Skip to main content

Advertisement

Log in

Removal of Methyl Violet Dye by Adsorption Process on Hydrogen Titanate Nanotubes: Experimental-Theoretical Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The synthesis of new high-performance and low-cost nanomaterials in the adsorption process that meets the requirements of green chemistry is still a major challenge for the removal of dyes in the textile industry. In this sense, hydrogen titanate nanotubes (H-TiNTs) were synthesized, characterized, and used in the adsorption process to remove methyl violet (MV) dye from water. For the characterization, the H-TiNTs showed a high surface area of 309.304 m2 g−1 and a point of zero charge of 6.4. The density functional theory (DFT) study was performed, which showed that the adsorption occurred especially for the weak dispersion interactions C – HO and – HTi. More intense attractive interactions were also identified in the H-TiNTs, such as intramolecular hydrogen bondings O–HO. For the kinetic adsorption studies, the equilibrium was reached after 180 min, with an 88% MV removal. The best fit occurred for the pseudo-second-order model (R2 = 0.99), compared to the pseudo-first-order and intraparticle diffusion models, which were also used. Both Langmuir (R2 = 0.99) and Freundlich (R2 = 0.93) isotherm models showed a good fit; however, the Langmuir model best described the adsorption process of MV dye in H-TiNTs with a qmax = 106 mg g−1. The thermodynamic parameters ΔG°, ΔH°, and ΔS° indicated that the adsorption process was spontaneous and endothermic. Due to the high efficiency of the removal of MV dye using H-TiNTs, this material can be a promising and low-cost alternative, compared to other adsorbents used for dye removal in textile industry wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Abdulhameed, A. S., Mohammad, A. T., & Jawad, A. H. (2019). Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. Journal of Cleaner Production, 232, 43–56.

    Article  CAS  Google Scholar 

  • Allen, S. J., Mckay, G., & Khader, K. Y. H. (1989). Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat. Environmental Pollution., 56, 39–50.

    Article  CAS  Google Scholar 

  • Allouss, D., Essamlali, Y., Amadine, O., Chakir, A., & Zahouily, M. (2019). Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: Adsorption kinetics, isotherm, thermodynamics and reusability studies. RSC Advances., 9, 37858–37869.

    Article  CAS  Google Scholar 

  • Asghar, A., Khan, Z., Maqbool, N., Qazi, I. A., & Awan, M. A. (2015). Comparison of adsorption capability of activated carbon and metal doped TiO2 for geosmin and 2-MIB removal from water. Journal of Nanomaterials, 9, 1–11.

  • Bavykin, D. V., & Walsh, F. C. (2009). Elongated titanate nanostructures and their applications. European Journal of Inorganic Chemistry, 8, 977–997.

  • Burkinshaw, S. M., & Salihu, G. (2013). The wash-off of dyeings using interstitial water. Part 4: Disperse and reactive dyes on polyester/cotton fabric. Dyes and Pigments, 99, 548–560.

    Article  CAS  Google Scholar 

  • Çelekli, A., Nuaimi, A. I. A., & Bozkurt, H. (2019). Adsorption kinetic and isotherms of reactive red 120 on Moringa oleifera seed as an eco-friendly process. Journal of Molecular Structure, 1195, 168–178.

    Article  CAS  Google Scholar 

  • Chen, X. (2015). Modeling of experimental adsorption isotherm data. Information, 6, 14–22.

    Article  Google Scholar 

  • Chien, S. H., & Clayton, W. R. (1980). Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal, 44, 265–268.

    Article  CAS  Google Scholar 

  • Contreras-Garcia, J., et al. (2011). NCIPLOT: A program for plotting non covalent interaction regions. Journal of Chemical Theory and Computation, 7, 625.

    Article  CAS  Google Scholar 

  • Corso, A. D. (2014). Pseudopotentials periodic table: From H to Pu. Computational Materials Science, 95, 337–350.

    Article  CAS  Google Scholar 

  • Eskandari, Z., Talaiekhozani, A., Talaie, M. R., & Banisharif, F. (2019). Enhancing ferrate (VI) oxidation process to remove blue 203 from wastewater utilizing MgO nanoparticles. Journal of Environmental Management, 231, 297–302.

    Article  CAS  Google Scholar 

  • Fierro, V., Torné-Fernández, V., Montané, D., & Celzard, A. (2008). Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous and Mesoporous Materials, 111(1–3), 276–284.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57, 385–471.

    CAS  Google Scholar 

  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., et al. (2009). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21, 395502.

    Google Scholar 

  • Grimme, S. (2008). Do special noncovalent π–π stacking interactions really exist? Angewandte Chemie. International Edition, 47, 3430–3434.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Tyagi, I., Sadegh, H., Shahryari-Ghoshekandi, R., Makhlouf, A. S. H., & Maazinejad, B. (2015). Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: A review. Science, Technology and Development, 34(3), 195–214.

    Article  Google Scholar 

  • IUPAC. (1985). International Union of Pure and Applied Chemistry, Recommendations. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603–619. Retrieved December 9, 2021, from http://publications.iupac.org/pac/57/4/0603/index.html. Accessed 9 Dec 2021.

  • Johnson, E. R., et al. (2010). Revealing noncovalent interactions. Journal of the American Chemical Society, 132, 6498.

    Article  CAS  Google Scholar 

  • Keyhanian, F., Shariati, S., Faraji, M., & Hesabi, M. (2011). Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions. Arabian Journal of Chemistry, 9, 348–354.

    Article  CAS  Google Scholar 

  • Kim, Y., Bae, J., Park, H., Suh, J. K., You, Y. W., & Choi, H. (2016). Adsorption dynamics of methyl violet onto granulated mesoporous carbon: Facile synthesis and adsorption kinetics. Water Research, 101, 187–194.

    Article  CAS  Google Scholar 

  • Klimov, M. E. M., Hipólito, P. H., Klimova, T. E., Casados, D. A. S., & García, M. M. (2016). Development of reusable palladium catalysts supported on hydrogen titanate nanotubes for the Heck reaction. Journal of Catalysis, 342, 138–150.

    Article  CAS  Google Scholar 

  • Koch, U., & LA Popelier, P. (1995). Characterization of CHO hydrogen bonds on the basis of the charge density. Journal of Physical Chemistry, 99, 9747–9754.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). On the theory of so-called adsorption dissolved substances. K. Sven. Vetenskapsakad. Handl, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surface of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1368.

    Article  CAS  Google Scholar 

  • Li, Q., Li, Y., Ma, X., Du, Q., Sui, K., Wang, D., Wang, C., Li, H., & Xia, Y. (2017). Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water. Chemical Engineering Journal, 316, 623–630.

    Article  CAS  Google Scholar 

  • Liu, R., Zhang, B., Mei, D., Zhang, H., & Liu, J. (2011). Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination, 268, 111–116.

    Article  CAS  Google Scholar 

  • Lorençon, E., Alves, D. C. B., Krambrock, K., Ávila, E. S., Resende, R. R., Ferlauto, A. S., & Lago, R. M. (2014). Oxidative desulfurization of dibenzothiophene over titanate nanotubes. Fuel, 132, 53–61.

    Article  CAS  Google Scholar 

  • Lu, S. X., Zhong, H., Mo, D. M., Hu, Z., Zhou, H. L., & Yao, Y. (2017). A H-titanate nanotube with superior oxidative desulfurization selectivity. Green Chemistry, 19, 1371–1377.

    Article  CAS  Google Scholar 

  • Ma, H., Kong, A., Ji, Y., He, B., Song, Y., & Li, J. (2018). Ultrahigh adsorption capacities for anionic and cationic dyes from wastewater using only chitosan. Journal of Cleaner Production, 214, 89–94.

    Article  CAS  Google Scholar 

  • Machado, F. M., Bergmann, C. P., Fernandes, T. H. M., Lima, E. C., Royer, B., Calvete, T., & Fagan, S. B. (2011). Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. Journal of Hazardous Materials, 192, 1122–1131.

    Article  CAS  Google Scholar 

  • Murali, V., Ong, S. A., Ho, L. N., & Wong, Y. S. (2013). Evaluation of integrated anaerobic–aerobic biofilm reactor for degradation of azo dye methyl orange. Bioresource Technology, 143, 104–111.

    Article  CAS  Google Scholar 

  • Olu-Owolabi, B. I., Diagboya, P. N., & Adebowale, K. O. (2014). Evaluation of pyrene sorption-desorption on tropical soils. Journal of Environmental Management, 137, 1–9.

    Article  CAS  Google Scholar 

  • Othman, N. H., Alias, N. H., Shahruddin, M. Z., Bakar, N. F. A., Him, N. R. N., & Lau, W. J. (2018). Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. Journal of Environmental Chemical Engineering, 6(2), 2803–2811.

    Article  CAS  Google Scholar 

  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.

    Article  CAS  Google Scholar 

  • Saliby, I. E., Erdei, L., Kim, J. H., & Shon, H. K. (2013). Adsorption and photocatalytic degradation of methylene blue over hydrogenetitanate nanofibres produced by a peroxide method. Water Research, 47, 4115–4125.

    Article  CAS  Google Scholar 

  • Santos, P. B., Santos, J. J., Corrêa, C. C., Corio, P., & Andrade, G. F. (2019). Plasmonic photodegradation of textile dye Reactive Black 5 under visible light: A vibrational and electronic study. Journal of Photochemistry & Photobiology a: Chemistry, 371, 159–165.

    Article  CAS  Google Scholar 

  • Sharma, G., Kumar, A., Naushad, M., Kumar, A., Muhtased, A. H. A., Dhiman, P., Ghfar, A. A., Stadler, F. J., & Khan, M. R. (2018). Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites. Journal of Cleaner Production, 172, 2919–2930.

    Article  CAS  Google Scholar 

  • Song, Y., Duan, Y., & Zhou, L. (2018). Multi-carboxylic magnetic gel from hyperbranched polyglycerol formed by thiol-ene photopolymerization for efficient and selective adsorption of methylene blue and methyl violet dyes. Journal of Colloid and Interface Science, 529, 139–149.

    Article  CAS  Google Scholar 

  • Steiner, T. (2003). C-H••• O hydrogen bonding in crystals. Crystallography Reviews, 9, 77–228.

    Article  CAS  Google Scholar 

  • Tanhaei, B., Ayati, A., & Sillanpää, M. (2018). Magnetic xanthate modified chitosan as an emerging adsorbent for cationic azo dyes removal: Kinetic, thermodynamic and isothermal studies. International Journal of Biological Macromolecules, 121, 1126–1134.

    Article  CAS  Google Scholar 

  • Tian, G., Wang, W., Kang, Y., & Wang, A. (2016). Ammonium sulfide-assisted hydrothermal activation of palygorskite for enhanced adsorption of methyl violet. Journal of Environmental Sciences, 41, 33–43.

    Article  CAS  Google Scholar 

  • Viotti, P. V., Moreira, W. M., Santos, O. A. A., Bergamasco, R., Vieira, A. M. S., & Vieira, M. F. (2019). Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: Mechanism, kinetic and equilibrium study. Journal of Cleaner Production, 219, 809–817.

    Article  CAS  Google Scholar 

  • Vo, D. T., & Lee, C. K. (2017). Hydrophobically modified chitosan sponge preparation and its application for anionic dye removal. Journal of Environmental Chemical Engineering, 5(6), 5688–5694.

    Article  CAS  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of Sanitary Engineering Division, 89, 31–60.

    Article  Google Scholar 

  • Wu, P., Cai, Z., Jin, H., & Tang, Y. (2018). Adsorption mechanisms of five bisphenol analogues on PVC microplastics. Science of the Total Environment, 650, 671–678.

    Article  CAS  Google Scholar 

  • Xu, R. K., Xiao, S. C., Yuan, J. H., & Zhao, A. Z. (2011). Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresource Technology, 102, 10293–10298.

    Article  CAS  Google Scholar 

  • Yinghao, M., Chen, F., Yang, Q., Zhong, Y., Shu, X., Yao, F., Xie, T., Li, X., Wang, D., & Zeng, G. (2018). Sulfate radical induced degradation of Methyl Violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate. Journal of Environmental Management, 227, 406–414.

    Google Scholar 

  • Zahrim, A. Y., & Hilal, N. (2013). Treatment of highly concentrated dye solution by coagulation/flocculation-sand filtration and nanofiltration. Water Resources and Industry, 3, 23–34.

    Article  Google Scholar 

  • Zhang, S., Chen, Q., & Peng, L. M. (2005). Structure and formation of H2Ti3O7 nanotubes in an alkali environment. Physical Review B, 71, 014–104.

    Google Scholar 

  • Zhang, M., Li, Y., Yang, Q., Huang, L., Chen, L., & Xiao, H. (2018). Adsorption of methyl violet using pH- and temperature sensitive cellulose filament/poly (NIPAM-co-AAc) hybrid hydrogels. Journal of Materials Science, 53, 11837–11854.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Centro Multiusuário de Caracterização de Materiais (Multi-User Center for Materials Characterization) (CMCM) – UTFPR, for adsorbent characterization and analyses, the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil, SDumont supercomputer) for providing HPC resources, and the National Council for Scientific and Technological Development (CNPq) [487115/2013-9] from the Brazilian government for the financial support.

Funding

This study was financially supported by the National Council for Scientific and Technological Development (CNPq) [487115/2013–9].

Author information

Authors and Affiliations

Authors

Contributions

Daniela Kelly dos Santos: conceptualization, formal analysis, investigation, writing – original draft, visualization. Renata Treméa: writing – review and editing. Patrick Rodrigues Batistac: writing – review and editing. Lucila Adriani de Almeida Coral: writing – review and editing. Eudes Lorençon: writing–review and editing, resources. Fatima de Jesus Bassetti: conceptualization, writing – review and editing, resources, supervision, project administration. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daniela Kelly dos Santos.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable in this section.

Consent for Publication

Not applicable in this section.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, D.K., Treméa, R., Lorençon, E. et al. Removal of Methyl Violet Dye by Adsorption Process on Hydrogen Titanate Nanotubes: Experimental-Theoretical Study. Water Air Soil Pollut 233, 166 (2022). https://doi.org/10.1007/s11270-022-05635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05635-4

Keywords