Ahmed, M. B., Zhou, J. L., Ngo, H. H., Johir, M. A. H., Sun, L., Asadullah, M., & Belhaj, D. (2018). Sorption of hydrophobic organic contaminants on functionalized biochar: Protagonist role of π-π electron-donor-acceptor interactions and hydrogen bonds. Journal of Hazardous Materials, 360, 270–278.
CAS
Google Scholar
Ajayi, A. E., & Horn, R. (2016). Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil Tillage Research, 164, 34–44.
Google Scholar
Brunaeur, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of American Chemical Society, 60, 309–319.
Google Scholar
Carneiro, JSd. S., LustosaFilho, J. F., Nardis, B. O., Ribeiro-Soares, J., Zinn, Y. L., & Melo, L. C. A. (2018). Carbon stability of engineered biochar-based phosphate fertilizers. ACS Sustainable Chem. Eng., 6, 14203–14212.
CAS
Google Scholar
Cavaton, T., & Ferreira, L.T. (2020, May 04). Produção dos Cafés do Brasil da espécie arábica corresponde a 47% da mundial. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Retrieved July 1, 2020, from https://www.embrapa.br/busca-de-noticias/-/noticia/50525698/producao-dos-cafes-do-brasil-da-especie-arabica-corresponde-a-47-da-mundial
Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science and Technology, 42, 5137–5143.
CAS
Google Scholar
Chen, Y.-D., Lin, Y.-C., Ho, S.-H., Zhou, Y., & Ren, N.-Q. (2018). Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresource Technology, 259, 104–110.
CAS
Google Scholar
Chen, S., Qin, C., Wang, T., Chen, F., Li, X., Hou, H., & Zhou, M. (2019). Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. Journal of Molecular Liquids, 285, 62–74.
CAS
Google Scholar
Cheng, X., & Wang, B. (2018). Influence of organic composition of biomass waste on biochar yield, calorific value, and specific surface area. Journal Renewable Sustainable Energy, 10, 013109.
Google Scholar
Chin-Pampillo, J. S., Alfaro-Vargas, A., Rojas, R., Giacomelli, C. E., Perez-Villanueva, M., Chinchilla-Soto, C., Alcañiz, J. M., & Domene, X. (2020). Widespread tropical agrowastes as novel feedstocks for biochar production: Characterization and priority environmental uses. Biomass Conversion Biorefinery, 11, 1775–1785.
Cibati, A., Foereid, B., Bissessur, A., & Hapca, S. (2017). Assessment of Miscanthus × giganteus derived biochar as copper and zinc adsorbent: Study of the effect of pyrolysis temperature, pH and hydrogen peroxide modification. Journal Cleaner Production, 162, 1285–1296.
CAS
Google Scholar
Dawood, S., Sen, T. K., & Phan, C. (2017). Synthesis and characterization of slow pyrolysis pine cone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption: Kinetic, equilibrium, mechanism and thermodynamic. Bioresource Technology, 246, 76–81.
CAS
Google Scholar
Fan, S., Wang, Y., Wang, Z., Tang, J., Tang, J., & Li, X. (2017). Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. Journal of Environmental Chemical Engineering, 5, 601–611.
CAS
Google Scholar
Ferreira, G.M.D., Ferreira, G.M.D., Hespanhol, M.C., de Paula Rezende, J., dos Santos Pires, A.C., Gurgel, L.V.A., da Silva, L.H.M. (2017). Adsorption of red azo dyes on multi-walled carbon nanotubes and activated carbon: a thermodynamic study. Colloids and Surfaces A, 529, 531–540.
Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10.
CAS
Google Scholar
Ghosh, S., Mondal, S., Das, S., & Biswas, R. (2012). Spectroscopic investigation of interaction between crystal violet and various surfactants (cationic, anionic, nonionic and gemini) in aqueous solution. Fluid Phase Equilibria, 332, 1–6.
CAS
Google Scholar
Guinot, S. G. R., Hepworth, J. D., & Wainwright, M. (1998). The effects of cyclic terminal groups in di- and tri-arylmethane dyes. Part 2. 1 Steric and electronic effects in derivatives of Victoria Blue. Journal of the Chemical Society, Perkin Transactions, 2, 297–304.
Google Scholar
Guzel, F., Saygılı, H., Saygılı, G. A., & Koyuncu, F. (2014). Decolorisation of aqueous crystal violet solution by a new nanoporous carbon: Equilibrium and kinetic approach. Journal of Industrial and Engineering Chemistry, 20, 3375–3386.
CAS
Google Scholar
Hameed, B. H., & El-Khaiary, M. I. (2008). Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling. Journal of Hazardous Materials, 159, 574–579.
CAS
Google Scholar
Hameed, B. H., Tan, I. A. W., & Ahmad, A. L. (2008). Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chemical Engineering Journal, 144, 235–244.
CAS
Google Scholar
Hameed, R., Lei, C., & Lin, D. (2020). Adsorption of organic contaminants on biochar colloids: Effects of pyrolysis temperature and particle size. Environmental Science and Pollution Research, 27, 18412–18422.
CAS
Google Scholar
Han, Y., Boateng, A. A., Qi, P. X., Lima, I. M., & Chang, J. (2013). Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. Journal of Environmental Management, 118, 196–204.
CAS
Google Scholar
Han, X., Sun, X., Wang, C., Wu, M., Dong, D., Zhong, T., Thies, J. E., & Wu, W. (2016). Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change. Science and Reports, 6, 24731.
CAS
Google Scholar
Ji, B., Zhu, L., Song, H., Chen, W., Guo, S., & Chen, F. (2019). Adsorption of methylene blue onto novel biochars prepared from Magnolia grandiflora Linn fallen leaves at three pyrolysis temperatures. Water, Air, & Soil Pollution, 230.
Jing, F., Pan, M., & Chen, J. (2018). Kinetic and isothermal adsorption-desorption of PAEs on biochars: Effect of biomass feedstock, pyrolysis temperature, and mechanism implication of desorption hysteresis. Environmental Science and Pollution Research International, 25, 11493–11504.
CAS
Google Scholar
Jr., W.J.W., Morris, J.C. (1963). Kinetics of adsorption on carbon from solution. Journal Sanitary Engineer Division Proceedings American Society Civil Engineer, 89, 31-59
Junior, Hd. S., Freitas, G. RSd., Néri, D. R. F., Pereira, FRd. S., Farias, RFd., & Pereira, F. C. (2010). Monitoramento do corante pararosanilina em amostras biológicas. Eclética Química, 35, 147–156.
Google Scholar
Kan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable Sustainable Energy Review, 57, 1126–1140.
CAS
Google Scholar
Khandare, P. (2014). Qualitative analysis of aramide polymers by FT-IR spectroscopy. International Journal of Engineering Science Invention, 3, 01–07.
Google Scholar
Li, S., Harris, S., Anandhi, A., & Chen, G. (2019). Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. Journal of Cleaner Production, 215, 890–902.
CAS
Google Scholar
Liang, N., Hou, X., Huang, P., Jiang, C., Chen, L., & Zhao, L. (2017). Ionic liquid-based dispersive liquid-liquid microextraction combined with functionalized magnetic nanoparticle solid-phase extraction for determination of industrial dyes in water. Science and Reports, 7, 13844.
Google Scholar
Liu, L., Deng, G., & Shi, X. (2020). Adsorption characteristics and mechanism of p-nitrophenol by pine sawdust biochar samples produced at different pyrolysis temperatures. Science and Reports, 10, 5149.
CAS
Google Scholar
Lonappan, L., Rouissi, T., Das, R. K., Brar, S. K., Ramirez, A. A., Verma, M., Surampalli, R. Y., & Valero, J. R. (2016). Adsorption of methylene blue on biochar microparticles derived from different waste materials. Waste Management, 49, 537–544.
CAS
Google Scholar
Mohammed, N. A. S., Abu-Zurayk, R. A., Hamadneh, I., & Al-Dujaili, A. H. (2018). Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies. Journal of Environmental Management, 226, 377–385.
CAS
Google Scholar
Naeem, M. A., Khalid, M., Arshad, M., & Ahmad, R. (2014). Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures. Pakistan Journal of Agricultural Sciences, 51, 75–82.
Google Scholar
Nguyen, V.-T., Nguyen, T.-B., Chen, C.-W., Hung, C.-M., Vo, T.-D.-H., Chang, J.-H., & Dong, C.-D. (2019). Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. Bioresource Technology, 284, 197–203.
CAS
Google Scholar
Park, J.-H., Wang, J. J., Meng, Y., Wei, Z., DeLaune, R. D., & Seo, D.-C. (2019). Adsorption/desorption behavior of cationic and anionic dyes by biochars prepared at normal and high pyrolysis temperatures. Colloids Surfaces A, 572, 274–282.
CAS
Google Scholar
Park, J. H., Wang, J. J., Kim, S. H., Kang, S. W., Jeong, C. Y., Jeon, J. R., Park, K. H., Cho, J. S., Delaune, R. D., & Seo, D. C. (2019). Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures. Journal of Colloid and Interface Science, 553, 298–307.
CAS
Google Scholar
Peng, B., Chen, L., Que, C., Yang, K., Deng, F., Deng, X., Shi, G., Xu, G., & Wu, M. (2016). Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by pi-pi interactions. Scientific Reports, 6, 31920.
CAS
Google Scholar
Ribeiro-Soares, J., Cançado, L. G., Falcão, N. P. S., Martins Ferreira, E. H., Achete, C. A., & Jorio, A. (2013). The use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils. Journal of Raman Spectroscopy, 44, 283–289.
CAS
Google Scholar
Rojas, J., Suarez, D., Moreno, A., Silva-Agredo, J., & Torres-Palma, R. A. (2019). Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of crystal violet dye onto shrimp-waste in its raw, pyrolyzed material and activated charcoals. Applied Sciences, 9, 5337.
CAS
Google Scholar
Samoudi, B., Bendaou, O., Hanafi, I., Asselman, A., Haboubi, K., & Bachmann, L. (2022). FTIR and Raman spectroscopy study of soot deposits produced in the infrared multiphoton dissociation of vinyl bromide. Journal of Spectroscopy, 2022, 1–11.
Google Scholar
Sasikala, V., Sajan, D., Joseph, L., Narayana, B., & Sarojini, B. K. (2017). Spectroscopic and non-linear optical studies of two novel optical limiters from dichloroaniline family crystals: 3,4-Dichloroaniline and 3,5-dichloroaniline. Optics & Laser Technology, 96, 23–42.
CAS
Google Scholar
Sewu, D. D., Boakye, P., & Woo, S. H. (2017). Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste. Bioresource Technology, 224, 206–213.
CAS
Google Scholar
Sun, K., Jin, J., Keiluweit, M., Kleber, M., Wang, Z., Pan, Z., & Xing, B. (2012). Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresource Technology, 118, 120–127.
CAS
Google Scholar
Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85.
CAS
Google Scholar
Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environment Science and Biotechnology, 19, 191–215.
CAS
Google Scholar
Tran, H. N., Tomul, F., ThiHoangHa, N., Nguyen, D. T., Lima, E. C., Le, G. T., Chang, C. T., Masindi, V., & Woo, S. H. (2020). Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. Journal of Hazardous Materials, 394, 122255.
CAS
Google Scholar
Veiga, T. R. L. A., Lima, J. T., Dessimoni, ALd. A., Pego, M. F. F., Soares, J. R., & Trugilho, P. F. (2017). Different plant biomass characterizations for biochar production. Cerne, 23, 529–536.
Google Scholar
Wathukarage, A., Herath, I., Iqbal, M. C. M., & Vithanage, M. (2017). Mechanistic understanding of crystal violet dye sorption by woody biochar: Implications for wastewater treatment. Environmental Geochemistry and Health, 41, 1647–1661.
Google Scholar
Wei, L., Huang, Y., Huang, L., Li, Y., Huang, Q., Xu, G., Muller, K., Wang, H., Ok, Y. S., & Liu, Z. (2020). The ratio of H/C is a useful parameter to predict adsorption of the herbicide metolachlor to biochars. Environmental Research, 184, 109324.
CAS
Google Scholar
Xiao, F., & Pignatello, J. J. (2015). Interactions of triazine herbicides with biochar: Steric and electronic effects. Water Research, 80, 179–188.
CAS
Google Scholar
Xu, R. K., Xiao, S. C., Yuan, J. H., & Zhao, A. Z. (2011). Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresource Technology, 102, 10293–10298.
CAS
Google Scholar
Xu, M., Xia, H., Wu, J., Yang, G., Zhang, X., Peng, H., Yu, X., Li, L., Xiao, H., & Qi, H. (2017). Shifts in the relative abundance of bacteria after wine-lees-derived biochar intervention in multi metal-contaminated paddy soil. Science of the Total Environment, 599–600, 1297–1307.
Google Scholar
Yang, Y., Lin, X., Wei, B., Zhao, Y., & Wang, J. (2013). Evaluation of adsorption potential of bamboo biochar for metal-complex dye: Equilibrium, kinetics and artificial neural network modeling. International Journal of Environmental Science and Technology, 11, 1093–1100.
Google Scholar
Yang, F., Gao, Y., Sun, L., Zhang, S., Li, J., & Zhang, Y. (2018). Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures. Environmental Science and Pollution Research International, 25, 18528–18539.
CAS
Google Scholar
Yuan, H., Lu, T., Zhao, D., Huang, H., Noriyuki, K., & Chen, Y. (2013). Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis. Journal of Material Cycles and Waste Management, 15, 357–361.
CAS
Google Scholar
Zhang, P., Li, Y., Cao, Y., & Han, L. (2019). Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresource Technology, 285, 121348.
CAS
Google Scholar
Zhao, L., Cao, X., Masek, O., & Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256–257, 1–9.
Google Scholar