Skip to main content

Influence of Methyl Groups in Triphenylmethane Dyes on Their Adsorption on Biochars from Coffee Husks

Abstract

Biochars (BC), whose properties are highly dependent on the pyrolysis temperature used, have been proposed for the efficient removal of a variety of contaminants from wastewater. In this work, pristine biochars were produced by the pyrolysis of coffee husks at temperatures of 400, 500, 750, and 900 °C, for use in the adsorption of pararosaniline (PRA) and methyl violet 10B (MV10B), which are triphenylmethane dyes with similar structures, but different numbers of methyl groups. The biochars were characterized and the dye adsorption kinetics and equilibria were investigated. FTIR and Raman spectroscopy analyses indicated that a higher pyrolysis temperature increased the aromaticity of the biochar surface structure, while decreasing the number of oxygenate functional groups. Higher adsorption capacities were generally observed at pH 7.5, with the maximum adsorption amounts increasing in the order BC900 ≈ BC750 < BC500 < BC400 for both dyes, being 1.3 times higher for PRA on BC400 (97.22 mmol kg−1), but 1.9 times higher for MV10B on BC900 (5.49 mmol kg−1). The Langmuir model provided the best fit to the adsorption isotherms for BC400 and BC900, while the Dubinin–Radushkevich model satisfactorily fitted the isotherms for the other biochars. These results showed that increase of the pyrolysis temperature resulted in a decrease in the number of adsorption sites with which the dyes interacted more favorably by means of hydrogen bonds. Although hydrophobic interactions were not important driving forces for adsorption of the dyes, the higher number of methyl groups in MV10B favored its adsorption on the more hydrophobic biochar.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

All the materials used for this work are publicly available.

References

  • Ahmed, M. B., Zhou, J. L., Ngo, H. H., Johir, M. A. H., Sun, L., Asadullah, M., & Belhaj, D. (2018). Sorption of hydrophobic organic contaminants on functionalized biochar: Protagonist role of π-π electron-donor-acceptor interactions and hydrogen bonds. Journal of Hazardous Materials, 360, 270–278.

    CAS  Google Scholar 

  • Ajayi, A. E., & Horn, R. (2016). Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil Tillage Research, 164, 34–44.

    Google Scholar 

  • Brunaeur, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of American Chemical Society, 60, 309–319.

    Google Scholar 

  • Carneiro, JSd. S., LustosaFilho, J. F., Nardis, B. O., Ribeiro-Soares, J., Zinn, Y. L., & Melo, L. C. A. (2018). Carbon stability of engineered biochar-based phosphate fertilizers. ACS Sustainable Chem. Eng., 6, 14203–14212.

    CAS  Google Scholar 

  • Cavaton, T., & Ferreira, L.T. (2020, May 04). Produção dos Cafés do Brasil da espécie arábica corresponde a 47% da mundial. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Retrieved July 1, 2020, from https://www.embrapa.br/busca-de-noticias/-/noticia/50525698/producao-dos-cafes-do-brasil-da-especie-arabica-corresponde-a-47-da-mundial

  • Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science and Technology, 42, 5137–5143.

    CAS  Google Scholar 

  • Chen, Y.-D., Lin, Y.-C., Ho, S.-H., Zhou, Y., & Ren, N.-Q. (2018). Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresource Technology, 259, 104–110.

    CAS  Google Scholar 

  • Chen, S., Qin, C., Wang, T., Chen, F., Li, X., Hou, H., & Zhou, M. (2019). Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. Journal of Molecular Liquids, 285, 62–74.

    CAS  Google Scholar 

  • Cheng, X., & Wang, B. (2018). Influence of organic composition of biomass waste on biochar yield, calorific value, and specific surface area. Journal Renewable Sustainable Energy, 10, 013109.

    Google Scholar 

  • Chin-Pampillo, J. S., Alfaro-Vargas, A., Rojas, R., Giacomelli, C. E., Perez-Villanueva, M., Chinchilla-Soto, C., Alcañiz, J. M., & Domene, X. (2020). Widespread tropical agrowastes as novel feedstocks for biochar production: Characterization and priority environmental uses. Biomass Conversion Biorefinery, 11, 1775–1785.

  • Cibati, A., Foereid, B., Bissessur, A., & Hapca, S. (2017). Assessment of Miscanthus × giganteus derived biochar as copper and zinc adsorbent: Study of the effect of pyrolysis temperature, pH and hydrogen peroxide modification. Journal Cleaner Production, 162, 1285–1296.

    CAS  Google Scholar 

  • Dawood, S., Sen, T. K., & Phan, C. (2017). Synthesis and characterization of slow pyrolysis pine cone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption: Kinetic, equilibrium, mechanism and thermodynamic. Bioresource Technology, 246, 76–81.

    CAS  Google Scholar 

  • Fan, S., Wang, Y., Wang, Z., Tang, J., Tang, J., & Li, X. (2017). Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. Journal of Environmental Chemical Engineering, 5, 601–611.

    CAS  Google Scholar 

  • Ferreira, G.M.D., Ferreira, G.M.D., Hespanhol, M.C., de Paula Rezende, J., dos Santos Pires, A.C., Gurgel, L.V.A., da Silva, L.H.M. (2017). Adsorption of red azo dyes on multi-walled carbon nanotubes and activated carbon: a thermodynamic study. Colloids and Surfaces A, 529, 531–540.

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10.

    CAS  Google Scholar 

  • Ghosh, S., Mondal, S., Das, S., & Biswas, R. (2012). Spectroscopic investigation of interaction between crystal violet and various surfactants (cationic, anionic, nonionic and gemini) in aqueous solution. Fluid Phase Equilibria, 332, 1–6.

    CAS  Google Scholar 

  • Guinot, S. G. R., Hepworth, J. D., & Wainwright, M. (1998). The effects of cyclic terminal groups in di- and tri-arylmethane dyes. Part 2. 1 Steric and electronic effects in derivatives of Victoria Blue. Journal of the Chemical Society, Perkin Transactions, 2, 297–304.

    Google Scholar 

  • Guzel, F., Saygılı, H., Saygılı, G. A., & Koyuncu, F. (2014). Decolorisation of aqueous crystal violet solution by a new nanoporous carbon: Equilibrium and kinetic approach. Journal of Industrial and Engineering Chemistry, 20, 3375–3386.

    CAS  Google Scholar 

  • Hameed, B. H., & El-Khaiary, M. I. (2008). Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling. Journal of Hazardous Materials, 159, 574–579.

    CAS  Google Scholar 

  • Hameed, B. H., Tan, I. A. W., & Ahmad, A. L. (2008). Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chemical Engineering Journal, 144, 235–244.

    CAS  Google Scholar 

  • Hameed, R., Lei, C., & Lin, D. (2020). Adsorption of organic contaminants on biochar colloids: Effects of pyrolysis temperature and particle size. Environmental Science and Pollution Research, 27, 18412–18422.

    CAS  Google Scholar 

  • Han, Y., Boateng, A. A., Qi, P. X., Lima, I. M., & Chang, J. (2013). Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. Journal of Environmental Management, 118, 196–204.

    CAS  Google Scholar 

  • Han, X., Sun, X., Wang, C., Wu, M., Dong, D., Zhong, T., Thies, J. E., & Wu, W. (2016). Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change. Science and Reports, 6, 24731.

    CAS  Google Scholar 

  • Ji, B., Zhu, L., Song, H., Chen, W., Guo, S., & Chen, F. (2019). Adsorption of methylene blue onto novel biochars prepared from Magnolia grandiflora Linn fallen leaves at three pyrolysis temperatures. Water, Air, & Soil Pollution, 230.

  • Jing, F., Pan, M., & Chen, J. (2018). Kinetic and isothermal adsorption-desorption of PAEs on biochars: Effect of biomass feedstock, pyrolysis temperature, and mechanism implication of desorption hysteresis. Environmental Science and Pollution Research International, 25, 11493–11504.

    CAS  Google Scholar 

  • Jr., W.J.W., Morris, J.C. (1963). Kinetics of adsorption on carbon from solution. Journal Sanitary Engineer Division Proceedings American Society Civil Engineer, 89, 31-59

  • Junior, Hd. S., Freitas, G. RSd., Néri, D. R. F., Pereira, FRd. S., Farias, RFd., & Pereira, F. C. (2010). Monitoramento do corante pararosanilina em amostras biológicas. Eclética Química, 35, 147–156.

    Google Scholar 

  • Kan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable Sustainable Energy Review, 57, 1126–1140.

    CAS  Google Scholar 

  • Khandare, P. (2014). Qualitative analysis of aramide polymers by FT-IR spectroscopy. International Journal of Engineering Science Invention, 3, 01–07.

    Google Scholar 

  • Li, S., Harris, S., Anandhi, A., & Chen, G. (2019). Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. Journal of Cleaner Production, 215, 890–902.

    CAS  Google Scholar 

  • Liang, N., Hou, X., Huang, P., Jiang, C., Chen, L., & Zhao, L. (2017). Ionic liquid-based dispersive liquid-liquid microextraction combined with functionalized magnetic nanoparticle solid-phase extraction for determination of industrial dyes in water. Science and Reports, 7, 13844.

    Google Scholar 

  • Liu, L., Deng, G., & Shi, X. (2020). Adsorption characteristics and mechanism of p-nitrophenol by pine sawdust biochar samples produced at different pyrolysis temperatures. Science and Reports, 10, 5149.

    CAS  Google Scholar 

  • Lonappan, L., Rouissi, T., Das, R. K., Brar, S. K., Ramirez, A. A., Verma, M., Surampalli, R. Y., & Valero, J. R. (2016). Adsorption of methylene blue on biochar microparticles derived from different waste materials. Waste Management, 49, 537–544.

    CAS  Google Scholar 

  • Mohammed, N. A. S., Abu-Zurayk, R. A., Hamadneh, I., & Al-Dujaili, A. H. (2018). Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies. Journal of Environmental Management, 226, 377–385.

    CAS  Google Scholar 

  • Naeem, M. A., Khalid, M., Arshad, M., & Ahmad, R. (2014). Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures. Pakistan Journal of Agricultural Sciences, 51, 75–82.

    Google Scholar 

  • Nguyen, V.-T., Nguyen, T.-B., Chen, C.-W., Hung, C.-M., Vo, T.-D.-H., Chang, J.-H., & Dong, C.-D. (2019). Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. Bioresource Technology, 284, 197–203.

    CAS  Google Scholar 

  • Park, J.-H., Wang, J. J., Meng, Y., Wei, Z., DeLaune, R. D., & Seo, D.-C. (2019). Adsorption/desorption behavior of cationic and anionic dyes by biochars prepared at normal and high pyrolysis temperatures. Colloids Surfaces A, 572, 274–282.

    CAS  Google Scholar 

  • Park, J. H., Wang, J. J., Kim, S. H., Kang, S. W., Jeong, C. Y., Jeon, J. R., Park, K. H., Cho, J. S., Delaune, R. D., & Seo, D. C. (2019). Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures. Journal of Colloid and Interface Science, 553, 298–307.

    CAS  Google Scholar 

  • Peng, B., Chen, L., Que, C., Yang, K., Deng, F., Deng, X., Shi, G., Xu, G., & Wu, M. (2016). Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by pi-pi interactions. Scientific Reports, 6, 31920.

    CAS  Google Scholar 

  • Ribeiro-Soares, J., Cançado, L. G., Falcão, N. P. S., Martins Ferreira, E. H., Achete, C. A., & Jorio, A. (2013). The use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils. Journal of Raman Spectroscopy, 44, 283–289.

    CAS  Google Scholar 

  • Rojas, J., Suarez, D., Moreno, A., Silva-Agredo, J., & Torres-Palma, R. A. (2019). Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of crystal violet dye onto shrimp-waste in its raw, pyrolyzed material and activated charcoals. Applied Sciences, 9, 5337.

    CAS  Google Scholar 

  • Samoudi, B., Bendaou, O., Hanafi, I., Asselman, A., Haboubi, K., & Bachmann, L. (2022). FTIR and Raman spectroscopy study of soot deposits produced in the infrared multiphoton dissociation of vinyl bromide. Journal of Spectroscopy, 2022, 1–11.

    Google Scholar 

  • Sasikala, V., Sajan, D., Joseph, L., Narayana, B., & Sarojini, B. K. (2017). Spectroscopic and non-linear optical studies of two novel optical limiters from dichloroaniline family crystals: 3,4-Dichloroaniline and 3,5-dichloroaniline. Optics & Laser Technology, 96, 23–42.

    CAS  Google Scholar 

  • Sewu, D. D., Boakye, P., & Woo, S. H. (2017). Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste. Bioresource Technology, 224, 206–213.

    CAS  Google Scholar 

  • Sun, K., Jin, J., Keiluweit, M., Kleber, M., Wang, Z., Pan, Z., & Xing, B. (2012). Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresource Technology, 118, 120–127.

    CAS  Google Scholar 

  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85.

    CAS  Google Scholar 

  • Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environment Science and Biotechnology, 19, 191–215.

    CAS  Google Scholar 

  • Tran, H. N., Tomul, F., ThiHoangHa, N., Nguyen, D. T., Lima, E. C., Le, G. T., Chang, C. T., Masindi, V., & Woo, S. H. (2020). Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. Journal of Hazardous Materials, 394, 122255.

    CAS  Google Scholar 

  • Veiga, T. R. L. A., Lima, J. T., Dessimoni, ALd. A., Pego, M. F. F., Soares, J. R., & Trugilho, P. F. (2017). Different plant biomass characterizations for biochar production. Cerne, 23, 529–536.

    Google Scholar 

  • Wathukarage, A., Herath, I., Iqbal, M. C. M., & Vithanage, M. (2017). Mechanistic understanding of crystal violet dye sorption by woody biochar: Implications for wastewater treatment. Environmental Geochemistry and Health, 41, 1647–1661.

    Google Scholar 

  • Wei, L., Huang, Y., Huang, L., Li, Y., Huang, Q., Xu, G., Muller, K., Wang, H., Ok, Y. S., & Liu, Z. (2020). The ratio of H/C is a useful parameter to predict adsorption of the herbicide metolachlor to biochars. Environmental Research, 184, 109324.

    CAS  Google Scholar 

  • Xiao, F., & Pignatello, J. J. (2015). Interactions of triazine herbicides with biochar: Steric and electronic effects. Water Research, 80, 179–188.

    CAS  Google Scholar 

  • Xu, R. K., Xiao, S. C., Yuan, J. H., & Zhao, A. Z. (2011). Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresource Technology, 102, 10293–10298.

    CAS  Google Scholar 

  • Xu, M., Xia, H., Wu, J., Yang, G., Zhang, X., Peng, H., Yu, X., Li, L., Xiao, H., & Qi, H. (2017). Shifts in the relative abundance of bacteria after wine-lees-derived biochar intervention in multi metal-contaminated paddy soil. Science of the Total Environment, 599–600, 1297–1307.

    Google Scholar 

  • Yang, Y., Lin, X., Wei, B., Zhao, Y., & Wang, J. (2013). Evaluation of adsorption potential of bamboo biochar for metal-complex dye: Equilibrium, kinetics and artificial neural network modeling. International Journal of Environmental Science and Technology, 11, 1093–1100.

    Google Scholar 

  • Yang, F., Gao, Y., Sun, L., Zhang, S., Li, J., & Zhang, Y. (2018). Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures. Environmental Science and Pollution Research International, 25, 18528–18539.

    CAS  Google Scholar 

  • Yuan, H., Lu, T., Zhao, D., Huang, H., Noriyuki, K., & Chen, Y. (2013). Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis. Journal of Material Cycles and Waste Management, 15, 357–361.

    CAS  Google Scholar 

  • Zhang, P., Li, Y., Cao, Y., & Han, L. (2019). Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresource Technology, 285, 121348.

    CAS  Google Scholar 

  • Zhao, L., Cao, X., Masek, O., & Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256–257, 1–9.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the FAPEMIG, CNPq, FINEP, and CAPES for their financial support; the Analysis and Chemical Prospecting Center of the Federal University of Lavras, and FINEP, FAPEMIG, CNPq, and CAPES for provision of the equipment and technical support for experiments involving FTIR analyses, and the Laboratório de Análise de Qualidade de Aguardente for provision of the equipment for spetrophotometric analisys. Additional support was provided by FAPEMIG (Master’s scholarship awarded to A. E. Castro), UFLA (scholarships awarded to A. E. Castro, F. S. Martinho, and M. L. Barbosa), and CAPES (scholarship awarded to J. R. Franca).

Funding

Financial support for this work was provided by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, grants APQ-00775–21, RED-00282–16, RED-00185–16, CEX-APQ-01865–17, and APQ-00461–18), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grants APQ-00775–21, 420779/2018–3, 312865/2020–1, and 433027/2018–5), Financiadora de Estudos e Projetos (FINEP, grants 02/2014 NANO 0501/16 and 02/2016), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

Amanda Eugênio de Castro: data curation; investigation. Felipe da Silva Martinho: data curation; investigation. Mylene Lourdes Barbosa: data curation; investigation. José Romão Franca: investigation; writing—original draft. Jenaina Ribeiro-Soares: methodology; formal analysis; funding acquisition; writing—review and editing; resources. Gabriel Max Dias Ferreira: formal analysis; writing—original draft. Guilherme Max Dias Ferreira: funding acquisition; methodology; project administration; supervision; visualization; resources.

Corresponding author

Correspondence to Guilherme Max Dias Ferreira.

Ethics declarations

Ethics Approval

Not applicable. This manuscript does not involve researching about humans or animals.

Consent to Participate

All the authors consented to participate in the drafting of this manuscript.

Consent for Publication

All of the authors consented to publish this manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 496 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Castro, A.E., da Silva Martinho, F., Barbosa, M.L. et al. Influence of Methyl Groups in Triphenylmethane Dyes on Their Adsorption on Biochars from Coffee Husks. Water Air Soil Pollut 233, 180 (2022). https://doi.org/10.1007/s11270-022-05623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05623-8

Keywords

  • Pararosaniline
  • Crystal violet
  • Pyrolysis temperature
  • Biochar