Agrotecnologia, 41, 511–525. https://doi.org/10.1590/1413-70542017415014617
Thavamani, P., Samkumar, R. A., Satheesh, V., Subashchandrabose, S. R., Ramadass, K., Naidu, R., Venkateswarlu, K., & Megharaj, M. (2017). Microbes from mined sites: Harnessing their potential for reclamation of derelict mine sites. Environmental Pollution, 230, 495–505. https://doi.org/10.1016/j.envpol.2017.06.056
U.S. Environmental PROTECTION AGENCY - USEPA,. (2007). Method 3051A (SW-846): Microwave assisted acid digestion of sediments, sludges, and oils, Revision (1st ed., p. 2007). USEPA.
Vance, E. D., Brooks, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6
Veloso, C. A. C., Muraoka, T., Malavolta, E., & Carvalho, J. G. (1995). Influência do manganês sobre a nutrição mineral e crescimento da pimenteira do reino (Piper nigrum L.). Scientia Agricola, 52, 376–383. https://doi.org/10.1590/S0103-90161995000200028
Vrhovnik, P., Dolenec, M., Serafimovski, T., Tasev, G., & Arrebola, J. P. (2016). Assessment of essential and nonessential dietary exposure to trace elements from homegrown foodstuffs in a polluted area in Makedonska Kamenica and the Kočani region (FYRM). Science of the Total Environment, 559, 204–211. https://doi.org/10.1016/j.scitotenv.2016.03.197
Wahsha, M., Nadimi-Goki, M., Fornasier, F., Al-Jawasreh, R., Hussein, E. I., & Bini, C. (2017). Microbial enzymes as an early warning management tool for monitoring mining site soils. CATENA, 148, 40–45. https://doi.org/10.1016/j.catena.2016.02.021
Wang, L., Ji, B., Hu, Y., Liu, R., & Sun, W. (2017). A review on in situ phytoremediation of mine tailings. Chemosphere, 184, 594–600. https://doi.org/10.1016/j.chemosphere.2017.06.025
Wohlenberg, E. V., Reichert, J. M., Reinert, D. J., & Blume, E. (2004). Dinâmica da agregação de um solo franco-arenoso em cinco sistemas de culturas em rotação e em sucessão. Revista Brasileira De Ciência Do Solo, 28, 891–900. https://doi.org/10.1590/S0100-06832004000500011
Xiao, X. Y., Wang, M. W., Zhu, H. W., Guo, Z. H., Han, X. Q., & Zeng, P. (2017). Response of soil microbial activities and microbial community structure to vanadium stress. Ecotoxicology and Environmental Safety, 142, 200–206. https://doi.org/10.1016/j.ecoenv.2017.03.047
Zago, V. C. P., Dores, N. C., & Watts, B. A. (2019). Strategy for phytomanagement in an area affected by iron ore dam rupture: A study case in Minas Gerais State, Brazil. Environmental Pollution, 249, 1029–1037. https://doi.org/10.1016/j.envpol.2019.03.060
Zanchi, C. S., Batista, É. R., Silva, A. O., Barbosa, M. V., Pinto, F. A., Santos, J. V., & Carneiro, M. A. C. (2021). Recovering soils affected by iron mining tailing using herbaceous species with mycorrhizal inoculation. Water, Air, and Soil Pollution, 232, 110. https://doi.org/10.1007/s11270-021-05061-y
Zeng, P., Guo, Z., Xiao, X., & Peng, C. (2019). Dynamic response of enzymatic activity and microbial community structure in metal(loid)-contaminated soil with tree-herb intercropping. Geoderma, 345, 5–16. https://doi.org/10.1016/j.geoderma.2019.03.013
Funding
The authors received financial support and scholarships from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnologia (CNPq), and the Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG-APQ-01661–16).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zanchi, C.S., Silva, A.O., Batista, É.R. et al. Pre-cultivation with Herbaceous Plants Assists in the Revegetation Process of Iron Mining Tailings with Enterolobium contortisiliquum. Water Air Soil Pollut 233, 231 (2022). https://doi.org/10.1007/s11270-022-05696-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11270-022-05696-5


