Abstract
Availability of clean and safe freshwater has become a looming global concern. The accelerated demography, industrialization, and climate changes contaminate the meager freshwater reserves. Pollution of water bodies is significantly detrimental to health, ecology, economy, and society. The rising number of malnutrition cases, stunted growth, hepatitis, gastroenteritis, skin ailments, cholera, respiratory disorders, liver malfunction, eye infections, and mortality have been attributed to exposure to compromised water. Thus, optimized, durable, and inexpensive wastewater treatment and remediation processes are necessary. Current conventional treatment strategies suffer from several drawbacks, which may be mitigated through nanotechnological intercession, promising sustainability. Nanomaterials include nanosorbents, carbon nanotubes, nanocomposites, nanofibers, graphene, nanodendrimers, nanomembranes, and nanocatalysts. They have unique properties that make attractive alternatives for wastewater remediation, purification, and contamination detection through pollutant-specific nanosensors and detectors. This review discusses water pollution, its impacts, conventional treatment strategies, nanotechnological contributions, venture possibilities, and associated commercial opportunities.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abdel-Fatah, M. A. (2018). Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Engineering Journal, 9(4), 3077–3092. https://doi.org/10.1016/j.asej.2018.08.001
Acevedo, A., Carpio, E. A., Rodríguez, J., & Manzano, M. A. (2012). Disinfection of natural water by solar photocatalysis using immobilized TiO2 Devices: Efficiency in eliminating indicator bacteria and operating life of the system. Journal of Solar Energy Engineering, 134(1), 011008. https://doi.org/10.1115/1.4005338
Acharya, J., Kumar, U., & Rafi, P. M. (2018). Removal of heavy metal ions from wastewater by chemically modified agricultural waste material as potential adsorbent-A review. International Journal of Current Engineering and Technology, 8 (3), 1–5. https://doi.org/10.14741/ijcet/v.8.3.6
Adam, V., Caballero-Guzman, A., & Nowack, B. (2018). Considering the forms of released engineered nanomaterials in probabilistic material flow analysis. Environmental Pollution, 243, 17–27. https://doi.org/10.1016/j.envpol.2018.07.108
Adesina, A. A. (2004). Industrial exploitation of photocatalysis: Progress, perspectives and prospects. Catalysis Surveys from Asia, 8(4), 265–273. https://doi.org/10.1007/s10563-004-9117-0
Akpor, O. B. (2014). Heavy metal pollutants in wastewater effluents: Sources, effects and remediation. Advances in Bioscience and Bioengineering, 2(4), 37. https://doi.org/10.11648/j.abb.20140204.11
Alens, O. P. (2014). Assessment of environmental and human challenges in the Niger-delta region of Nigeria. Journal of Environment and Earth Science, 4(23), 27–36.
Al-Ghafri, B., Lau, W.-J., Al-Abri, M., Goh, P.-S., & Ismail, A. F. (2019). Titanium dioxide-modified polyetherimide nanofiber membrane for water treatment. Journal of Water Process Engineering, 32, 100970. https://doi.org/10.1016/j.jwpe.2019.100970
Al-Husaini, I. S., Yusoff, A. R. M., Lau, W. J., Ismail, A. F., Al-Abri, M. Z., & Wirzal, M. D. H. (2019). Iron oxide nanoparticles incorporated polyethersulfone electrospun nanofibrous membranes for effective oil removal. Chemical Engineering Research and Design, 148, 142–154. https://doi.org/10.1016/j.cherd.2019.06.006
Ali, I., & Aboul-Enein, H. Y. (2002). Speciation of metal ions by capillary electrophoresis. Critical Reviews in Analytical Chemistry, 32(4), 337–350. https://doi.org/10.1080/10408340290765597
Ali, I., Gupta, V. K., & Aboul-Enein, H. Y. (2005). Metal ion speciation and capillary electrophoresis: Application in the new millennium. Electrophoresis, 26(21), 3988–4002. https://doi.org/10.1002/elps.200500216
Ali, I., Peng, C., Naz, I., Khan, Z. M., Sultan, M., Islam, T., & Abbasi, I. A. (2017). Phytogenic magnetic nanoparticles for wastewater treatment: A review. RSC Advances, 7 (64), 40158–40178. https://doi.org/10.1039/C7RA04738J
Ali, I., Alharbi, O. M. L., Alothman, Z. A., & Alwarthan, A. (2018a). Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water. Colloids and Surfaces b: Biointerfaces, 171, 606–613. https://doi.org/10.1016/j.colsurfb.2018.07.071
Ali, I., Alharbi, O. M. L., Alothman, Z. A., & Badjah, A. Y. (2018b). Kinetics, Thermodynamics, and Modeling of Amido Black Dye Photodegradation in Water Using Co/TiO2 Nanoparticles. Photochemistry and Photobiology, 94(5), 935–941. https://doi.org/10.1111/php.12937
Ali, I., Alharbi, O. M. L., Tkachev, A., Galunin, E., Burakov, A., & Grachev, V. A. (2018c). Water treatment by new-generation graphene materials: Hope for bright future. Environmental Science and Pollution Research, 25(8), 7315–7329. https://doi.org/10.1007/s11356-018-1315-9
Ali, S., Rehman, S. A. U., Luan, H. Y., Farid, M. U., & Huang, H. (2019c). Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Science of the Total Environment, 646, 1126–1139. https://doi.org/10.1016/j.scitotenv.2018.07.348
Ali, I., Afshinb, S., Poureshgh, Y., Azari, A., Rashtbari, Y., Feizizadeh, A., et al. (2020). Green preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water. Environmental Science and Pollution, Research, 27(29), 36732–36743. https://doi.org/10.1007/s11356-020-09310-1
Ali, I., Babkin, A. V., Burakova, I. V., Burakov, A. E., Neskoromnaya, E. A., Tkachev, A. G., et al. (2021a). Fast removal of samarium ions in water on highly efficient nanocomposite based graphene oxide modified with polyhydroquinone: Isotherms, kinetics, thermodynamics and desorption. Journal of Molecular Liquids, 329, 115584. https://doi.org/10.1016/j.molliq.2021.115584
Ali, I., Zakharchenko, E. A., Myasoedova, G. V., Molochnikova, N. P., Rodionova, A. A., Baulin, V. E., et al. (2021c). Preparation and characterization of oxidized graphene for actinides and rare earth elements removal in nitric acid solutions from nuclear wastes. Journal of Molecular Liquids, 335, 116260. https://doi.org/10.1016/j.molliq.2021.116260
Ali, I., & Jain, C. K. (1998). Groundwater contamination and health hazards by some of the most commonly used pesticides. Current Science, 75(10), 1011–1014. https://www.jstor.org/stable/24101777
Ali, I., Alharbi, O. M. L., ALOthman, Z. A., Alwarthan, A., & Al-Mohaimeed, A. M. (2019a). Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water. International Journal of Biological Macromolecules, 132, 244–253. https://doi.org/10.1016/j.ijbiomac.2019a.03.211
Ali, I., Burakov, A. E., Melezhik, A. V., Babkin, A. V., Burakova, I. V., Neskoromnaya, E. A., et al. (2019b). Removal of Copper(II) and Zinc(II) Ions in Water on a Newly Synthesized Polyhydroquinone/Graphene Nanocomposite Material: Kinetics, Thermodynamics and Mechanism. ChemistrySelect, 4(43), 12708–12718. https://doi.org/10.1002/slct.2019b02657
Ali, I., Kon’kova, T., Kasianov, V., Rysev, A., Panglisch, S., Mbianda, X. Y., et al. (2021b). Preparation and characterization of nano-structured modified montmorillonite for dioxidine antibacterial drug removal in water. Journal of Molecular Liquids, 331, 115770. https://doi.org/10.1016/j.molliq.2021b.115770
Alter, B. (2012). Environmental Consulting Fundamentals. Investigation and Remediation. CRC Press. https://doi.org/10.1201/b12159
Alvarez-Ayuso, E. (2003). Purification of metal electroplating waste waters using zeolites. Water Research, 37(20), 4855–4862. https://doi.org/10.1016/j.watres.2003.08.009
Amin, M. T., Alazba, A. A., & Manzoor, U. (2014). A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Advances in Materials Science and Engineering, 2014, 1–24. https://doi.org/10.1155/2014/825910
Anastopoulos, I., Anagnostopoulos, V. A., Bhatnagar, A., Mitropoulos, A. C., & Kyzas, G. Z. (2017). A review for chromium removal by carbon nanotubes. Chemistry and Ecology, 33(6), 572–588. https://doi.org/10.1080/02757540.2017.1328503
Aniyikaiye, T., Oluseyi, T., Odiyo, J., & Edokpayi, J. (2019). Physico-Chemical Analysis of Wastewater Discharge from Selected Paint Industries in Lagos, Nigeria. International Journal of Environmental Research and Public Health, 16(7), 1235. https://doi.org/10.3390/ijerph16071235
Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2016). Remediation of wastewater using various nano-materials. Arabian Journal of Chemistry, 12(8), 4897–4919. https://doi.org/10.1016/j.arabjc.2016.10.004
Ariffin, N., Abdullah, M. M. A. B., Mohd Arif Zainol, M. R. R., Murshed, M. F., Hariz-Zain Faris, M. A., & Bayuaji, R. (2017). Review on adsorption of heavy metal in wastewater by using geopolymer. MATEC Web of Conferences, 97, 01023. https://doi.org/10.1051/matecconf/20179701023
Asghari, S., Johari, S. A., Lee, J. H., Kim, Y. S., Jeon, Y. B., Choi, H. J., et al. (2012). Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. Journal of Nanobiotechnology, 10(1), 14. https://doi.org/10.1186/1477-3155-10-14
Ashby, M. F., J. Ferreira, P., & L. Schodek, D. (2009). Nanomaterials, nanotechnologies and design: an introduction for engineers and architects. Butterworth-Heinemann. https://doi.org/10.5860/CHOICE.47-2023
Asztemborska, M., Jakubiak, M., Stęborowski, R., Chajduk, E., & Bystrzejewska-Piotrowska, G. (2018). Titanium dioxide nanoparticle circulation in an aquatic ecosystem. Water, Air, and Soil Pollution, 229(6), 1–9. https://doi.org/10.1007/s11270-018-3852-8
Aulenta, F., Canosa, A., Reale, P., Rossetti, S., Panero, S., & Majone, M. (2009). Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnology and Bioengineering, 103(1), 85–91. https://doi.org/10.1002/bit.22234
Azhdari, R., Mousavi, S. M., Hashemi, S. A., Bahrani, S., & Ramakrishna, S. (2019). Decorated graphene with aluminum fumarate metal organic framework as a superior non-toxic agent for efficient removal of Congo Red dye from wastewater. Journal of Environmental Chemical Engineering, 7(6),103437. https://doi.org/10.1016/j.jece.2019.103437
Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32(11), 180. https://doi.org/10.1007/s11274-016-2137-x
Badila, I. N., Rusu, T., & Gabor, T. (2018). Study on the impact of sewer pipes on the environment. ECOTERRA - Journal of Environmental Research and Protection, 11(4), 1–10.
Baltes, L., Patachia, S., Tierean, M., Ekincioglu, O., & Ozkul, M. H. (2018). Photoactive polymer-cement composites for tannins removal from wastewaters. Journal of Environmental Chemical Engineering, 6(4),4357–4367. https://doi.org/10.1016/j.jece.2018.06.039
Banerjee, P., Sau, S., Das, P., & Mukhopadhyay, A. (2014). Green synthesis of silver-nanocomposite for treatment of textile dye. Nanoscience and Technology, 1(2), 1–6.
Baranik, A., Gagor, A., Queralt, I., Marguí, E., Sitko, R., & Zawisza, B. (2018). Ceria nanoparticles deposited on graphene nanosheets for adsorption of copper(II) and lead(II) ions and of anionic species of arsenic and selenium. Microchimica Acta, 185(5), 264. https://doi.org/10.1007/s00604-018-2806-6
Basheer, A. A. (2018a). Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century. Chirality, 30(4), 402–406. https://doi.org/10.1002/chir.22808
Basheer, A. A. (2018b). New generation nano-adsorbents for the removal of emerging contaminants in water. Journal of Molecular Liquids, 261, 583–593. https://doi.org/10.1016/j.molliq.2018.04.021
Basheer, A. A., & Ali, I. (2018). Stereoselective uptake and degradation of (±)- o, p -DDD pesticide stereomers in water-sediment system. Chirality, 30(9), 1088–1095. https://doi.org/10.1002/chir.22989
Behari, J., Tiwari, D. K., & Sen, P. (2008). Application of nanoparticles in waste water treatment. World Applied Sciences Journal, 3(3), 417–433.
Benítez, F. J., Acero, J. L., Real, F. J., & García, C. (2009). Nanofiltration processes applied to the removal of phenyl-ureas in natural waters. Journal of Hazardous Materials, 165(1–3), 714–723. https://doi.org/10.1016/j.jhazmat.2008.10.047
Bethi, B., Sonawane, S. H., Bhanvase, B. A., & Gumfekar, S. P. (2016). Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chemical Engineering and Processing: Process Intensification, 109, 178–189. https://doi.org/10.1016/j.cep.2016.08.016
Bethi, B., & Sonawane, S. H. (2018). Nanomaterials and its application for clean environment. In Nanomaterials for Green Energy (pp. 385–409). Elsevier. https://doi.org/10.1016/B978-0-12-813731-4.00012-6
Bhatt, P., Pandey, S. C., Joshi, S., Chaudhary, P., Pathak, V. M., Huang, Y., et al. (2022). Nanobioremediation: A sustainable approach for the removal of toxic pollutants from the environment. Journal of Hazardous Materials, 427(December 2021), 128033. https://doi.org/10.1016/j.jhazmat.2021.128033
Bhattacharya, S., Saha, I., Mukhopadhyay, A., Chattopadhyay, D., & Chand, U. (2013). Role of nanotechnology in water treatment and purification: Potential applications and implications. International Journal of Chemical Science and Technology, 3(3), 59–64.
Boatemaa, M. A., Ragunathan, R., & Naskar, J. (2019). Nanogold for in vitro inhibition of Salmonella strains. Journal of Nanomaterials, 2019, 1–11. https://doi.org/10.1155/2019/9268128
Boelee, E., Geerling, G., van der Zaan, B., Blauw, A., & Vethaak, A. D. (2019). Water and health: From environmental pressures to integrated responses. Acta Tropica, 193, 217–226. https://doi.org/10.1016/j.actatropica.2019.03.011
Brame, J., Li, Q., & Alvarez, P. J. J. (2011). Nanotechnology-enabled water treatment and reuse: Emerging opportunities and challenges for developing countries. Trends in Food Science & Technology, 22(11), 618–624. https://doi.org/10.1016/j.tifs.2011.01.004
Buduru, P., Reddy, B. C. S. R., & Naidu, N. V. S. (2017). Functionalization of silver nanoparticles with glutamine and histidine for simple and selective detection of Hg2+ ion in water samples. Sensors and Actuators, b: Chemical,244, 972–982. https://doi.org/10.1016/j.snb.2017.01.041
Buffet, P. E., Zalouk-Vergnoux, A., Châtel, A., Berthet, B., Métais, I., Perrein-Ettajani, H., et al. (2014). A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species: The ragworm Hediste diversicolor and the bivalve mollusc Scrobicularia plana. Science of the Total Environment, 470 (2014), 1151–1159. https://doi.org/10.1016/j.scitotenv.2013.10.114
Burks, T., Uheida, A., Saleemi, M., Eita, M., Toprak, M. S., & Muhammed, M. (2013). Removal of Chromium(VI) Using Surface Modified Superparamagnetic Iron Oxide Nanoparticles. Separation Science and Technology (Philadelphia), 48(8), 1243–1251. https://doi.org/10.1080/01496395.2012.734364
Cai, J., Xia, X., Chen, H., Wang, T., & Zhang, H. (2018). Decomposition of fertilizer use intensity and its environmental risk in China’s grain production process. Sustainability, 10(2), 498. https://doi.org/10.3390/su10020498
Cassou, E., Jaffee, S. M., & Ru, J. (2018).The Challenge of Agricultural Pollution: Evidence from China, Vietnam, and the Philippines. The World Bank. https://doi.org/10.1596/978-1-4648-1201-9
Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I.-C., & Kim, K. S. (2010). Water dispersible magnetite reduced graphene oxide composites for arsenic removal. ACS Nano, 4(7), 3979–3986. https://doi.org/10.1021/nn1008897
Chatterjee, A. N., Cannon, D. M., Gatimu, E. N., Sweedler, J. V., Aluru, N. R., & Bohn, P. W. (2005). Modeling and Simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects. Journal of Nanoparticle Research, 7(4–5), 507–516. https://doi.org/10.1007/s11051-005-5133-x
Chen, G.-C., Shan, X.-Q., Wang, Y.-S., Wen, B., Pei, Z.-G., Xie, Y.-N., et al. (2009). Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II). Water Research, 43(9), 2409–2418. https://doi.org/10.1016/j.watres.2009.03.002
Chen, M., Qin, X., & Zeng, G. (2017). Biodegradation of Carbon Nanotubes, Graphene, and Their Derivatives. Trends in Biotechnology, 35(9), 836–846. https://doi.org/10.1016/j.tibtech.2016.12.001
Chen, W., Chen, S., Liang, T., Zhang, Q., Fan, Z., Yin, H., et al. (2018). High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nature Nanotechnology, 13(4), 345–350. https://doi.org/10.1038/s41565-018-0067-5
Chitose, N., Ueta, S., Seino, S., & Yamamoto, T. A. (2003). Radiolysis of aqueous phenol solutions with nanoparticles. 1. Phenol degradation and TOC removal in solutions containing TiO2 induced by UV, γ-ray and electron beams. Chemosphere, 50(8), 1007–1013. https://doi.org/10.1016/S0045-6535(02)00642-2.
Choi, J., Chan, S., Yip, G., Joo, H., Yang, H., & Ko, F. K. (2016). Palladium-Zeolite nanofiber as an effective recyclable catalyst membrane for water treatment. Water Research, 101, 46–54. https://doi.org/10.1016/j.watres.2016.05.051
Choudhary, B. C., Paul, D., Gupta, T., Tetgure, S. R., Garole, V. J., Borse, A. U., & Garole, D. J. (2017). Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles. Journal of Environmental Sciences (China), 55, 236–246. https://doi.org/10.1016/j.jes.2016.05.044
Cimbaluk, G. V., Ramsdorf, W. A., Perussolo, M. C., Santos, H. K. F., Da Silva De Assis, H. C., Schnitzler, M. C., et al. (2018). Evaluation of multiwalled carbon nanotubes toxicity in two fish species. Ecotoxicology and Environmental Safety, 150, 215–223.https://doi.org/10.1016/j.ecoenv.2017.12.034
Coetser, S. E., Heath, R. G. M., & Ndombe, N. (2007). Diffuse pollution associated with the mining sectors in South Africa: A first-order assessment. Water Science and Technology, 55(3), 9–16. https://doi.org/10.2166/wst.2007.066
Cong, V. H. (2018). Desalination of brackish water for agriculture: Challenges and future perspectives for seawater intrusion areas in Vietnam. Journal of Water Supply: Research and Technology - Aqua, 67(3), 211–217. https://doi.org/10.2166/aqua.2018.094
Cyprian En, O. (2011). Effects of water and sanitation crisis on infants and under-five children in Africa. Journal of Environmental Science and Technology, 4(2), 103–111. https://doi.org/10.3923/jest.2011.103.111
Da Rocha, A. M., Kist, L. W., Almeida, E. A., Silva, D. G. H., Bonan, C. D., Altenhofen, S., et al. (2019). Neurotoxicity in zebrafish exposed to carbon nanotubes: Effects on neurotransmitters levels and antioxidant system. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 218, 30–35. https://doi.org/10.1016/j.cbpc.2018.12.008
Das, R., Ali, M. E., Hamid, S. B. A., Ramakrishna, S., & Chowdhury, Z. Z. (2014). Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 336, 97–109. https://doi.org/10.1016/j.desal.2013.12.026
Das, A. J., Kumar, R., & Goutam, S. P. (2016). Sunlight Irradiation Induced Synthesis of Silver Nanoparticles using Glycolipid Bio-surfactant and Exploring the Antibacterial Activity. Journal of Bioengineering & Biomedical Science,6(05). https://doi.org/10.4172/2155-9538.1000208
Davar, F., Majedi, A., & Mirzaei, A. (2015). Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes. Journal of the American Ceramic Society, 98(6), 1739–1746. https://doi.org/10.1111/jace.13467
De Lorenzo, V. (2011). Systems biology approaches to bioremediation. In Comprehensive Biotechnology (pp. 15–24). Elsevier. https://doi.org/10.1016/B978-0-08-088504-9.00460-8
De Marchi, L., Pretti, C., Gabriel, B., Marques, P. A. A. P., Freitas, R., & Neto, V. (2018). An overview of graphene materials: Properties, applications and toxicity on aquatic environments. Science of the Total Environment, 631–632, 1440–1456. https://doi.org/10.1016/j.scitotenv.2018.03.132
De Voogt, P. (2016). Reviews of Environmental Contamination and Toxicology. Springer International Publishing, 236. https://doi.org/10.1007/978-3-319-20013-2
Deshpande, B. D., Agrawal, P. S., Yenkie, M. K. N., & Dhoble, S. J. (2020). Prospective of nanotechnology in degradation of waste water: A new challenges. Nano-Structures and Nano-Objects, 22, 100442. https://doi.org/10.1016/j.nanoso.2020.100442
Diallo, M. S., Christie, S., Swaminathan, P., Balogh, L., Shi, X., Um, W., et al. (2004). Dendritic chelating agents. 1. Cu(II) binding to Ethylene diamine core poly(amidoamine) dendrimers in aqueous Solutions. Langmuir, 20(7), 2640–2651. https://doi.org/10.1021/la036108k
Directive, E. C. (2008). Waste framework directive 2008/98/EC. European Commission.
Dong, B., Belkhair, S., Zaarour, M., Fisher, L., Verran, J., Tosheva, L., et al. (2014). Silver confined within zeolite EMT nanoparticles: Preparation and antibacterial properties. Nanoscale, 6(18), 10859–10864. https://doi.org/10.1039/C4NR03169E
Dong, S., Feng, J., Fan, M., Pi, Y., Hu, L., Han, X., et al. (2015). Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review. RSC Advances, 5(19), 14610–14630. https://doi.org/10.1039/C4RA13734E
Drinan, J., & Spellman, F. (2012). Water regulations, parameters, and characteristics. In Water and Wastewater Treatment, CRC Press, (pp. 49–70). https://doi.org/10.1201/b12354-5
Du, J., Feng, Z., Han, L., Ma, X., & Li, Q. (2020). Understanding the water permeability and Cu2+ removal capability of two-dimensional nanoporous boron nitride. Computational Materials Science, 184, 109923. https://doi.org/10.1016/j.commatsci.2020.109923
Durán, N., Marcato, P. D., De Souza, G. I. H., Alves, O. L., & Esposito, E. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of Biomedical Nanotechnology, 3(2), 203–208. https://doi.org/10.1166/jbn.2007.022
Egea-Corbacho, A., Gutiérrez Ruiz, S., & Quiroga Alonso, J. M. (2019). Removal of emerging contaminants from wastewater using nanofiltration for its subsequent reuse: Full–scale pilot plant. Journal of Cleaner Production, 214, 514–S523. https://doi.org/10.1016/j.jclepro.2018.12.297
Elbana, T., & Yousry, M. (2018). Nanomaterials Reactivity and Applications for Wastewater Cleanup. In Nanotechnology, Food Security and Water Treatment. Environmental Chemistry for a Sustainable World (pp. 255–275). Springer,Cham. https://doi.org/10.1007/978-3-319-70166-0_8
El-Kassas, H. Y., Aly-Eldeen, M. A., & Gharib, S. M. (2016). Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: Characterization and application for lead bioremediation. Acta Oceanologica Sinica, 35(8), 89–98. https://doi.org/10.1007/s13131-016-0880-3
El-Sheekh, M. M., Farghl, A. A., Galal, H. R., & Bayoumi, H. S. (2016). Bioremediation of different types of polluted water using microalgae. Rendiconti Lincei, 27(2), 401–410. https://doi.org/10.1007/s12210-015-0495-1
Eroglu, E., Agarwal, V., Bradshaw, M., Chen, X., Smith, S. M., Raston, C. L., & Swaminathan Iyer, K. (2012). Nitrate removal from liquid effluents using microalgae immobilized on chitosan nanofiber mats. Green Chemistry, 14(10), 2682. https://doi.org/10.1039/c2gc35970g
Ersahin, M. E., Ozgun, H., Dereli, R. K., Ozturk, I., Roest, K., & van Lier, J. B. (2012). A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresource Technology, 122, 196–206. https://doi.org/10.1016/j.biortech.2012.03.086
Esmaeili, H., Mousavi, S. M., Hashemi, S. A., Chiang, W. H., & Ahmadpour Abnavi, S. (2021). Activated carbon@MgO@Fe3O4 as an efficient adsorbent for As (III) removal. Carbon Letters, 31(5), 851–862. https://doi.org/10.1007/s42823-020-00186-2.
Fane, A. G., Tang, C. Y., & Wang, R. (2011). Membrane technology for water: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. In Treatise on Water Science (pp. 301–335). Elsevier Science Pub. Co. https://doi.org/10.1016/B978-0-444-53199-5.00091-9
Farghali, A. A., Abdel Tawab, H. A., Abdel Moaty, S. A., & Khaled, R. (2017). Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. Journal of Nanostructure in Chemistry, 7(2), 101–111. https://doi.org/10.1007/s40097-017-0227-4
Fawell, J., & Nieuwenhuijsen, M. J. (2003). Contaminants in drinking water. British Medical Bulletin, 68(1), 199–208. https://doi.org/10.1093/bmb/ldg027
Fendrich, M., Quaranta, A., Orlandi, M., Bettonte, M., & Miotello, A. (2018). Solar concentration for wastewaters remediation: A review of materials and technologies. Applied Sciences, 9(1), 118. https://doi.org/10.3390/app9010118
Feng, C., Khulbe, K. C., Matsuura, T., Tabe, S., & Ismail, A. F. (2013). Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Separation and Purification Technology, 102, 118–135. https://doi.org/10.1016/j.seppur.2012.09.037
Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011
Fu, P. P., Xia, Q., Hwang, H.-M., Ray, P. C., & Yu, H. (2014). Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis, 22(1), 64–75. https://doi.org/10.1016/j.jfda.2014.01.005
Gad, Y. H. (2008). Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment. Radiation Physics and Chemistry, 77(9), 1101–1107. https://doi.org/10.1016/j.radphyschem.2008.05.002
Gambhir, R. S., Kapoor, V., Nirola, A., Sohi, R., & Bansal, V. (2012). Water pollution: Impact of pollutants and new promising techniques in purification process. Journal of Human Ecology, 37(2), 103–109. https://doi.org/10.1080/09709274.2012.11906453
Gautam, S., Kaithwas, G., Bharagava, R. N., & Saxena, G. (2017). Environmental Pollutants and Their Bioremediation Approaches. (R. N. Bharagava, Ed.)Environmental Pollutants and their Bioremediation Approaches. Boca Raton : Taylor & Francis, CRC Press. https://doi.org/10.1201/b22171
Gautam, R. K., & Tiwari, I. (2020). Humic acid functionalized magnetic nanomaterials for remediation of dye wastewater under ultrasonication: Application in real water samples, recycling and reuse of nanosorbents. Chemosphere, 245, 125553. https://doi.org/10.1016/j.chemosphere.2019.125553
Gehrke, I., Keuter, V., & Groß, F. (2012). Development of nanocomposite membranes with photocatalytic surfaces. Journal of Nanoscience and Nanotechnology, 12(12), 9163–9168. https://doi.org/10.1166/jnn.2012.6740
Gehrke, I., Geiser, A., & Somborn-Schulz, A. (2015). Innovations in nanotechnology for water treatment. Nanotechnology, Science and Applications, 8, 1–17. https://doi.org/10.2147/NSA.S43773
Gharfalkar, M., Court, R., Campbell, C., Ali, Z., & Hillier, G. (2015). Analysis of waste hierarchy in the European waste directive 2008/98/EC. Waste Management, 39, 305–313. https://doi.org/10.1016/j.wasman.2015.02.007
Ghasemzadeh, G., Momenpour, M., Omidi, F., Hosseini, M. R., Ahani, M., & Barzegari, A. (2014). Applications of nanomaterials in water treatment and environmental remediation. Frontiers of Environmental Science & Engineering, 8(4), 471–482. https://doi.org/10.1007/s11783-014-0654-0
Ghosh, S., & Das, A. P. (2015). Modified titanium oxide (TiO2) nanocomposites and its array of applications: A review. Toxicological & Environmental Chemistry, 97(5), 491–514. https://doi.org/10.1080/02772248.2015.1052204
Goutam, S. P., Saxena, G., Singh, V., Yadav, A. K., Bharagava, R. N., & Thapa, K. B. (2018). Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chemical Engineering Journal, 336, 386–396. https://doi.org/10.1016/j.cej.2017.12.029
Guerra, F. D., Campbell, M. L., Attia, M. F., Whitehead, D. C., & Alexis, F. (2018). Capture of Aldehyde VOCs using a series of Amine-functionalized cellulose nanocrystals. ChemistrySelect, 3(20), 5495–5501. https://doi.org/10.1002/slct.201703149
Gunawan, F. M., Mangindaan, D., Khoiruddin, K., & Wenten, I. G. (2019). Nanofiltration membrane cross-linked by m -phenylenediamine for dye removal from textile wastewater. Polymers for Advanced Technologies, 30(2), 360–367. https://doi.org/10.1002/pat.4473
Gutierrez, A. M., Dziubla, T. D., & Hilt, J. Z. (2017). Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Reviews on Environmental Health, 32(1-2), 111–117. https://doi.org/10.1515/reveh-2016-0063
Hamadeen, H. M., Elkhatib, E. A., Badawy, M. E. I., & Abdelgaleil, S. A. M. (2021). Green low cost nanomaterial produced from Moringa oleifera seed waste for enhanced removal of chlorpyrifos from wastewater: Mechanism and sorption studies. Journal of Environmental Chemical Engineering, 9(4), 105376. https://doi.org/10.1016/j.jece.2021.105376
Hargreaves, A. J., Vale, P., Whelan, J., Alibardi, L., Constantino, C., Dotro, G., et al. (2018). Coagulation–flocculation process with metal salts, synthetic polymers and biopolymers for the removal of trace metals (Cu, Pb, Ni, Zn) from municipal wastewater. Clean Technologies and Environmental Policy, 20(2), 393–402. https://doi.org/10.1007/s10098-017-1481-3
Hashemi, S. A., Mousavi, S. M., Bahrani, S., Ramakrishna, S., & Hashemi, S. H. (2020). Picomolar-level detection of mercury within non-biological/biological aqueous media using ultra-sensitive polyaniline-Fe3O4-silver diethyldithiocarbamate nanostructure. Analytical and Bioanalytical Chemistry, 412(22), 5353–5365. https://doi.org/10.1007/s00216-020-02750-1
Hebeish, A. A., Abdelhady, M. M., & Youssef, A. M. (2013). TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile. Carbohydrate Polymers, 91(2), 549–559. https://doi.org/10.1016/j.carbpol.2012.08.068
Hegazi, H. A. (2013). Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC Journal, 9(3), 276–282. https://doi.org/10.1016/j.hbrcj.2013.08.004
Higazy, A., Hashem, M., ElShafei, A., Shaker, N., & Hady, M. A. (2010). Development of antimicrobial jute packaging using chitosan and chitosan–metal complex. Carbohydrate Polymers, 79(4), 867–874. https://doi.org/10.1016/j.carbpol.2009.10.011
Hladik, M. L., Roberts, A. L., & Bouwer, E. J. (2005). Removal of neutral chloroacetamide herbicide degradates during simulated unit processes for drinking water treatment. Water Research, 39(20), 5033–5044. https://doi.org/10.1016/j.watres.2005.10.008
Hlongwane, G. N., Sekoai, P. T., Meyyappan, M., & Moothi, K. (2019). Simultaneous removal of pollutants from water using nanoparticles: A shift from single pollutant control to multiple pollutant control. Science of the Total Environment, 656, 808–833. https://doi.org/10.1016/j.scitotenv.2018.11.257
Hong, H. J., Ban, G., Kim, H. S., Jeong, H. S., & Park, M. S. (2021). Fabrication of cylindrical 3D cellulose nanofibril(CNF) aerogel for continuous removal of copper(Cu2+) from wastewater. Chemosphere, 278, 130288. https://doi.org/10.1016/j.chemosphere.2021.130288
Hoslett, J., Massara, T. M., Malamis, S., Ahmad, D., van den Boogaert, I., Katsou, E., et al. (2018). Surface water filtration using granular media and membranes: A review. Science of the Total Environment, 639, 1268–1282. https://doi.org/10.1016/j.scitotenv.2018.05.247
HOSSEINI, S. A., MASHAYKHI, S., & BABAEI, S. (2016). Graphene oxide/zinc oxide nanocomposite: A superior adsorbent for removal of methylene blue - statistical analysis by response surface methodology (RSM). South African Journal of Chemistry, 69. https://doi.org/10.17159/0379-4350/2016/v69a13
Hou, X., Mu, L., Chen, F., & Hu, X. (2018). Emerging investigator series: Design of hydrogel nanocomposites for the detection and removal of pollutants: From nanosheets, network structures, and biocompatibility to machine-learning-assisted design. Environmental Science: Nano, 5(10), 2216–2240. https://doi.org/10.1039/C8EN00552D
Hu, X., Ouyang, S., Mu, L., An, J., & Zhou, Q. (2015). Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles. Environmental Science and Technology, 49(18), 10825–10833 https://doi.org/10.1021/acs.est.5b02102
Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology, 1–16. https://doi.org/10.1155/2018/2568038
Ion, A. C., Alpatova, A., Ion, I., & Culetu, A. (2011). Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets. Materials Science and Engineering: B, 176(7), 588–595. https://doi.org/10.1016/j.mseb.2011.01.018
IPIECA-IOGP. (2015). Impacts of oil spills on marine ecology, good practice guidelines for incident management and emergency response personnel. Basinghall Street.
Jain, P., & Pradeep, T. (2005). Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnology and Bioengineering, 90(1), 59–63. https://doi.org/10.1002/bit.20368
Jernelöv, A. (2010). The threats from Oil spills: Now, then, and in the future. Ambio, 39(5–6), 353–366. https://doi.org/10.1007/s13280-010-0085-5
Joshi, S., Kataria, N., Garg, V. K., & Kadirvelu, K. (2020). Pb2+ and Cd2+ recovery from water using residual tea waste and SiO2@TW nanocomposites. Chemosphere, 257, 127277. https://doi.org/10.1016/j.chemosphere.2020.127277
Jung, J.-Y., Chung, Y.-C., Shin, H.-S., & Son, D.-H. (2004). Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process. Water Research, 38(2), 347–354. https://doi.org/10.1016/j.watres.2003.09.025
Jurado, A., Vàzquez-Suñé, E., Carrera, J., López de Alda, M., Pujades, E., & Barceló, D. (2012). Emerging organic contaminants in groundwater in Spain: A review of sources, recent occurrence and fate in a European context. Science of the Total Environment, 440, 82–94. https://doi.org/10.1016/j.scitotenv.2012.08.029
K, K. R., Sardar, U. R., Bhargavi, E., Devi, I., Bhunia, B., & Tiwari, O. N. (2018). Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: A critical review. Carbohydrate Polymers, 199, 353–364. https://doi.org/10.1016/j.carbpol.2018.07.037
Kabbashi, N. A., Atieh, M. A., Al-Mamun, A., Mirghami, M. E., Alam, M., & Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. Journal of Environmental Sciences, 21(4), 539–544. https://doi.org/10.1016/S1001-0742(08)62305-0
Kabra, K., Chaudhary, R., & Sawhney, R. L. (2004). Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review. Industrial & Engineering Chemistry Research, 43(24), 7683–7696. https://doi.org/10.1021/ie0498551
Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environmental Health Perspectives, 117(12), 1813–1831. https://doi.org/10.1289/ehp.0900793
Keerthana, S., Yuvakkumar, R., Ravi, G., Hong, S. I., Al-Sehemi, A. G., & Velauthapillai, D. (2022). Fabrication of Ce doped TiO2 for efficient organic pollutants removal from wastewater. Chemosphere, 293(January), 133540. https://doi.org/10.1016/j.chemosphere.2022.133540
Kemper, K. E. (2004). Groundwater?from development to management. Hydrogeology Journal, 12(1), 3–5. https://doi.org/10.1007/s10040-003-0305-1
Kenry, & Lim, C. T. (2017). Nanofiber technology: current status and emerging developments. Progress in Polymer Science, 70, 1–17. https://doi.org/10.1016/J.PROGPOLYMSCI.2017.03.002
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
Khatri, N., & Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1), 23–39. https://doi.org/10.1080/21553769.2014.933716
Khatun, R. (2017). Water Pollution: Causes, consequences, prevention method and role of WBPHED with special reference from Murshidabad district. International Journal of Scientific and Research Publications, 7(8), 269–277. http://www.ijsrp.org/research-paper-0817.php?rp=P686703. Accessed Aug 2017
Khin, M. M., Nair, A. S., Babu, V. J., Murugan, R., & Ramakrishna, S. (2012). A review on nanomaterials for environmental remediation. Energy & Environmental Science, 5(8), 8075. https://doi.org/10.1039/c2ee21818f
Khosravi-Katuli, K., Prato, E., Lofrano, G., Guida, M., Vale, G., & Libralato, G. (2017). Effects of nanoparticles in species of aquaculture interest. Environmental Science and Pollution Research, 24(21), 17326–17346. https://doi.org/10.1007/s11356-017-9360-3
Kim, E.-S., & Deng, B. (2011). Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications. Journal of Membrane Science, 375(1–2), 46–54. https://doi.org/10.1016/j.memsci.2011.01.041
Kim, D., Jung, S., Sohn, J., Kim, H., & Lee, S. (2009). Biocide application for controlling biofouling of SWRO membranes - An overview. Desalination, 238(1–3), 43–52. https://doi.org/10.1016/j.desal.2008.01.034
Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., et al. (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9), 1825. https://doi.org/10.1897/08-090.1
Kuljanin-Jakovljević, J., Radoičić, M., Radetić, T., Konstantinović, Z., Šaponjić, Z. V., & Nedeljković, J. (2009). Presence of Room Temperature Ferromagnetism in Co2+ Doped TiO2 Nanoparticles Synthesized through Shape Transformation. The Journal of Physical Chemistry C, 113(50), 21029–21033. https://doi.org/10.1021/jp905042k
Kunduru, K. R., Nazarkovsky, M., Farah, S., Pawar, R. P., Basu, A., & Domb, A. J. (2017). Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment. In Water Purification (pp. 33–74). Elsevier. https://doi.org/10.1016/B978-0-12-804300-4.00002-2
Kuo, C.-Y., & Lin, H.-Y. (2009). Adsorption of aqueous cadmium (II) onto modified multi-walled carbon nanotubes following microwave/chemical treatment. Desalination, 249(2), 792–796. https://doi.org/10.1016/j.desal.2008.11.023
Kureel, M. K., Geed, S. R., Rai, B. N., & Singh, R. S. (2018). Novel investigation of the performance of continuous packed bed bioreactor (CPBBR) by isolated Bacillus sp. M4 and proteomic study. Bioresource Technology, 266, 335–342. https://doi.org/10.1016/j.biortech.2018.06.064
Kurwadkar, S. (2017). Groundwater pollution and vulnerability assessment. Water Environment Research, 89(10), 1561–1577. https://doi.org/10.2175/106143017X15023776270584
Labbez, C., Fievet, P., Szymczyk, A., Vidonne, A., Foissy, A., & Pagetti, J. (2002). Analysis of the salt retention of a titania membrane using the “DSPM” model: Effect of pH, salt concentration and nature. Journal of Membrane Science, 208(1–2), 315–329. https://doi.org/10.1016/S0376-7388(02)00310-1
Lahsen, M., Sanchez-Rodriguez, R., Lankao, P. R., Dube, P., Leemans, R., Gaffney, O., et al. (2010). Impacts, adaptation and vulnerability to global environmental change: Challenges and pathways for an action-oriented research agenda for middle-income and low-income countries. Current Opinion in Environmental Sustainability, 2(5–6), 364–374. https://doi.org/10.1016/j.cosust.2010.10.009
Lampis, S., Santi, C., Ciurli, A., Andreolli, M., & Vallini, G. (2015). Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: A soil bioremediation perspective. Frontiers in Plant Science, 6, 80. https://doi.org/10.3389/fpls.2015.00080
Lashen, Z. M., Shams, M. S., El-Sheshtawy, H. S., Slaný, M., Antoniadis, V., Yang, X., et al. (2022). Remediation of Cd and Cu contaminated water and soil using novel nanomaterials derived from sugar beet processing- and clay brick factory-solid wastes. Journal of Hazardous Materials, 428, 128205. https://doi.org/10.1016/j.jhazmat.2021.128205
Lee, C., & Baik, S. (2010). Vertically-aligned carbon nano-tube membrane filters with superhydrophobicity and superoleophilicity. Carbon, 48(8), 2192–2197. https://doi.org/10.1016/j.carbon.2010.02.020
Leech, D. P., & Scott, J. T. (2017). Nanotechnology documentary standards. Journal of Technology Transfer, 42(1), 78–97. https://doi.org/10.1007/s10961-016-9472-9
Li, D., & Xia, Y. (2004). Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials, 16(14), 1151–1170. https://doi.org/10.1002/adma.200400719
Li, J., Lu, N., Quan, X., Chen, S., & Zhao, H. (2008). Facile method for fabricating Boron-Ddoped TiO2 nanotube array with enhanced photoelectrocatalytic properties. Industrial & Engineering Chemistry Research, 47(11), 3804–3808. https://doi.org/10.1021/ie0712028
Li, Y., Liu, F., Xia, B., Du, Q., Zhang, P., Wang, D., et al. (2010). Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. Journal of Hazardous Materials, 177(1–3), 876–880. https://doi.org/10.1016/j.jhazmat.2009.12.114
Li, S., Yue, X., Jing, Y., Bai, S., & Dai, Z. (2011). Fabrication of zonal thiol-functionalized silica nanofibers for removal of heavy metal ions from wastewater. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 380(1–3), 229–233. https://doi.org/10.1016/j.colsurfa.2011.02.027
Li, S., Wang, W., Liang, F., & Zhang, W. X. (2017a). Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of Hazardous Materials, 322, 163–171. https://doi.org/10.1016/j.jhazmat.2016.01.032
Li, Y., Zhao, H., & Yang, M. (2017b). TiO2 nanoparticles supported on PMMA nanofibers for photocatalytic degradation of methyl orange. Journal of Colloid and Interface Science, 508, 500–507. https://doi.org/10.1016/j.jcis.2017.08.076
Lim, K. T., Shukor, M. Y., & Wasoh, H. (2014). Physical, chemical, and biological methods for the removal of Arsenic ompounds. BioMed Research International, 2014, 1–9. https://doi.org/10.1155/2014/503784
Liu, Y., Liu, J., Lin, Y., Zhang, Y., & Wei, Y. (2009). Simple fabrication and photocatalytic activity of S-doped TiO2 under low power LED visible light irradiation. Ceramics International, 35(8), 3061–3065. https://doi.org/10.1016/j.ceramint.2009.04.021
Liu, W., Zeng, Z., Chen, A., Zeng, G., Xiao, R., Guo, Z., et al. (2018). Toxicity effects of silver nanoparticles on the freshwater bivalve Corbicula fluminea. Journal of Environmental Chemical Engineering, 6(4), 4236–4244. https://doi.org/10.1016/j.jece.2018.06.032
Lodo, M. J., & Diaz, L. J. (2019). Reusability of Fe-modified MMT nanomembranes and the retrieval of the adsorbed mercury metal. In IOP Conference Series: Earth and Environmental Science, 345(1), 012011. https://doi.org/10.1088/1755-1315/345/1/012011
Loeb, S. K., Alvarez, P. J. J., Brame, J. A., Cates, E. L., Choi, W., Crittenden, J., et al. (2019). The technology horizon for photocatalytic water treatment: Sunrise or sunset? Environmental Science & Technology, 53(6), 2937–2947. https://doi.org/10.1021/acs.est.8b05041
Lopez-Pacheco, I. Y., Silva-Nunez, A., Salinas-Salazar, C., Arevalo-Gallegos, A., Lizarazo-Holguin, L. A., Barceló, D., et al. (2019). Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. Science of the Total Environment, 690, 1068–1088. https://doi.org/10.1016/j.scitotenv.2019.07.052
Lu, F., & Astruc, D. (2018). Nanomaterials for removal of toxic elements from water. Coordination Chemistry Reviews, 356, 147–164. https://doi.org/10.1016/j.ccr.2017.11.003
Lu, H., Wang, J., Stoller, M., Wang, T., Bao, Y., & Hao, H. (2016). An Overview of Nanomaterials for Water and Wastewater Treatment. Advances in Materials Science and Engineering, 2016, 1–10. https://doi.org/10.1155/2016/4964828
Luan, H., Teychene, B., & Huang, H. (2019). Efficient removal of As(III) by Cu nanoparticles intercalated in carbon nanotube membranes for drinking water treatment. Chemical Engineering Journal, 355, 341–350. https://doi.org/10.1016/j.cej.2018.08.104
Lunge, S., Singh, S., & Sinha, A. (2014). Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. Journal of Magnetism and Magnetic Materials, 356, 21-31. https://doi.org/10.1016/j.jmmm.2013.12.008
Mahimairaja, S., Bolan, N. S., Adriano, D. C., & Robinson, B. (2005). Arsenic Contamination and its Risk Management in Complex Environmental Settings. In Advances in Agronomy (pp. 1–82). https://doi.org/10.1016/S0065-2113(05)86001-8
Malik, D. S., Jain, C. K., & Yadav, A. K. (2017). Removal of heavy metals from emerging cellulosic low-cost adsorbents: A review. Applied Water Science, 7(5), 2113–2136. https://doi.org/10.1007/s13201-016-0401-8
Malinauskaite, J., Jouhara, H., Czajczyńska, D., Stanchev, P., Katsou, E., Rostkowski, P., et al. (2017). Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy, 141, 2013–2044. https://doi.org/10.1016/j.energy.2017.11.128
March, G., Nguyen, T., & Piro, B. (2015). Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors, 5(2), 241–275. https://doi.org/10.3390/bios5020241
Marjani, A., Nakhjiri, A. T., Adimi, M., Jirandehi, H. F., & Shirazian, S. (2020). Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-58472-y
Martínez-Cabanas, M., López-García, M., Barriada, J. L., Herrero, R., & Sastre de Vicente, M. E. (2016). Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal. Chemical Engineering Journal, 301, 83–91. https://doi.org/10.1016/j.cej.2016.04.149
Martínez-Paz, P., Negri, V., Esteban-Arranz, A., Martínez-Guitarte, J. L., Ballesteros, P., & Morales, M. (2019). Effects at molecular level of multi-walled carbon nanotubes (MWCNT) in Chironomus riparius (DIPTERA) aquatic larvae. Aquatic Toxicology, 209, 42–48. https://doi.org/10.1016/j.aquatox.2019.01.017
Martinson, C. A., & Reddy, K. J. (2009). Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. Journal of Colloid and Interface Science, 336(2), 406–411. https://doi.org/10.1016/j.jcis.2009.04.075
Matouq, M., Dabbas, D., & Abbassi, B. (2018). Solar photocatalytic detoxification using immobilised titanium oxide: A cost-effective tertiary treatment method for decentralised wastewater effluents. International Journal of Hydrology Science and Technology, 8(2), 175–189. https://doi.org/10.1504/ijhst.2018.090898
Maulin, P. S. (2017). Waste water pollution. Journal of Applied Biotechnology & Bioengineering, 3(1), 262–263. https://doi.org/10.15406/jabb.2017.03.00054
Mayo, J. T., Yavuz, C., Yean, S., Cong, L., Shiple, H., Yu, W., et al. (2007). The effect of nanocrystalline magnetite size on arsenic removal. Science and Technology of Advanced Materials, 8(1–2), 71–75. https://doi.org/10.1016/j.stam.2006.10.005
Melo, A., Pinto, E., Aguiar, A., Mansilha, C., Pinho, O., & Ferreira, I. M. P. L. V. O. (2012). Impact of intensive horticulture practices on groundwater content of nitrates, sodium, potassium, and pesticides. Environmental Monitoring and Assessment, 184(7), 4539–4551. https://doi.org/10.1007/s10661-011-2283-4
Migahed, F., Abdelrazak, A., & Fawzy, G. (2017). Batch and continuous removal of heavy metals from industrial effluents using microbial consortia. International Journal of Environmental Science and Technology, 14(6), 1169–1180. https://doi.org/10.1007/s13762-016-1229-3
Mishra, R. K., Sabu, A., & Tiwari, S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 22(8), 949–978. https://doi.org/10.1016/j.jscs.2018.02.005
Mishra, A., & Clark, J. H. (2013). Green Materials for Sustainable Water Remediation and Treatment. (A. Mishra & J. H. Clark, Eds.)Green Materials for Sustainable Water Remediation and Treatment. Cambridge: Royal Society of Chemistry. https://doi.org/10.1039/9781849735001
Mocan, T., Matea, C. T., Pop, T., Mosteanu, O., Buzoianu, A. D., Puia, C., et al. (2017). Development of nanoparticle-based optical sensors for pathogenic bacterial detection. Journal of Nanobiotechnology, 15(1), 25. https://doi.org/10.1186/s12951-017-0260-y
Mohammad, N., & Atassi, Y. (2021). Enhancement of removal efficiency of heavy metal ions by polyaniline deposition on electrospun polyacrylonitrile membranes. Water Science and Engineering, 14(2), 129–138. https://doi.org/10.1016/j.wse.2021.06.004
Mohammad, A. W., Teow, Y. H., Ang, W. L., Chung, Y. T., Oatley-Radcliffe, D. L., & Hilal, N. (2015). Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356, 226–254. https://doi.org/10.1016/j.desal.2014.10.043
Moharrami, P., & Motamedi, E. (2020). Application of cellulose nanocrystals prepared from agricultural wastes for synthesis of starch-based hydrogel nanocomposites: Efficient and selective nanoadsorbent for removal of cationic dyes from water. Bioresource Technology, 313, 123661. https://doi.org/10.1016/j.biortech.2020.123661
Mongillo, J. (2008). Nanotechnology 101(science 101) (Vol. 45). USA: Greenwood Press Westport. https://doi.org/10.5860/CHOICE.45-4336
Mousavi, S. M., Hashemi, S. A., Arjmand, O., Amani, A. M., Babapoor, A., Fateh, M. A., et al. (2018a). Erythrosine adsorption from aqueous solution via decorated graphene oxide with magnetic iron oxide nano particles: Kinetic and equilibrium studies. Acta Chimica Slovenica, 65(4), 882–894. https://doi.org/10.17344/acsi.2018.4537
Mousavi, S. M., Hashemi, S. A., Amani, A. M., Esmaeili, H., Ghasemi, Y., Babapoor, A., et al. (2018b). Pb(II) removal from synthetic wastewater using Kombucha Scoby and graphene oxide/Fe3O4. Physical Chemistry Research, 6(4), 759–771. https://doi.org/10.22036/pcr.2018a.133392.1490
Mousavi, Seyyed Mojtaba, Hashemi, S. A., Esmaeili, H., Amani, A. M., & Mojoudi, F. (2018c). Synthesis of Fe3O4 nanoparticles modified by oak shell for treatment of wastewater containing Ni(II). Acta Chimica Slovenica, 65(3), 750–756. https://doi.org/10.17344/acsi.2018c.4536
Muthukumar, H., & Matheswaran, M. (2015). Amaranthus spinosus Leaf Extract Mediated FeO Nanoparticles: Physicochemical Traits, Photocatalytic and Antioxidant Activity. ACS Sustainable Chemistry and Engineering, 3(12), 3149–3156. https://doi.org/10.1021/acssuschemeng.5b00722
Nagar, A., & Pradeep, T. (2020). Clean Water through Nanotechnology: Needs, Gaps, and Fulfillment. ACS Nano, 14(6), 6420–6435. https://doi.org/10.1021/acsnano.9b01730
Nam, Y., Lim, J. H., Ko, K. C., & Lee, J. Y. (2019). Photocatalytic activity of TiO2 nanoparticles: A theoretical aspect. Journal of Materials Chemistry A, 7(23), 13833–13859. https://doi.org/10.1039/C9TA03385H
Nasir, S., Hussein, M., Zainal, Z., & Yusof, N. (2018). Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications. Materials, 11(2), 295. https://doi.org/10.3390/ma11020295
Nasr, R. A., & Ali, E. A. (2022). Polyethersulfone/gelatin nano-membranes for the Rhodamine B dye removal and textile industry effluents treatment under cost effective condition. Journal of Environmental Chemical Engineering, 10(2), 107250. https://doi.org/10.1016/j.jece.2022.107250
Nasrollahzadeh, M., Sajjadi, M., Iravani, S., & Varma, R. S. (2021). Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. Journal of Hazardous Materials, 401, 123401. https://doi.org/10.1016/j.jhazmat.2020.123401
Nayl, A. A., Abd-Elhamid, A. I., El-Shanshory, A. A., Soliman, H. M. A., Kenawy, E.-R., & Aly, H. F. (2019). Development of sponge/graphene oxide composite as eco-friendly filter to remove methylene blue from aqueous media. Applied Surface Science, 496, 143676. https://doi.org/10.1016/j.apsusc.2019.143676
Nemcic-Jurec, J., & Jazbec, A. (2017). Point source pollution and variability of nitrate concentrations in water from shallow aquifers. Applied Water Science, 7(3), 1337–1348. https://doi.org/10.1007/s13201-015-0369-9
Ntengwe, F. W. (2005). An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies—the case of Nkana Mine in Zambia. Physics and Chemistry of the Earth, Parts a/b/c, 30(11–16), 726–734. https://doi.org/10.1016/j.pce.2005.08.014
Nzila, A., Razzak, S., & Zhu, J. (2016). Bioaugmentation: An emerging strategy of industrial wastewater treatment for reuse and discharge. International Journal of Environmental Research and Public Health, 13(9), 846. https://doi.org/10.3390/ijerph13090846
Obare, S. O., & Meyer, G. J. (2004). Nanostructured Materials for Environmental Remediation of Organic Contaminants in Water. Journal of Environmental Science and Health, Part A, 39(10), 2549–2582. https://doi.org/10.1081/ESE-200027010
Obi, F., Ugwuishiwu, B., & Nwakaire, J. (2016). Agriculture waste concept, generation, utilization and management. Nigerian Journal of Technology, 35(4), 957. https://doi.org/10.4314/njt.v35i4.34
Olyaie, E., Banejad, H., Afkhami, A., Rahmani, A., & Khodaveisi, J. (2012). Development of a cost-effective technique to remove the arsenic contamination from aqueous solutions by calcium peroxide nanoparticles. Separation and Purification Technology, 95, 10–15. https://doi.org/10.1016/j.seppur.2012.04.021
Ouyang, S., Hu, X., & Zhou, Q. (2015). Envelopment-Internalization Synergistic Effects and Metabolic Mechanisms of Graphene Oxide on Single-Cell Chlorella vulgaris Are Dependent on the Nanomaterial Particle Size. ACS Applied Materials and Interfaces, 7(32), 18104–18112. https://doi.org/10.1021/acsami.5b05328
Owa, F. W. (2014). Water pollution: Sources, effects, control and management. International Letters of Natural Sciences, 8, 1–6. https://doi.org/10.18052/www.scipress.com/ILNS.8.1
Ozkan, Z. Y., Cakirgoz, M., Kaymak, E. S., & Erdim, E. (2018). Rapid decolorization of textile wastewater by green synthesized iron nanoparticles. Water Science and Technology, 77(2), 511–517. https://doi.org/10.2166/wst.2017.559
Pandey, P. K., Kass, P. H., Soupir, M. L., Biswas, S., & Singh, V. P. (2014). Contamination of water resources by pathogenic bacteria. AMB Express, 4(1), 51. https://doi.org/10.1186/s13568-014-0051-x
Pang, W., Gao, N., & Xia, S. (2010). Removal of DDT in drinking water using nanofiltration process. Desalination, 250(2), 553–556. https://doi.org/10.1016/j.desal.2009.09.022
Paradise, J., Wolf, S. M., Kuzma, J., Kuzhabekova, A., Tisdale, A. W., Kokkoli, E., & Ramachandran, G. (2009). Developing U.S. oversight strategies for nanobiotechnology: Learning from past oversight experiences. The Journal of Law, Medicine & Ethics, 37(4), 688–705. https://doi.org/10.1111/j.1748-720X.2009.00441.x
Patanjali, P., Singh, R., Kumar, A., & Chaudhary, P. (2019). Nanotechnology for water treatment: A green approach. In Green Synthesis, Characterization and Applications of Nanoparticles, 485–512. https://doi.org/10.1016/b978-0-08-102579-6.00021-6
Paulino, A. T., Guilherme, M. R., Reis, A. V., Campese, G. M., Muniz, E. C., & Nozaki, J. (2006). Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. Journal of Colloid and Interface Science, 301(1), 55–62. https://doi.org/10.1016/j.jcis.2006.04.036
Peng, H.-B., Zhang, D., Li, H., Wang, C., & Pan, B. (2014). Organic contaminants and carbon nanoparticles: Sorption mechanisms and impact parameters. J Zhejiang Univ-Sci A (appl Phys & Eng), 15(8), 606–617. https://doi.org/10.1631/jzus.A1400112
Petersen, E. J., Zhang, L., Mattison, N. T., O’Carroll, D. M., Whelton, A. J., Uddin, N., et al. (2011). Potential release pathways, environmental fate and ecological risks of carbon nanotubes. Environmental Science & Technology, 45(23), 9837–9856. https://doi.org/10.1021/es201579y
Petrik, L., Missengue, R., Fatoba, O., Tuffin, M., & Sachs, J. (2012). Silver / Zeolite Nano Composite-Based Clay Filters. Water Research Commission (WRC), ISSN: 9781431203062. http://www.ircwash.org/resources/silver-zeolite-nano-composite-based-clay-filters-water-disinfection
Pi, Y., Li, X., Xia, Q., Wu, J., Li, Y., Xiao, J., & Li, Z. (2018). Adsorptive and photocatalytic removal of Persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs). Chemical Engineering Journal, 337, 351–371. https://doi.org/10.1016/j.cej.2017.12.092
Pillay, K., Cukrowska, E. M., & Coville, N. J. (2009). Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. Journal of Hazardous Materials, 166(2–3), 1067–1075. https://doi.org/10.1016/j.jhazmat.2008.12.011
Pradeep, T., & Anshup. (2009). Detection and extraction of pesticides from drinking Water using nanotechnologies. In Nanotechnology Applications for Clean Water (pp. 191–212). Elsevier. https://doi.org/10.1016/B978-0-8155-1578-4.50024-X
Pretti, C., Oliva, M., Pietro, R. D., Monni, G., Cevasco, G., Chiellini, F., et al. (2014). Ecotoxicity of pristine graphene to marine organisms. Ecotoxicology and Environmental Safety, 101, 138–145. https://doi.org/10.1016/j.ecoenv.2013.11.008
Qiao, J., Cui, Z., Sun, Y., Hu, Q., & Guan, X. (2014). Simultaneous removal of arsenate and fluoride from water by Al-Fe (hydr)oxides. Frontiers of Environmental Science & Engineering, 8(2), 169–179. https://doi.org/10.1007/s11783-013-0533-0
Qu, X., Alvarez, P. J. J., & Li, Q. (2013a). Applications of nanotechnology in water and wastewater treatment. Water Research, 47(12), 3931–3946. https://doi.org/10.1016/j.watres.2012.09.058
Qu, X., Brame, J., Li, Q., & Alvarez, P. J. J. (2013b). Nanotechnology for a safe and sustainable water supply: Enabling integrated water treatment and reuse. Accounts of Chemical Research, 46(3), 834–843. https://doi.org/10.1021/ar300029v
Raghunath, A., & Perumal, E. (2017). Metal oxide nanoparticles as antimicrobial agents: A promise for the future. International Journal of Antimicrobial Agents, 49(2), 137–152. https://doi.org/10.1016/j.ijantimicag.2016.11.011
Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002
Roberts, J. R., & Karr, C. J. (2012). Pesticide Exposure in Children. Pediatrics, 130(6), 1765–1788. https://doi.org/10.1542/peds.2012-2758
Rout, T. K., Verma, R., Dennis, R. V., & Banerjee, S. (2015). Study the removal of fluoride from aqueous medium by using nanocomposites. Journal of Encapsulation and Adsorption Sciences, 05(01), 38–52. https://doi.org/10.4236/jeas.2015.51004
Rozman, D., Hrkal, Z., Vana, M., Vymazal, J., & Boukalova, Z. (2017). Occurrence of Pharmaceuticals in Wastewater and Their Interaction with Shallow Aquifers: A Case Study of Horní Berkovice, Czech Republic. Water, 9(3), 218. https://doi.org/10.3390/w9030218
Saadoun, I. M. K. (2015). Impact of Oil Spills on Marine Life. In Emerging Pollutants in the Environment - Current and Further Implications (pp. 76–103). InTech. https://doi.org/10.5772/60455
Sachan, D., Ramesh, A., & Das, G. (2021). Green synthesis of silica nanoparticles from leaf biomass and its application to remove heavy metals from synthetic wastewater: A comparative analysis. Environmental Nanotechnology, Monitoring and Management,16,100467. https://doi.org/10.1016/j.enmm.2021.100467
Saha, S., & Sinha, A. (2018). Review on treatment of acid mine drainage with waste materials: A novel approach. Global NEST Journal, 20(3), 512–528. https://doi.org/10.30955/gnj.002610
Salgot, M., & Folch, M. (2018). Wastewater treatment and water reuse. Current Opinion in Environmental Science & Health, 2, 64–74. https://doi.org/10.1016/j.coesh.2018.03.005
Samer, M. (2015). Biological and chemical wastewater treatment processes. In Wastewater Treatment Engineering (p. 51). InTech. https://doi.org/10.5772/61250
Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S. K., Grace, A. N., & Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: A review. Chemical Engineering Journal, 306, 1116–1137. https://doi.org/10.1016/j.cej.2016.08.053
Semerád, J., Čvančarová, M., Filip, J., Kašlík, J., Zlotá, J., Soukupová, J., & Cajthaml, T. (2018). Novel assay for the toxicity evaluation of nanoscale zero-valent iron and derived nanomaterials based on lipid peroxidation in bacterial species. Chemosphere, 213, 568–577. https://doi.org/10.1016/j.chemosphere.2018.09.029
Shahbazi, A., Younesi, H., & Badiei, A. (2011). Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chemical Engineering Journal, 168(2), 505–518. https://doi.org/10.1016/j.cej.2010.11.053
Shan, S. J., Zhao, Y., Tang, H., & Cui, F. Y. (2017). A Mini-review of carbonaceous nanomaterials for removal of contaminants from wastewater. IOP Conference Series: Earth and Environmental Science, 68, 012003. https://doi.org/10.1088/1755-1315/68/1/012003
Shao, G. (2008). Electronic structures of manganese-doped rutile TiO2 from first principles. The Journal of Physical Chemistry C, 112(47), 18677–18685. https://doi.org/10.1021/jp8043797
Sharma, V., & Sharma, A. (2013). Nanotechnology : An emerging future trend in wastewater treatment with its innovative products and processes. International Journal of Enhanced Research in Science Technology & Engineering, 2(1), 1–8. www.erpublications.com
Sharma, S., & Bhattacharya, A. (2017). Drinking water contamination and treatment techniques. Applied Water Science, 7(3), 1043–1067. https://doi.org/10.1007/s13201-016-0455-7
Sharma, N., & Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: A review. International Journal of Agriculture, Environment and Biotechnology, 10(6), 675. https://doi.org/10.5958/2230-732X.2017.00083.3
Shilina, A. S., Bakhtin, V. D., Burukhin, S. B., & Askhadullin, S. R. (2017). Sorption of cations of heavy metals and radionuclides from the aqueous media by new synthetic zeolite-like sorbent. Nuclear Energy and Technology, 3(4), 249–254. https://doi.org/10.1016/j.nucet.2017.10.001
Shittu, K. O., & Ihebunna, O. (2017). Purification of simulated waste water using green synthesized silver nanoparticles of Piliostigma thonningii aqueous leave extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(4), 045003. https://doi.org/10.1088/2043-6254/aa8536
Shukla, S. P., Kumar, S., Gita, S., Bharti, V. S., Kumar, K., & Rathi Bhuvaneswari, G. (2018). Recent technologies for wastewater Treatment: A brief review. In Wastewater Management Through Aquaculture.Springer Singapore, (pp. 225–234). https://doi.org/10.1007/978-981-10-7248-2_11
Sinha, T., & Ahmaruzzaman, M. (2015). Biogenic synthesis of Cu nanoparticles and its degradation behavior for methyl red. Materials Letters, 159, 168–171. https://doi.org/10.1016/j.matlet.2015.06.099
Skipperud, L., & Salbu, B. (2018). Radionuclides: Sources, speciation, transfer and impacts in the aquatic and terrestrial tnvironment. In Encyclopedia of the Anthropocene (pp. 195–206). Elsevier. https://doi.org/10.1016/B978-0-12-809665-9.09897-9
Solomon, K., Sibley, P., Linton, B., Mattu, G., Keen, P., Hall, K., & Ritter, L. (2002). Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. Journal of Toxicology and Environmental Health. Part A, 11(65), 1–142. 11809004.
Song, H., & Carraway, E. R. (2005). Reduction of chlorinated ethanes by nanosized zero-valent iron: Kinetics, pathways and effects of reaction conditions. Environmental Science & Technology, 39(16), 6237–6245. https://doi.org/10.1021/es048262e
Song, B., Xu, P., Zeng, G., Gong, J., Wang, X., Yan, J., et al. (2018). Modeling the transport of sodium dodecyl benzene sulfonate in riverine sediment in the presence of multi-walled carbon nanotubes. Water Research, 129, 20–28. https://doi.org/10.1016/j.watres.2017.11.003
Srivastava, R. (2019). Emerging trends of nanotechnology in environment and sustainability: A review based approach. Australasian Journal of Environmental Management, 26(2), 191–192. https://doi.org/10.1080/14486563.2019.1584490
Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R., & Ajayan, P. M. (2004). Carbon nanotube filters. Nature Materials,3(9), 610–614. https://doi.org/10.1038/nmat1192
Srivastava, S., Agrawal, S. B., & Mondal, M. K. (2017). Synthesis, characterization and application of Lagerstroemia speciosa embedded magnetic nanoparticle for Cr(VI) adsorption from aqueous solution. Journal of Environmental Sciences (China), 55, 283–293. https://doi.org/10.1016/j.jes.2016.08.012
Stewart, F. (2013). Review: Recycling Reconsidered: The Present Failure and Future Promise of Environmental Action in the United States. Environment and Planning c: Government and Policy, 31(1), 186–187. https://doi.org/10.1068/c461wr4
Street, A., Sustich, R., Duncan, J., & Savage, N. (2014). Nanotechnology applications for clean water. Nanotechnology Applications for Clean Water (2nd ed.). Elsevier. https://doi.org/10.1016/C2012-0-00675-8
Su, Y., Xiao, Y., Fu, X., Deng, Y., & Zhang, F. (2009). Photocatalytic properties and electronic structures of iodine-doped TiO2 nanotubes. Materials Research Bulletin, 44(12), 2169–2173. https://doi.org/10.1016/j.materresbull.2009.08.017
Subramonian, W., Wu, T. Y., & Chai, S.-P. (2017). Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2 O3-TiO2: Treatment efficiency and characterizations of reused photocatalyst. Journal of Environmental Management, 187, 298–310. https://doi.org/10.1016/j.jenvman.2016.10.024
Sun, C., Qu, R., Ji, C., Wang, C., Sun, Y., Yue, Z., & Cheng, G. (2006). Preparation and adsorption properties of crosslinked polystyrene-supported low-generation diethanolamine-typed dendrimer for metal ions. Talanta, 70(1), 14–19. https://doi.org/10.1016/j.talanta.2006.01.011
Sun, T. Y., Bornhöft, N. A., Hungerbühler, K., & Nowack, B. (2016). Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials. Environmental Science and Technology, 50(9),4701–4711. https://doi.org/10.1021/acs.est.5b05828
Suresh Kumar, K., Dahms, H.-U., Won, E.-J., Lee, J.-S., & Shin, K.-H. (2015). Microalgae – A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352. https://doi.org/10.1016/j.ecoenv.2014.12.019
Suwanchawalit, C., Wongnawa, S., Sriprang, P., & Meanha, P. (2012). Enhancement of the photocatalytic performance of Ag-modified TiO2 photocatalyst under visible light. Ceramics International, 38(6), 5201–5207.https://doi.org/10.1016/j.ceramint.2012.03.027
Tabasi, E., Vafa, N., Firoozabadi, B., Salmankhani, A., Nouranian, S., Habibzadeh, S., et al. (2022). Ion Rejection Performance of Functionalized Porous Graphene Nanomembranes for Wastewater Purification: A Molecular Dynamics Simulation Study. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4022151
Tabei, Y., Fukui, H., Nishioka, A., Hagiwara, Y., Sato, K., Yoneda, T., et al. (2019). Effect of iron overload from multi walled carbon nanotubes on neutrophil-like differentiated HL-60 cells. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-38598-4
Tao, W., Chen, G., Zeng, G., Yan, M., Chen, A., Guo, Z., et al. (2016). Influence of silver nanoparticles on heavy metals of pore water in contaminated river sediments. Chemosphere,162, 117–124. https://doi.org/10.1016/j.chemosphere.2016.07.043
Tayel, A., Ramadan, A., & El Seoud, O. (2018). Titanium dioxide/Graphene and Titanium dioxide/Graphene oxide nanocomposites: Synthesis, characterization and photocatalytic applications for water decontamination. Catalysts, 8(11), 491. https://doi.org/10.3390/catal8110491
Thakkar, M., Mitra, S., & Wei, L. (2016). Effect on Growth, Photosynthesis, and Oxidative Stress of Single Walled Carbon Nanotubes Exposure to Marine Alga Dunaliella tertiolecta. Journal of Nanomaterials, 2016, 1–9. https://doi.org/10.1155/2016/8380491
Thanh, D. N., Novák, P., Vejpravova, J., Vu, H. N., Lederer, J., & Munshi, T. (2018). Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods. Journal of Magnetism and Magnetic Materials, 456, 451–460. https://doi.org/10.1016/j.jmmm.2017.11.064
Thines, R. K., Mubarak, N. M., Nizamuddin, S., Sahu, J. N., Abdullah, E. C., & Ganesan, P. (2017). Application potential of carbon nanomaterials in water and wastewater treatment: A review. Journal of the Taiwan Institute of Chemical Engineers, 72, 116–133. https://doi.org/10.1016/j.jtice.2017.01.018
Tijing, L. D., Yao, M., Ren, J., Park, C.-H., Kim, C. S., & Shon, H. K. (2019). Nanofibers for Water and Wastewater Treatment: Recent Advances and Developments. In Bui XT, C. C, & V. S (Eds.), Water and Wastewater Treatment Technologies, Energy, Environment and Sustainability (pp. 431–468). Springer Nature,Singapore. https://doi.org/10.1007/978-981-13-3259-3_20
Tiwari, J. N., Tiwari, R. N., & Kim, K. S. (2012). Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science,57(4), 724–803. https://doi.org/10.1016/j.pmatsci.2011.08.003
Tlili, I., & Alkanhal, T. A. (2019). Nanotechnology for water purification: Electrospun nanofibrous membrane in water and wastewater treatment. Journal of Water Reuse and Desalination, 9(3), 232–248. https://doi.org/10.2166/wrd.2019.057
Tuccillo, M. E., Boyd, G. R., Sandvig, A., Shatkin, J. A., & Dionysiou, D. D. (2012). Nanotechnology what are the Challenges and Emerging Benefits for Water Treatment? Opflow, 38(1), 10–13. https://doi.org/10.5991/OPF.2012.38.0001
Turco, A., Monteduro, A., Mazzotta, E., Maruccio, G., & Malitesta, C. (2018). An innovative porous nanocomposite material for the removal of phenolic compounds from aqueous Solutions. Nanomaterials, 8(5), 334. https://doi.org/10.3390/nano8050334
Uddin, Z., Ahmad, F., Ullan, T., Nawab, Y., Ahmad, S., Azam, F., et al. (2021). Recent trends in water purification using electrospun nanofibrous membranes. International Journal of Environmental Science and Technology,1–28. https://doi.org/10.1007/s13762-021-03603-9
Ursino, C., Castro-Muñoz, R., Drioli, E., Gzara, L., Albeirutty, M. H., & Figoli, A. (2018). Progress of nanocomposite membranes for water treatment. Membranes, 8(2),18. https://doi.org/10.3390/membranes8020018
Van der Bruggen, B., Everaert, K., Wilms, D., & Vandecasteele, C. (2001). Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: Rejection properties and economic evaluation. Journal of Membrane Science, 193(2), 239–248. https://doi.org/10.1016/S0376-7388(01)00517-8
Van Der Bruggen, Bart, Lejon, L., & Vandecasteele, C. (2003). Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes. Environmental Science and Technology, 37(17), 3733–3738. https://doi.org/10.1021/es0201754
Van Der Bruggen, B., & Vandecasteele, C. (2003). Removal of pollutants from surface water and groundwater by nanofiltration: Overview of possible applications in the drinking water industry. Environmental Pollution, 122(3), 435–445. https://doi.org/10.1016/S0269-7491(02)00308-1
Venkateswarlu, S., Lee, D., & Yoon, M. (2016). Bioinspired 2D-Carbon Flakes and Fe3O4 Nanoparticles Composite for Arsenite Removal. ACS Applied Materials and Interfaces, 8(36), 23876–23885. https://doi.org/10.1021/acsami.6b03583
Vidal, F., Sedan, D., D’Agostino, D., Cavalieri, M., Mullen, E., Parot Varela, M., et al. (2017). Recreational exposure during Algal Bloom in Carrasco beach, Uruguay: A liver failure case report. Toxins, 9(9), 267. https://doi.org/10.3390/toxins9090267
Vidmar, J., Oprckal, P., Milacic, R., Mladenovic, A., & Scancar, J. (2018). Investigation of the behaviour of zero-valent iron nanoparticles and their interactions with Cd2+ in wastewater by single particle ICP-MS. Science of the Total Environment, 634, 1259–1268. https://doi.org/10.1016/j.scitotenv.2018.04.081
Vinothkannan, M., Karthikeyan, C., Gnana kumar, G., Kim, A. R., & Yoo, D. J. (2015). One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 256–264. https://doi.org/10.1016/j.saa.2014.09.031
Vu, T. H. T., Nguyen, T. T. T., Nguyen, P. H. T., Do, M. H., Au, H. T., Nguyen, T. B., et al. (2012). Fabrication of photocatalytic composite of multi-walled carbon nanotubes/TiO2 and its application for desulfurization of diesel. Materials Research Bulletin, 47(2), 308–314. https://doi.org/10.1016/j.materresbull.2011.11.016
Vuong Hoan, N. T., Anh Thu, N. T., Duc, H. V., Cuong, N. D., Quang Khieu, D., & Vo, V. (2016). Fe3O4 /Reduced graphene oxide nanocomposite: Synthesis and its application for toxic metal ion removal. Journal of Chemistry, 2016, 1–10. https://doi.org/10.1155/2016/2418172
Wang, Q., & Yang, Z. (2016). Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution, 218, 358–365. https://doi.org/10.1016/j.envpol.2016.07.011
Wang, M.-C., Lin, H.-J., Wang, C.-H., & Wu, H.-C. (2012a). Effects of annealing temperature on the photocatalytic activity of N-doped TiO2 thin films. Ceramics International, 38(1), 195–200. https://doi.org/10.1016/j.ceramint.2011.05.160
Wang, X., Guo, Y., Yang, L., Han, M., Zhao, J., & Cheng, X. (2012b). Nanomaterials as Sorbents to Remove Heavy Metal Ions in Wastewater Treatment. Journal of Environmental & Analytical Toxicology, 02(07), 1–5. https://doi.org/10.4172/2161-0525.1000154
Wang, Z. G., Zhou, R., Jiang, D., Song, J. E., Xu, Q., Si, J., et al. (2015). Toxicity of graphene quantum dots in zebrafish embryo. Biomedical and Environmental Sciences, 28(5), 341–351. https://doi.org/10.3967/bes2015.048
Wang, M., Gao, B., & Tang, D. (2016). Review of key factors controlling engineered nanoparticle transport in porous media. Journal of Hazardous Materials, 318, 233–246. https://doi.org/10.1016/j.jhazmat.2016.06.065
Wang, Z., Shen, D., Wu, C., & Gu, S. (2018). State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chemistry, 20(22), 5031–5057. https://doi.org/10.1039/c8gc01748d
Wang, Y., Pan, C., Chu, W., Vipin, A., & Sun, L. (2019). Environmental remediation applications of carbon nanotubes and graphene oxide: Adsorption and catalysis. Nanomaterials, 9(3), 439. https://doi.org/10.3390/nano9030439
Wen, Y., Schoups, G., & van de Giesen, N. (2017). Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change. Scientific Reports, 7(1), 43289. https://doi.org/10.1038/srep43289
Werkneh, A., A., & Rene, E. R. (2019). Applications of nanotechnology and biotechnology for sustainable water and wastewater treatment. In Water and wastewater treatment technologies, energy, environment, and sustainability (pp. 405–430). Springer Nature,Singapore. https://doi.org/10.1007/978-981-13-3259-3_19
Werkneh, A., A., Rene, E. R., & Lens, P. N. L. (2018). Application of nanomaterials in food, cosmetics and other related process industries. In Nanotoxicology (pp. 63–79). Boca Raton : CRC Press, Taylor & Francis Group, 2018.: CRC Press. https://doi.org/10.1201/b21545-4
WHO. (2013). World health statistics 2013. World health organization. Geneva 27, Switzerland. https://www.who.int/gho/publications/world_health_statistics/2013/en/
World Health Organization. (2014). Guidelines for drinking-water quality: Fourth edition incorporating the first addendum. In Guidelines for drinking-water quality: Fourth edition incorporating the first Addendum. Microbial fact sheets.
Wu, Z., Luo, W., Zhang, H., & Jia, Y. (2020). Strong pyro-catalysis of shape-controllable bismuth oxychloride nanomaterial for wastewater remediation. Applied Surface Science, 513, 145630. https://doi.org/10.1016/j.apsusc.2020.145630
Xia, W.-J., Guo, L.-X., Yu, L.-Q., Zhang, Q., Xiong, J.-R., Zhu, X.-Y., et al. (2021). Phosphorus removal from diluted wastewaters using a La/C nanocomposite-doped membrane with adsorption-filtration dual functions. Chemical Engineering Journal, 405, 126924. https://doi.org/10.1016/j.cej.2020.126924
Xie, H., & Ringler, C. (2017). Agricultural nutrient loadings to the freshwater environment: The role of climate change and socioeconomic change. Environmental Research Letters, 12(10), 104008. https://doi.org/10.1088/1748-9326/aa8148
Xie, Y., Dong, H., Zeng, G., Tang, L., Jiang, Z., Zhang, C., et al. (2017). The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. Journal of Hazardous Materials. 321, 390–407. https://doi.org/10.1016/j.jhazmat.2016.09.028
Xu, X., Chen, C., Wang, A., Fang, N., Yuan, Y., Ren, N., & Lee, D.-J. (2012). Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition. Bioresource Technology, 116, 517–521. https://doi.org/10.1016/j.biortech.2012.03.095
Xu, L., Wang, S.-H., Jin, Y., Liu, N.-P., Wu, X.-Q., & Wang, X. (2021). Preparation of Cobalt tungstate nanomaterials and study on sonocatalytic degradation of Safranin t. Separation and Purification Technology, 276, 119405. https://doi.org/10.1016/j.seppur.2021.119405
Yakout, A. A., & Khan, Z. A. (2021). High performance Zr-MnO2@reduced graphene oxide nanocomposite for efficient and simultaneous remediation of arsenates As(V) from environmental water samples. Journal of Molecular Liquids, 334, 116427. https://doi.org/10.1016/j.molliq.2021.116427
Yamindago, A., Lee, N., Woo, S., Choi, H., Mun, J. Y., Jang, S.-W., et al. (2018). Acute toxic effects of zinc oxide nanoparticles on Hydra magnipapillata. Aquatic Toxicology, 205, 130–139. https://doi.org/10.1016/j.aquatox.2018.10.008
Yang, Q., Tu, S., Wang, G., Liao, X., & Yan, X. (2012). Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris Vittata L. International Journal of Phytoremediation, 14(1), 89–99. https://doi.org/10.1080/15226510903567471
Yanyan, L., Kurniawan, T. A., Albadarin, A. B., & Walker, G. (2018). Enhanced removal of acetaminophen from synthetic wastewater using multi-walled carbon nanotubes (MWCNTs) chemically modified with NaOH, HNO3/H2SO4, ozone, and/or chitosan. Journal of Molecular Liquids, 251, 369–377.https://doi.org/10.1016/j.molliq.2017.12.051
Yao, G., Wang, K., Wang, M., Shao, X., Qiu, F., & Zhang, T. (2021). Magnetic FeS@Lignin-derived carbon nanocomposites as an efficient adsorbent for multistage collaborative selective recovery of tellurium (IV) from wastewater. Journal of Environmental Chemical Engineering, 9(5), 106135.https://doi.org/10.1016/j.jece.2021.106135
Yoon, K., Kim, K., Wang, X., Fang, D., Hsiao, B. S., & Chu, B. (2006). High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer, 47(7), 2434–2441. https://doi.org/10.1016/j.polymer.2006.01.042
Yu, S., & Lu, H. (2018). Relationship between urbanisation and pollutant emissions in transboundary river basins under the strategy of the Belt and Road Initiative. Chemosphere, 203, 11–20. https://doi.org/10.1016/j.chemosphere.2018.03.172
Yu, H., Irie, H., Shimodaira, Y., Hosogi, Y., Kuroda, Y., Miyauchi, M., & Hashimoto, K. (2010). An efficient visible-light-sensitive Fe(III)-grafted TiO2 photocatalyst. The Journal of Physical Chemistry C, 114(39), 16481–16487. https://doi.org/10.1021/jp1071956
Yue, D., Qian, X., & Zhao, Y. (2015). Photocatalytic remediation of ionic pollutant. Science Bulletin, 60(21), 1791–1806. https://doi.org/10.1007/s11434-015-0918-5
Zaytseva, O., & Neumann, G. (2016). Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture, 3(1), 17. https://doi.org/10.1186/s40538-016-0070-8
Zekić, E., Vuković, Ž, & Halkijević, I. (2018). Application of nanotechnology in wastewater treatment. Journal of the Croatian Association of Civil Engineers, 70(04), 315–323. https://doi.org/10.14256/JCE.2165.2017
Zeng, W., Yang, Y., Li, L., Wang, X., & Peng, Y. (2011). Effect of nitrite from nitritation on biological phosphorus removal in a sequencing batch reactor treating domestic wastewater. Bioresource Technology, 102(12), 6657–6664. https://doi.org/10.1016/j.biortech.2011.03.091
Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5, 323–332. https://doi.org/10.1023/A:1025520116015
Zhang, K., Dwivedi, V., Chi, C., & Wu, J. (2010). Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. Journal of Hazardous Materials, 182(1–3), 162–168. https://doi.org/10.1016/j.jhazmat.2010.06.010
Zhang, Y., Wu, B., Xu, H., Liu, H., Wang, M., He, Y., & Pan, B. (2016). Nanomaterials-enabled water and wastewater treatment. NanoImpact, 3–4, 22–39. https://doi.org/10.1016/j.impact.2016.09.004
Zhang, Y., Sivakumar, M., Yang, S., Enever, K., & Ramezanianpour, M. (2018). Application of solar energy in water treatment processes: A review. Desalination, 428, 116–145. https://doi.org/10.1016/j.desal.2017.11.020
Zhang, T., Jin, X., Owens, G., & Chen, Z. (2021). Remediation of malachite green in wastewater by ZIF-8@Fe/Ni nanoparticles based on adsorption and reduction. Journal of Colloid and Interface Science, 594, 398–408. https://doi.org/10.1016/j.jcis.2021.03.065
Zhang, X. H. (2011). Remediation techniques for soil and groundwater. In Point sources of pollution: local effects and its control - Vol II (pp. 350–364). Encyclopedia of Life Support Systems (EOLSS)
Zhao, Y. Y., & Pei, Y. S. (2012). Risk evaluation of groundwater pollution by pesticides in China: A short review. Procedia Environmental Sciences, 13, 1739–1747. https://doi.org/10.1016/j.proenv.2012.01.167
Zhao, W., Chen, I.-W., & Huang, F. (2019a). Toward large-scale water treatment using nanomaterials. Nano Today, 27, 11–27. https://doi.org/10.1016/j.nantod.2019.05.003
Zhao, Y., Qiu, Y., Mai, Z., Ortega, E., Shen, J., Gao, C., & Van der Bruggen, B. (2019b). Symmetrically recombined nanofibers in a high-selectivity membrane for cation separation in high temperature and organic solvent. Journal of Materials Chemistry A, 7(34), 20006–20012. https://doi.org/10.1039/C9TA07416C
Zheng, Y., & Wang, A. (2009). Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. Journal of Hazardous Materials, 171(1-3), 671–677. https://doi.org/10.1016/j.jhazmat.2009.06.053
Zhong, Y., Mahmud, S., He, Z., Yang, Y., Zhang, Z., Guo, F., et al. (2020). Graphene oxide modified membrane for highly efficient wastewater treatment by dynamic combination of nanofiltration and catalysis. Journal of Hazardous Materials, 397, 122774. https://doi.org/10.1016/j.jhazmat.2020.122774
Zhu, X., Hondroulis, E., Liu, W., & Li, C. (2013). Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small, 9(9–10), 1821–1830. https://doi.org/10.1002/smll.201201593
Zhu, B., Zhu, S., Li, J., Hui, X., & Wang, G.-X. (2018). The developmental toxicity, bioaccumulation and distribution of oxidized single walled carbon nanotubes in Artemia salina. Toxicology Research, 7(5), 897–906. https://doi.org/10.1039/C8TX00084K
Zielińska, A., Santos, D., Campos, J. R., Santini, A., Severino, P., Shimojo, A. A. M., et al. (2020). Cellular and Molecular Toxicology of Nanoparticles. In Handbook of Materials for Nanomedicine (pp. 489–528). Jenny Stanford Publishing. https://doi.org/10.1201/9781003045151-11
Zirehpour, A., Rahimpour, A., Khoshhal, S., Firouzjaei, M. D., & Ghoreyshi, A. A. (2016). The impact of MOF feasibility to improve the desalination performance and antifouling properties of FO membranes. RSC Advances, 6(74), 70174–70185. https://doi.org/10.1039/C6RA14591D
Acknowledgements
This research work was financially supported by the Impact-Oriented Interdisciplinary Research Grant (No. IIRG018-2019), NANOCAT RU GRANT 2019, Global Collaborative Programme – SATU Joint Research Scheme (No. ST012-2019), and Fundamental Research Grant Scheme FRGS/1/2020/TK0/UM/02/8 (No.FP023-2020).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Naskar, J., Boatemaa, M.A., Rumjit, N.P. et al. Recent Advances of Nanotechnology in Mitigating Emerging Pollutants in Water and Wastewater: Status, Challenges, and Opportunities. Water Air Soil Pollut 233, 156 (2022). https://doi.org/10.1007/s11270-022-05611-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11270-022-05611-y