Skip to main content

Advertisement

Log in

Recent Advances of Nanotechnology in Mitigating Emerging Pollutants in Water and Wastewater: Status, Challenges, and Opportunities

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Availability of clean and safe freshwater has become a looming global concern. The accelerated demography, industrialization, and climate changes contaminate the meager freshwater reserves. Pollution of water bodies is significantly detrimental to health, ecology, economy, and society. The rising number of malnutrition cases, stunted growth, hepatitis, gastroenteritis, skin ailments, cholera, respiratory disorders, liver malfunction, eye infections, and mortality have been attributed to exposure to compromised water. Thus, optimized, durable, and inexpensive wastewater treatment and remediation processes are necessary. Current conventional treatment strategies suffer from several drawbacks, which may be mitigated through nanotechnological intercession, promising sustainability. Nanomaterials include nanosorbents, carbon nanotubes, nanocomposites, nanofibers, graphene, nanodendrimers, nanomembranes, and nanocatalysts. They have unique properties that make attractive alternatives for wastewater remediation, purification, and contamination detection through pollutant-specific nanosensors and detectors. This review discusses water pollution, its impacts, conventional treatment strategies, nanotechnological contributions, venture possibilities, and associated commercial opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abdel-Fatah, M. A. (2018). Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Engineering Journal, 9(4), 3077–3092. https://doi.org/10.1016/j.asej.2018.08.001

  • Acevedo, A., Carpio, E. A., Rodríguez, J., & Manzano, M. A. (2012). Disinfection of natural water by solar photocatalysis using immobilized TiO2 Devices: Efficiency in eliminating indicator bacteria and operating life of the system. Journal of Solar Energy Engineering, 134(1), 011008. https://doi.org/10.1115/1.4005338

  • Acharya, J., Kumar, U., & Rafi, P. M. (2018). Removal of heavy metal ions from wastewater by chemically modified agricultural waste material as potential adsorbent-A review. International Journal of Current Engineering and Technology, 8 (3), 1–5. https://doi.org/10.14741/ijcet/v.8.3.6

  • Adam, V., Caballero-Guzman, A., & Nowack, B. (2018). Considering the forms of released engineered nanomaterials in probabilistic material flow analysis. Environmental Pollution, 243, 17–27. https://doi.org/10.1016/j.envpol.2018.07.108

  • Adesina, A. A. (2004). Industrial exploitation of photocatalysis: Progress, perspectives and prospects. Catalysis Surveys from Asia, 8(4), 265–273. https://doi.org/10.1007/s10563-004-9117-0

  • Akpor, O. B. (2014). Heavy metal pollutants in wastewater effluents: Sources, effects and remediation. Advances in Bioscience and Bioengineering, 2(4), 37. https://doi.org/10.11648/j.abb.20140204.11

    Article  Google Scholar 

  • Alens, O. P. (2014). Assessment of environmental and human challenges in the Niger-delta region of Nigeria. Journal of Environment and Earth Science, 4(23), 27–36.

    Google Scholar 

  • Al-Ghafri, B., Lau, W.-J., Al-Abri, M., Goh, P.-S., & Ismail, A. F. (2019). Titanium dioxide-modified polyetherimide nanofiber membrane for water treatment. Journal of Water Process Engineering, 32, 100970. https://doi.org/10.1016/j.jwpe.2019.100970

  • Al-Husaini, I. S., Yusoff, A. R. M., Lau, W. J., Ismail, A. F., Al-Abri, M. Z., & Wirzal, M. D. H. (2019). Iron oxide nanoparticles incorporated polyethersulfone electrospun nanofibrous membranes for effective oil removal. Chemical Engineering Research and Design, 148, 142–154. https://doi.org/10.1016/j.cherd.2019.06.006

  • Ali, I., & Aboul-Enein, H. Y. (2002). Speciation of metal ions by capillary electrophoresis. Critical Reviews in Analytical Chemistry, 32(4), 337–350. https://doi.org/10.1080/10408340290765597

  • Ali, I., Gupta, V. K., & Aboul-Enein, H. Y. (2005). Metal ion speciation and capillary electrophoresis: Application in the new millennium. Electrophoresis, 26(21), 3988–4002. https://doi.org/10.1002/elps.200500216

  • Ali, I., Peng, C., Naz, I., Khan, Z. M., Sultan, M., Islam, T., & Abbasi, I. A. (2017). Phytogenic magnetic nanoparticles for wastewater treatment: A review. RSC Advances, 7 (64), 40158–40178. https://doi.org/10.1039/C7RA04738J

  • Ali, I., Alharbi, O. M. L., Alothman, Z. A., & Alwarthan, A. (2018a). Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water. Colloids and Surfaces b: Biointerfaces, 171, 606–613. https://doi.org/10.1016/j.colsurfb.2018.07.071

  • Ali, I., Alharbi, O. M. L., Alothman, Z. A., & Badjah, A. Y. (2018b). Kinetics, Thermodynamics, and Modeling of Amido Black Dye Photodegradation in Water Using Co/TiO2 Nanoparticles. Photochemistry and Photobiology, 94(5), 935–941. https://doi.org/10.1111/php.12937

  • Ali, I., Alharbi, O. M. L., Tkachev, A., Galunin, E., Burakov, A., & Grachev, V. A. (2018c). Water treatment by new-generation graphene materials: Hope for bright future. Environmental Science and Pollution Research, 25(8), 7315–7329. https://doi.org/10.1007/s11356-018-1315-9

  • Ali, S., Rehman, S. A. U., Luan, H. Y., Farid, M. U., & Huang, H. (2019c). Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Science of the Total Environment, 646, 1126–1139https://doi.org/10.1016/j.scitotenv.2018.07.348

  • Ali, I., Afshinb, S., Poureshgh, Y., Azari, A., Rashtbari, Y., Feizizadeh, A., et al. (2020). Green preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water. Environmental Science and Pollution, Research, 27(29), 36732–36743. https://doi.org/10.1007/s11356-020-09310-1

  • Ali, I., Babkin, A. V., Burakova, I. V., Burakov, A. E., Neskoromnaya, E. A., Tkachev, A. G., et al. (2021a). Fast removal of samarium ions in water on highly efficient nanocomposite based graphene oxide modified with polyhydroquinone: Isotherms, kinetics, thermodynamics and desorption. Journal of Molecular Liquids, 329, 115584. https://doi.org/10.1016/j.molliq.2021.115584

  • Ali, I., Zakharchenko, E. A., Myasoedova, G. V., Molochnikova, N. P., Rodionova, A. A., Baulin, V. E., et al. (2021c). Preparation and characterization of oxidized graphene for actinides and rare earth elements removal in nitric acid solutions from nuclear wastes. Journal of Molecular Liquids, 335, 116260. https://doi.org/10.1016/j.molliq.2021.116260

  • Ali, I., & Jain, C. K. (1998). Groundwater contamination and health hazards by some of the most commonly used pesticides. Current Science, 75(10), 1011–1014https://www.jstor.org/stable/24101777

  • Ali, I., Alharbi, O. M. L., ALOthman, Z. A., Alwarthan, A., & Al-Mohaimeed, A. M. (2019a). Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water. International Journal of Biological Macromolecules, 132, 244–253. https://doi.org/10.1016/j.ijbiomac.2019a.03.211

  • Ali, I., Burakov, A. E., Melezhik, A. V., Babkin, A. V., Burakova, I. V., Neskoromnaya, E. A., et al. (2019b). Removal of Copper(II) and Zinc(II) Ions in Water on a Newly Synthesized Polyhydroquinone/Graphene Nanocomposite Material: Kinetics, Thermodynamics and Mechanism. ChemistrySelect, 4(43), 12708–12718. https://doi.org/10.1002/slct.2019b02657

  • Ali, I., Kon’kova, T., Kasianov, V., Rysev, A., Panglisch, S., Mbianda, X. Y., et al. (2021b). Preparation and characterization of nano-structured modified montmorillonite for dioxidine antibacterial drug removal in water. Journal of Molecular Liquids, 331, 115770. https://doi.org/10.1016/j.molliq.2021b.115770

  • Alter, B. (2012). Environmental Consulting Fundamentals. Investigation and Remediation. CRC Press. https://doi.org/10.1201/b12159

  • Alvarez-Ayuso, E. (2003). Purification of metal electroplating waste waters using zeolites. Water Research, 37(20), 4855–4862. https://doi.org/10.1016/j.watres.2003.08.009

  • Amin, M. T., Alazba, A. A., & Manzoor, U. (2014). A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Advances in Materials Science and Engineering, 2014, 1–24. https://doi.org/10.1155/2014/825910

  • Anastopoulos, I., Anagnostopoulos, V. A., Bhatnagar, A., Mitropoulos, A. C., & Kyzas, G. Z. (2017). A review for chromium removal by carbon nanotubes. Chemistry and Ecology, 33(6), 572–588. https://doi.org/10.1080/02757540.2017.1328503

  • Aniyikaiye, T., Oluseyi, T., Odiyo, J., & Edokpayi, J. (2019). Physico-Chemical Analysis of Wastewater Discharge from Selected Paint Industries in Lagos, Nigeria. International Journal of Environmental Research and Public Health, 16(7), 1235. https://doi.org/10.3390/ijerph16071235

  • Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2016). Remediation of wastewater using various nano-materials. Arabian Journal of Chemistry, 12(8), 4897–4919. https://doi.org/10.1016/j.arabjc.2016.10.004

  • Ariffin, N., Abdullah, M. M. A. B., Mohd Arif Zainol, M. R. R., Murshed, M. F., Hariz-Zain Faris, M. A., & Bayuaji, R. (2017). Review on adsorption of heavy metal in wastewater by using geopolymer. MATEC Web of Conferences, 97, 01023. https://doi.org/10.1051/matecconf/20179701023

  • Asghari, S., Johari, S. A., Lee, J. H., Kim, Y. S., Jeon, Y. B., Choi, H. J., et al. (2012). Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. Journal of Nanobiotechnology, 10(1), 14. https://doi.org/10.1186/1477-3155-10-14

  • Ashby, M. F., J. Ferreira, P., & L. Schodek, D. (2009). Nanomaterials, nanotechnologies and design: an introduction for engineers and architects. Butterworth-Heinemann. https://doi.org/10.5860/CHOICE.47-2023

  • Asztemborska, M., Jakubiak, M., Stęborowski, R., Chajduk, E., & Bystrzejewska-Piotrowska, G. (2018). Titanium dioxide nanoparticle circulation in an aquatic ecosystem. Water, Air, and Soil Pollution, 229(6), 1–9https://doi.org/10.1007/s11270-018-3852-8

  • Aulenta, F., Canosa, A., Reale, P., Rossetti, S., Panero, S., & Majone, M. (2009). Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnology and Bioengineering, 103(1), 85–91. https://doi.org/10.1002/bit.22234

  • Azhdari, R., Mousavi, S. M., Hashemi, S. A., Bahrani, S., & Ramakrishna, S. (2019). Decorated graphene with aluminum fumarate metal organic framework as a superior non-toxic agent for efficient removal of Congo Red dye from wastewater. Journal of Environmental Chemical Engineering, 7(6),103437. https://doi.org/10.1016/j.jece.2019.103437

  • Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32(11), 180. https://doi.org/10.1007/s11274-016-2137-x

    Article  CAS  Google Scholar 

  • Badila, I. N., Rusu, T., & Gabor, T. (2018). Study on the impact of sewer pipes on the environment. ECOTERRA - Journal of Environmental Research and Protection, 11(4), 1–10.

    Google Scholar 

  • Baltes, L., Patachia, S., Tierean, M., Ekincioglu, O., & Ozkul, M. H. (2018). Photoactive polymer-cement composites for tannins removal from wastewaters. Journal of Environmental Chemical Engineering, 6(4),4357–4367. https://doi.org/10.1016/j.jece.2018.06.039

  • Banerjee, P., Sau, S., Das, P., & Mukhopadhyay, A. (2014). Green synthesis of silver-nanocomposite for treatment of textile dye. Nanoscience and Technology, 1(2), 1–6.

    Google Scholar 

  • Baranik, A., Gagor, A., Queralt, I., Marguí, E., Sitko, R., & Zawisza, B. (2018). Ceria nanoparticles deposited on graphene nanosheets for adsorption of copper(II) and lead(II) ions and of anionic species of arsenic and selenium. Microchimica Acta, 185(5), 264. https://doi.org/10.1007/s00604-018-2806-6

    Article  CAS  Google Scholar 

  • Basheer, A. A. (2018a). Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century. Chirality, 30(4), 402–406. https://doi.org/10.1002/chir.22808

  • Basheer, A. A. (2018b). New generation nano-adsorbents for the removal of emerging contaminants in water. Journal of Molecular Liquids, 261, 583–593. https://doi.org/10.1016/j.molliq.2018.04.021

  • Basheer, A. A., & Ali, I. (2018). Stereoselective uptake and degradation of (±)- o, p -DDD pesticide stereomers in water-sediment system. Chirality, 30(9), 1088–1095. https://doi.org/10.1002/chir.22989

  • Behari, J., Tiwari, D. K., & Sen, P. (2008). Application of nanoparticles in waste water treatment. World Applied Sciences Journal, 3(3), 417–433.

  • Benítez, F. J., Acero, J. L., Real, F. J., & García, C. (2009). Nanofiltration processes applied to the removal of phenyl-ureas in natural waters. Journal of Hazardous Materials, 165(1–3), 714–723. https://doi.org/10.1016/j.jhazmat.2008.10.047

    Article  CAS  Google Scholar 

  • Bethi, B., Sonawane, S. H., Bhanvase, B. A., & Gumfekar, S. P. (2016). Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chemical Engineering and Processing: Process Intensification, 109, 178–189. https://doi.org/10.1016/j.cep.2016.08.016

    Article  CAS  Google Scholar 

  • Bethi, B., & Sonawane, S. H. (2018). Nanomaterials and its application for clean environment. In Nanomaterials for Green Energy (pp. 385–409). Elsevier. https://doi.org/10.1016/B978-0-12-813731-4.00012-6

  • Bhatt, P., Pandey, S. C., Joshi, S., Chaudhary, P., Pathak, V. M., Huang, Y., et al. (2022). Nanobioremediation: A sustainable approach for the removal of toxic pollutants from the environment. Journal of Hazardous Materials, 427(December 2021), 128033. https://doi.org/10.1016/j.jhazmat.2021.128033

  • Bhattacharya, S., Saha, I., Mukhopadhyay, A., Chattopadhyay, D., & Chand, U. (2013). Role of nanotechnology in water treatment and purification: Potential applications and implications. International Journal of Chemical Science and Technology, 3(3), 59–64.

    Google Scholar 

  • Boatemaa, M. A., Ragunathan, R., & Naskar, J. (2019). Nanogold for in vitro inhibition of Salmonella strains. Journal of Nanomaterials, 2019, 1–11. https://doi.org/10.1155/2019/9268128

    Article  CAS  Google Scholar 

  • Boelee, E., Geerling, G., van der Zaan, B., Blauw, A., & Vethaak, A. D. (2019). Water and health: From environmental pressures to integrated responses. Acta Tropica, 193, 217–226. https://doi.org/10.1016/j.actatropica.2019.03.011

    Article  Google Scholar 

  • Brame, J., Li, Q., & Alvarez, P. J. J. (2011). Nanotechnology-enabled water treatment and reuse: Emerging opportunities and challenges for developing countries. Trends in Food Science & Technology, 22(11), 618–624. https://doi.org/10.1016/j.tifs.2011.01.004

    Article  CAS  Google Scholar 

  • Buduru, P., Reddy, B. C. S. R., & Naidu, N. V. S. (2017). Functionalization of silver nanoparticles with glutamine and histidine for simple and selective detection of Hg2+ ion in water samples. Sensors and Actuators, b: Chemical,244, 972–982https://doi.org/10.1016/j.snb.2017.01.041

  • Buffet, P. E., Zalouk-Vergnoux, A., Châtel, A., Berthet, B., Métais, I., Perrein-Ettajani, H., et al. (2014). A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species: The ragworm Hediste diversicolor and the bivalve mollusc Scrobicularia plana. Science of the Total Environment, 470 (2014), 1151–1159. https://doi.org/10.1016/j.scitotenv.2013.10.114

  • Burks, T., Uheida, A., Saleemi, M., Eita, M., Toprak, M. S., & Muhammed, M. (2013). Removal of Chromium(VI) Using Surface Modified Superparamagnetic Iron Oxide Nanoparticles. Separation Science and Technology (Philadelphia), 48(8), 1243–1251. https://doi.org/10.1080/01496395.2012.734364

  • Cai, J., Xia, X., Chen, H., Wang, T., & Zhang, H. (2018). Decomposition of fertilizer use intensity and its environmental risk in China’s grain production process. Sustainability, 10(2), 498. https://doi.org/10.3390/su10020498

  • Cassou, E., Jaffee, S. M., & Ru, J. (2018).The Challenge of Agricultural Pollution: Evidence from China, Vietnam, and the Philippines. The World Bank. https://doi.org/10.1596/978-1-4648-1201-9

  • Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I.-C., & Kim, K. S. (2010). Water dispersible magnetite reduced graphene oxide composites for arsenic removal. ACS Nano, 4(7), 3979–3986. https://doi.org/10.1021/nn1008897

  • Chatterjee, A. N., Cannon, D. M., Gatimu, E. N., Sweedler, J. V., Aluru, N. R., & Bohn, P. W. (2005). Modeling and Simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects. Journal of Nanoparticle Research, 7(4–5), 507–516. https://doi.org/10.1007/s11051-005-5133-x

    Article  CAS  Google Scholar 

  • Chen, G.-C., Shan, X.-Q., Wang, Y.-S., Wen, B., Pei, Z.-G., Xie, Y.-N., et al. (2009). Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II). Water Research, 43(9), 2409–2418. https://doi.org/10.1016/j.watres.2009.03.002

    Article  CAS  Google Scholar 

  • Chen, M., Qin, X., & Zeng, G. (2017). Biodegradation of Carbon Nanotubes, Graphene, and Their Derivatives. Trends in Biotechnology, 35(9), 836–846https://doi.org/10.1016/j.tibtech.2016.12.001

  • Chen, W., Chen, S., Liang, T., Zhang, Q., Fan, Z., Yin, H., et al. (2018). High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nature Nanotechnology, 13(4), 345–350. https://doi.org/10.1038/s41565-018-0067-5

  • Chitose, N., Ueta, S., Seino, S., & Yamamoto, T. A. (2003). Radiolysis of aqueous phenol solutions with nanoparticles. 1. Phenol degradation and TOC removal in solutions containing TiO2 induced by UV, γ-ray and electron beams. Chemosphere, 50(8), 1007–1013. https://doi.org/10.1016/S0045-6535(02)00642-2.

  • Choi, J., Chan, S., Yip, G., Joo, H., Yang, H., & Ko, F. K. (2016). Palladium-Zeolite nanofiber as an effective recyclable catalyst membrane for water treatment. Water Research, 101, 46–54. https://doi.org/10.1016/j.watres.2016.05.051

  • Choudhary, B. C., Paul, D., Gupta, T., Tetgure, S. R., Garole, V. J., Borse, A. U., & Garole, D. J. (2017). Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles. Journal of Environmental Sciences (China), 55, 236–246. https://doi.org/10.1016/j.jes.2016.05.044

  • Cimbaluk, G. V., Ramsdorf, W. A., Perussolo, M. C., Santos, H. K. F., Da Silva De Assis, H. C., Schnitzler, M. C., et al. (2018). Evaluation of multiwalled carbon nanotubes toxicity in two fish species. Ecotoxicology and Environmental Safety, 150, 215–223.https://doi.org/10.1016/j.ecoenv.2017.12.034

  • Coetser, S. E., Heath, R. G. M., & Ndombe, N. (2007). Diffuse pollution associated with the mining sectors in South Africa: A first-order assessment. Water Science and Technology, 55(3), 9–16. https://doi.org/10.2166/wst.2007.066

  • Cong, V. H. (2018). Desalination of brackish water for agriculture: Challenges and future perspectives for seawater intrusion areas in Vietnam. Journal of Water Supply: Research and Technology - Aqua, 67(3), 211–217. https://doi.org/10.2166/aqua.2018.094

    Article  Google Scholar 

  • Cyprian En, O. (2011). Effects of water and sanitation crisis on infants and under-five children in Africa. Journal of Environmental Science and Technology, 4(2), 103–111. https://doi.org/10.3923/jest.2011.103.111

    Article  Google Scholar 

  • Da Rocha, A. M., Kist, L. W., Almeida, E. A., Silva, D. G. H., Bonan, C. D., Altenhofen, S., et al. (2019). Neurotoxicity in zebrafish exposed to carbon nanotubes: Effects on neurotransmitters levels and antioxidant system. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 218, 30–35. https://doi.org/10.1016/j.cbpc.2018.12.008

  • Das, R., Ali, M. E., Hamid, S. B. A., Ramakrishna, S., & Chowdhury, Z. Z. (2014). Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 336, 97–109. https://doi.org/10.1016/j.desal.2013.12.026

  • Das, A. J., Kumar, R., & Goutam, S. P. (2016). Sunlight Irradiation Induced Synthesis of Silver Nanoparticles using Glycolipid Bio-surfactant and Exploring the Antibacterial Activity. Journal of Bioengineering & Biomedical Science,6(05). https://doi.org/10.4172/2155-9538.1000208

  • Davar, F., Majedi, A., & Mirzaei, A. (2015). Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes. Journal of the American Ceramic Society, 98(6), 1739–1746. https://doi.org/10.1111/jace.13467

  • De Lorenzo, V. (2011). Systems biology approaches to bioremediation. In Comprehensive Biotechnology (pp. 15–24). Elsevier. https://doi.org/10.1016/B978-0-08-088504-9.00460-8

  • De Marchi, L., Pretti, C., Gabriel, B., Marques, P. A. A. P., Freitas, R., & Neto, V. (2018). An overview of graphene materials: Properties, applications and toxicity on aquatic environments. Science of the Total Environment, 631–632, 1440–1456. https://doi.org/10.1016/j.scitotenv.2018.03.132

  • De Voogt, P. (2016). Reviews of Environmental Contamination and Toxicology. Springer International Publishing, 236. https://doi.org/10.1007/978-3-319-20013-2

  • Deshpande, B. D., Agrawal, P. S., Yenkie, M. K. N., & Dhoble, S. J. (2020). Prospective of nanotechnology in degradation of waste water: A new challenges. Nano-Structures and Nano-Objects, 22, 100442. https://doi.org/10.1016/j.nanoso.2020.100442

  • Diallo, M. S., Christie, S., Swaminathan, P., Balogh, L., Shi, X., Um, W., et al. (2004). Dendritic chelating agents. 1. Cu(II) binding to Ethylene diamine core poly(amidoamine) dendrimers in aqueous Solutions. Langmuir, 20(7), 2640–2651. https://doi.org/10.1021/la036108k

  • Directive, E. C. (2008). Waste framework directive 2008/98/EC. European Commission.

    Google Scholar 

  • Dong, B., Belkhair, S., Zaarour, M., Fisher, L., Verran, J., Tosheva, L., et al. (2014). Silver confined within zeolite EMT nanoparticles: Preparation and antibacterial properties. Nanoscale, 6(18), 10859–10864. https://doi.org/10.1039/C4NR03169E

  • Dong, S., Feng, J., Fan, M., Pi, Y., Hu, L., Han, X., et al. (2015). Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review. RSC Advances, 5(19), 14610–14630. https://doi.org/10.1039/C4RA13734E

  • Drinan, J., & Spellman, F. (2012). Water regulations, parameters, and characteristics. In Water and Wastewater Treatment, CRC Press, (pp. 49–70). https://doi.org/10.1201/b12354-5

  • Du, J., Feng, Z., Han, L., Ma, X., & Li, Q. (2020). Understanding the water permeability and Cu2+ removal capability of two-dimensional nanoporous boron nitride. Computational Materials Science, 184, 109923. https://doi.org/10.1016/j.commatsci.2020.109923

  • Durán, N., Marcato, P. D., De Souza, G. I. H., Alves, O. L., & Esposito, E. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of Biomedical Nanotechnology, 3(2), 203–208. https://doi.org/10.1166/jbn.2007.022

  • Egea-Corbacho, A., Gutiérrez Ruiz, S., & Quiroga Alonso, J. M. (2019). Removal of emerging contaminants from wastewater using nanofiltration for its subsequent reuse: Full–scale pilot plant. Journal of Cleaner Production, 214, 514–S523. https://doi.org/10.1016/j.jclepro.2018.12.297

  • Elbana, T., & Yousry, M. (2018). Nanomaterials Reactivity and Applications for Wastewater Cleanup. In Nanotechnology, Food Security and Water Treatment. Environmental Chemistry for a Sustainable World (pp. 255–275). Springer,Cham. https://doi.org/10.1007/978-3-319-70166-0_8

  • El-Kassas, H. Y., Aly-Eldeen, M. A., & Gharib, S. M. (2016). Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: Characterization and application for lead bioremediation. Acta Oceanologica Sinica, 35(8), 89–98. https://doi.org/10.1007/s13131-016-0880-3

  • El-Sheekh, M. M., Farghl, A. A., Galal, H. R., & Bayoumi, H. S. (2016). Bioremediation of different types of polluted water using microalgae. Rendiconti Lincei, 27(2), 401–410. https://doi.org/10.1007/s12210-015-0495-1

    Article  Google Scholar 

  • Eroglu, E., Agarwal, V., Bradshaw, M., Chen, X., Smith, S. M., Raston, C. L., & Swaminathan Iyer, K. (2012). Nitrate removal from liquid effluents using microalgae immobilized on chitosan nanofiber mats. Green Chemistry, 14(10), 2682. https://doi.org/10.1039/c2gc35970g

  • Ersahin, M. E., Ozgun, H., Dereli, R. K., Ozturk, I., Roest, K., & van Lier, J. B. (2012). A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresource Technology, 122, 196–206. https://doi.org/10.1016/j.biortech.2012.03.086

    Article  CAS  Google Scholar 

  • Esmaeili, H., Mousavi, S. M., Hashemi, S. A., Chiang, W. H., & Ahmadpour Abnavi, S. (2021). Activated carbon@MgO@Fe3O4 as an efficient adsorbent for As (III) removal. Carbon Letters, 31(5), 851–862. https://doi.org/10.1007/s42823-020-00186-2.

    Article  Google Scholar 

  • Fane, A. G., Tang, C. Y., & Wang, R. (2011). Membrane technology for water: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. In Treatise on Water Science (pp. 301–335). Elsevier Science Pub. Co. https://doi.org/10.1016/B978-0-444-53199-5.00091-9

  • Farghali, A. A., Abdel Tawab, H. A., Abdel Moaty, S. A., & Khaled, R. (2017). Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. Journal of Nanostructure in Chemistry, 7(2), 101–111. https://doi.org/10.1007/s40097-017-0227-4

    Article  CAS  Google Scholar 

  • Fawell, J., & Nieuwenhuijsen, M. J. (2003). Contaminants in drinking water. British Medical Bulletin, 68(1), 199–208. https://doi.org/10.1093/bmb/ldg027

  • Fendrich, M., Quaranta, A., Orlandi, M., Bettonte, M., & Miotello, A. (2018). Solar concentration for wastewaters remediation: A review of materials and technologies. Applied Sciences, 9(1), 118. https://doi.org/10.3390/app9010118

  • Feng, C., Khulbe, K. C., Matsuura, T., Tabe, S., & Ismail, A. F. (2013). Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Separation and Purification Technology, 102, 118–135. https://doi.org/10.1016/j.seppur.2012.09.037

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  • Fu, P. P., Xia, Q., Hwang, H.-M., Ray, P. C., & Yu, H. (2014). Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis, 22(1), 64–75. https://doi.org/10.1016/j.jfda.2014.01.005

    Article  CAS  Google Scholar 

  • Gad, Y. H. (2008). Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment. Radiation Physics and Chemistry, 77(9), 1101–1107. https://doi.org/10.1016/j.radphyschem.2008.05.002

  • Gambhir, R. S., Kapoor, V., Nirola, A., Sohi, R., & Bansal, V. (2012). Water pollution: Impact of pollutants and new promising techniques in purification process. Journal of Human Ecology, 37(2), 103–109. https://doi.org/10.1080/09709274.2012.11906453

    Article  Google Scholar 

  • Gautam, S., Kaithwas, G., Bharagava, R. N., & Saxena, G. (2017). Environmental Pollutants and Their Bioremediation Approaches. (R. N. Bharagava, Ed.)Environmental Pollutants and their Bioremediation Approaches. Boca Raton : Taylor & Francis, CRC Press. https://doi.org/10.1201/b22171

  • Gautam, R. K., & Tiwari, I. (2020). Humic acid functionalized magnetic nanomaterials for remediation of dye wastewater under ultrasonication: Application in real water samples, recycling and reuse of nanosorbents. Chemosphere, 245, 125553. https://doi.org/10.1016/j.chemosphere.2019.125553

  • Gehrke, I., Keuter, V., & Groß, F. (2012). Development of nanocomposite membranes with photocatalytic surfaces. Journal of Nanoscience and Nanotechnology, 12(12), 9163–9168. https://doi.org/10.1166/jnn.2012.6740

    Article  CAS  Google Scholar 

  • Gehrke, I., Geiser, A., & Somborn-Schulz, A. (2015). Innovations in nanotechnology for water treatment. Nanotechnology, Science and Applications, 8, 1–17. https://doi.org/10.2147/NSA.S43773

    Article  Google Scholar 

  • Gharfalkar, M., Court, R., Campbell, C., Ali, Z., & Hillier, G. (2015). Analysis of waste hierarchy in the European waste directive 2008/98/EC. Waste Management, 39, 305–313. https://doi.org/10.1016/j.wasman.2015.02.007

    Article  Google Scholar 

  • Ghasemzadeh, G., Momenpour, M., Omidi, F., Hosseini, M. R., Ahani, M., & Barzegari, A. (2014). Applications of nanomaterials in water treatment and environmental remediation. Frontiers of Environmental Science & Engineering, 8(4), 471–482. https://doi.org/10.1007/s11783-014-0654-0

  • Ghosh, S., & Das, A. P. (2015). Modified titanium oxide (TiO2) nanocomposites and its array of applications: A review. Toxicological & Environmental Chemistry, 97(5), 491–514. https://doi.org/10.1080/02772248.2015.1052204

  • Goutam, S. P., Saxena, G., Singh, V., Yadav, A. K., Bharagava, R. N., & Thapa, K. B. (2018). Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chemical Engineering Journal, 336, 386–396. https://doi.org/10.1016/j.cej.2017.12.029

  • Guerra, F. D., Campbell, M. L., Attia, M. F., Whitehead, D. C., & Alexis, F. (2018). Capture of Aldehyde VOCs using a series of Amine-functionalized cellulose nanocrystals. ChemistrySelect, 3(20), 5495–5501. https://doi.org/10.1002/slct.201703149

    Article  CAS  Google Scholar 

  • Gunawan, F. M., Mangindaan, D., Khoiruddin, K., & Wenten, I. G. (2019). Nanofiltration membrane cross-linked by m -phenylenediamine for dye removal from textile wastewater. Polymers for Advanced Technologies, 30(2), 360–367. https://doi.org/10.1002/pat.4473

  • Gutierrez, A. M., Dziubla, T. D., & Hilt, J. Z. (2017). Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Reviews on Environmental Health, 32(1-2), 111–117. https://doi.org/10.1515/reveh-2016-0063

  • Hamadeen, H. M., Elkhatib, E. A., Badawy, M. E. I., & Abdelgaleil, S. A. M. (2021). Green low cost nanomaterial produced from Moringa oleifera seed waste for enhanced removal of chlorpyrifos from wastewater: Mechanism and sorption studies. Journal of Environmental Chemical Engineering, 9(4), 105376. https://doi.org/10.1016/j.jece.2021.105376

  • Hargreaves, A. J., Vale, P., Whelan, J., Alibardi, L., Constantino, C., Dotro, G., et al. (2018). Coagulation–flocculation process with metal salts, synthetic polymers and biopolymers for the removal of trace metals (Cu, Pb, Ni, Zn) from municipal wastewater. Clean Technologies and Environmental Policy, 20(2), 393–402. https://doi.org/10.1007/s10098-017-1481-3

  • Hashemi, S. A., Mousavi, S. M., Bahrani, S., Ramakrishna, S., & Hashemi, S. H. (2020). Picomolar-level detection of mercury within non-biological/biological aqueous media using ultra-sensitive polyaniline-Fe3O4-silver diethyldithiocarbamate nanostructure. Analytical and Bioanalytical Chemistry, 412(22), 5353–5365. https://doi.org/10.1007/s00216-020-02750-1

  • Hebeish, A. A., Abdelhady, M. M., & Youssef, A. M. (2013). TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile. Carbohydrate Polymers, 91(2), 549–559. https://doi.org/10.1016/j.carbpol.2012.08.068

  • Hegazi, H. A. (2013). Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC Journal, 9(3), 276–282. https://doi.org/10.1016/j.hbrcj.2013.08.004

  • Higazy, A., Hashem, M., ElShafei, A., Shaker, N., & Hady, M. A. (2010). Development of antimicrobial jute packaging using chitosan and chitosan–metal complex. Carbohydrate Polymers, 79(4), 867–874. https://doi.org/10.1016/j.carbpol.2009.10.011

    Article  CAS  Google Scholar 

  • Hladik, M. L., Roberts, A. L., & Bouwer, E. J. (2005). Removal of neutral chloroacetamide herbicide degradates during simulated unit processes for drinking water treatment. Water Research, 39(20), 5033–5044. https://doi.org/10.1016/j.watres.2005.10.008

    Article  CAS  Google Scholar 

  • Hlongwane, G. N., Sekoai, P. T., Meyyappan, M., & Moothi, K. (2019). Simultaneous removal of pollutants from water using nanoparticles: A shift from single pollutant control to multiple pollutant control. Science of the Total Environment, 656, 808–833. https://doi.org/10.1016/j.scitotenv.2018.11.257

  • Hong, H. J., Ban, G., Kim, H. S., Jeong, H. S., & Park, M. S. (2021). Fabrication of cylindrical 3D cellulose nanofibril(CNF) aerogel for continuous removal of copper(Cu2+) from wastewater. Chemosphere, 278, 130288. https://doi.org/10.1016/j.chemosphere.2021.130288

  • Hoslett, J., Massara, T. M., Malamis, S., Ahmad, D., van den Boogaert, I., Katsou, E., et al. (2018). Surface water filtration using granular media and membranes: A review. Science of the Total Environment, 639, 1268–1282. https://doi.org/10.1016/j.scitotenv.2018.05.247

  • HOSSEINI, S. A., MASHAYKHI, S., & BABAEI, S. (2016). Graphene oxide/zinc oxide nanocomposite: A superior adsorbent for removal of methylene blue - statistical analysis by response surface methodology (RSM). South African Journal of Chemistry, 69. https://doi.org/10.17159/0379-4350/2016/v69a13

  • Hou, X., Mu, L., Chen, F., & Hu, X. (2018). Emerging investigator series: Design of hydrogel nanocomposites for the detection and removal of pollutants: From nanosheets, network structures, and biocompatibility to machine-learning-assisted design. Environmental Science: Nano, 5(10), 2216–2240. https://doi.org/10.1039/C8EN00552D

  • Hu, X., Ouyang, S., Mu, L., An, J., & Zhou, Q. (2015). Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles. Environmental Science and Technology, 49(18), 10825–10833 https://doi.org/10.1021/acs.est.5b02102

  • Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology, 1–16. https://doi.org/10.1155/2018/2568038

  • Ion, A. C., Alpatova, A., Ion, I., & Culetu, A. (2011). Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets. Materials Science and Engineering: B, 176(7), 588–595. https://doi.org/10.1016/j.mseb.2011.01.018

  • IPIECA-IOGP. (2015). Impacts of oil spills on marine ecology, good practice guidelines for incident management and emergency response personnel. Basinghall Street.

    Google Scholar 

  • Jain, P., & Pradeep, T. (2005). Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnology and Bioengineering, 90(1), 59–63. https://doi.org/10.1002/bit.20368

    Article  CAS  Google Scholar 

  • Jernelöv, A. (2010). The threats from Oil spills: Now, then, and in the future. Ambio, 39(5–6), 353–366. https://doi.org/10.1007/s13280-010-0085-5

    Article  Google Scholar 

  • Joshi, S., Kataria, N., Garg, V. K., & Kadirvelu, K. (2020). Pb2+ and Cd2+ recovery from water using residual tea waste and SiO2@TW nanocomposites. Chemosphere, 257, 127277. https://doi.org/10.1016/j.chemosphere.2020.127277

  • Jung, J.-Y., Chung, Y.-C., Shin, H.-S., & Son, D.-H. (2004). Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process. Water Research, 38(2), 347–354. https://doi.org/10.1016/j.watres.2003.09.025

    Article  CAS  Google Scholar 

  • Jurado, A., Vàzquez-Suñé, E., Carrera, J., López de Alda, M., Pujades, E., & Barceló, D. (2012). Emerging organic contaminants in groundwater in Spain: A review of sources, recent occurrence and fate in a European context. Science of the Total Environment, 440, 82–94. https://doi.org/10.1016/j.scitotenv.2012.08.029

  • K, K. R., Sardar, U. R., Bhargavi, E., Devi, I., Bhunia, B., & Tiwari, O. N. (2018). Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: A critical review. Carbohydrate Polymers, 199, 353–364. https://doi.org/10.1016/j.carbpol.2018.07.037

    Article  CAS  Google Scholar 

  • Kabbashi, N. A., Atieh, M. A., Al-Mamun, A., Mirghami, M. E., Alam, M., & Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. Journal of Environmental Sciences, 21(4), 539–544. https://doi.org/10.1016/S1001-0742(08)62305-0

    Article  CAS  Google Scholar 

  • Kabra, K., Chaudhary, R., & Sawhney, R. L. (2004). Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review. Industrial & Engineering Chemistry Research, 43(24), 7683–7696. https://doi.org/10.1021/ie0498551

  • Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environmental Health Perspectives, 117(12), 1813–1831. https://doi.org/10.1289/ehp.0900793

  • Keerthana, S., Yuvakkumar, R., Ravi, G., Hong, S. I., Al-Sehemi, A. G., & Velauthapillai, D. (2022). Fabrication of Ce doped TiO2 for efficient organic pollutants removal from wastewater. Chemosphere, 293(January), 133540. https://doi.org/10.1016/j.chemosphere.2022.133540

  • Kemper, K. E. (2004). Groundwater?from development to management. Hydrogeology Journal, 12(1), 3–5. https://doi.org/10.1007/s10040-003-0305-1

    Article  Google Scholar 

  • Kenry, & Lim, C. T. (2017). Nanofiber technology: current status and emerging developments. Progress in Polymer Science, 70, 1–17. https://doi.org/10.1016/J.PROGPOLYMSCI.2017.03.002

  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

  • Khatri, N., & Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1), 23–39. https://doi.org/10.1080/21553769.2014.933716

    Article  CAS  Google Scholar 

  • Khatun, R. (2017). Water Pollution: Causes, consequences, prevention method and role of WBPHED with special reference from Murshidabad district. International Journal of Scientific and Research Publications, 7(8), 269–277. http://www.ijsrp.org/research-paper-0817.php?rp=P686703. Accessed Aug 2017

  • Khin, M. M., Nair, A. S., Babu, V. J., Murugan, R., & Ramakrishna, S. (2012). A review on nanomaterials for environmental remediation. Energy & Environmental Science, 5(8), 8075. https://doi.org/10.1039/c2ee21818f

  • Khosravi-Katuli, K., Prato, E., Lofrano, G., Guida, M., Vale, G., & Libralato, G. (2017). Effects of nanoparticles in species of aquaculture interest. Environmental Science and Pollution Research, 24(21), 17326–17346. https://doi.org/10.1007/s11356-017-9360-3

  • Kim, E.-S., & Deng, B. (2011). Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications. Journal of Membrane Science, 375(1–2), 46–54. https://doi.org/10.1016/j.memsci.2011.01.041

    Article  CAS  Google Scholar 

  • Kim, D., Jung, S., Sohn, J., Kim, H., & Lee, S. (2009). Biocide application for controlling biofouling of SWRO membranes - An overview. Desalination, 238(1–3), 43–52. https://doi.org/10.1016/j.desal.2008.01.034

    Article  CAS  Google Scholar 

  • Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., et al. (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9), 1825. https://doi.org/10.1897/08-090.1

    Article  CAS  Google Scholar 

  • Kuljanin-Jakovljević, J., Radoičić, M., Radetić, T., Konstantinović, Z., Šaponjić, Z. V., & Nedeljković, J. (2009). Presence of Room Temperature Ferromagnetism in Co2+ Doped TiO2 Nanoparticles Synthesized through Shape Transformation. The Journal of Physical Chemistry C, 113(50), 21029–21033. https://doi.org/10.1021/jp905042k

  • Kunduru, K. R., Nazarkovsky, M., Farah, S., Pawar, R. P., Basu, A., & Domb, A. J. (2017). Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment. In Water Purification (pp. 33–74). Elsevier. https://doi.org/10.1016/B978-0-12-804300-4.00002-2

  • Kuo, C.-Y., & Lin, H.-Y. (2009). Adsorption of aqueous cadmium (II) onto modified multi-walled carbon nanotubes following microwave/chemical treatment. Desalination, 249(2), 792–796. https://doi.org/10.1016/j.desal.2008.11.023

    Article  CAS  Google Scholar 

  • Kureel, M. K., Geed, S. R., Rai, B. N., & Singh, R. S. (2018). Novel investigation of the performance of continuous packed bed bioreactor (CPBBR) by isolated Bacillus sp. M4 and proteomic study. Bioresource Technology, 266, 335–342. https://doi.org/10.1016/j.biortech.2018.06.064

    Article  CAS  Google Scholar 

  • Kurwadkar, S. (2017). Groundwater pollution and vulnerability assessment. Water Environment Research, 89(10), 1561–1577. https://doi.org/10.2175/106143017X15023776270584

  • Labbez, C., Fievet, P., Szymczyk, A., Vidonne, A., Foissy, A., & Pagetti, J. (2002). Analysis of the salt retention of a titania membrane using the “DSPM” model: Effect of pH, salt concentration and nature. Journal of Membrane Science, 208(1–2), 315–329. https://doi.org/10.1016/S0376-7388(02)00310-1

    Article  CAS  Google Scholar 

  • Lahsen, M., Sanchez-Rodriguez, R., Lankao, P. R., Dube, P., Leemans, R., Gaffney, O., et al. (2010). Impacts, adaptation and vulnerability to global environmental change: Challenges and pathways for an action-oriented research agenda for middle-income and low-income countries. Current Opinion in Environmental Sustainability, 2(5–6), 364–374. https://doi.org/10.1016/j.cosust.2010.10.009

    Article  Google Scholar 

  • Lampis, S., Santi, C., Ciurli, A., Andreolli, M., & Vallini, G. (2015). Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: A soil bioremediation perspective. Frontiers in Plant Science, 6, 80. https://doi.org/10.3389/fpls.2015.00080

  • Lashen, Z. M., Shams, M. S., El-Sheshtawy, H. S., Slaný, M., Antoniadis, V., Yang, X., et al. (2022). Remediation of Cd and Cu contaminated water and soil using novel nanomaterials derived from sugar beet processing- and clay brick factory-solid wastes. Journal of Hazardous Materials, 428, 128205. https://doi.org/10.1016/j.jhazmat.2021.128205

  • Lee, C., & Baik, S. (2010). Vertically-aligned carbon nano-tube membrane filters with superhydrophobicity and superoleophilicity. Carbon, 48(8), 2192–2197. https://doi.org/10.1016/j.carbon.2010.02.020

    Article  CAS  Google Scholar 

  • Leech, D. P., & Scott, J. T. (2017). Nanotechnology documentary standards. Journal of Technology Transfer, 42(1), 78–97. https://doi.org/10.1007/s10961-016-9472-9

  • Li, D., & Xia, Y. (2004). Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials, 16(14), 1151–1170. https://doi.org/10.1002/adma.200400719

  • Li, J., Lu, N., Quan, X., Chen, S., & Zhao, H. (2008). Facile method for fabricating Boron-Ddoped TiO2 nanotube array with enhanced photoelectrocatalytic properties. Industrial & Engineering Chemistry Research, 47(11), 3804–3808. https://doi.org/10.1021/ie0712028

  • Li, Y., Liu, F., Xia, B., Du, Q., Zhang, P., Wang, D., et al. (2010). Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. Journal of Hazardous Materials, 177(1–3), 876–880. https://doi.org/10.1016/j.jhazmat.2009.12.114

    Article  CAS  Google Scholar 

  • Li, S., Yue, X., Jing, Y., Bai, S., & Dai, Z. (2011). Fabrication of zonal thiol-functionalized silica nanofibers for removal of heavy metal ions from wastewater. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 380(1–3), 229–233. https://doi.org/10.1016/j.colsurfa.2011.02.027

    Article  CAS  Google Scholar 

  • Li, S., Wang, W., Liang, F., & Zhang, W. X. (2017a). Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of Hazardous Materials, 322, 163–171. https://doi.org/10.1016/j.jhazmat.2016.01.032

  • Li, Y., Zhao, H., & Yang, M. (2017b). TiO2 nanoparticles supported on PMMA nanofibers for photocatalytic degradation of methyl orange. Journal of Colloid and Interface Science, 508, 500–507. https://doi.org/10.1016/j.jcis.2017.08.076

  • Lim, K. T., Shukor, M. Y., & Wasoh, H. (2014). Physical, chemical, and biological methods for the removal of Arsenic ompounds. BioMed Research International, 2014, 1–9. https://doi.org/10.1155/2014/503784

    Article  CAS  Google Scholar 

  • Liu, Y., Liu, J., Lin, Y., Zhang, Y., & Wei, Y. (2009). Simple fabrication and photocatalytic activity of S-doped TiO2 under low power LED visible light irradiation. Ceramics International, 35(8), 3061–3065. https://doi.org/10.1016/j.ceramint.2009.04.021

  • Liu, W., Zeng, Z., Chen, A., Zeng, G., Xiao, R., Guo, Z., et al. (2018). Toxicity effects of silver nanoparticles on the freshwater bivalve Corbicula fluminea. Journal of Environmental Chemical Engineering, 6(4), 4236–4244. https://doi.org/10.1016/j.jece.2018.06.032

    Article  CAS  Google Scholar 

  • Lodo, M. J., & Diaz, L. J. (2019). Reusability of Fe-modified MMT nanomembranes and the retrieval of the adsorbed mercury metal. In IOP Conference Series: Earth and Environmental Science, 345(1), 012011. https://doi.org/10.1088/1755-1315/345/1/012011

  • Loeb, S. K., Alvarez, P. J. J., Brame, J. A., Cates, E. L., Choi, W., Crittenden, J., et al. (2019). The technology horizon for photocatalytic water treatment: Sunrise or sunset? Environmental Science & Technology, 53(6), 2937–2947. https://doi.org/10.1021/acs.est.8b05041

  • Lopez-Pacheco, I. Y., Silva-Nunez, A., Salinas-Salazar, C., Arevalo-Gallegos, A., Lizarazo-Holguin, L. A., Barceló, D., et al. (2019). Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. Science of the Total Environment, 690, 1068–1088. https://doi.org/10.1016/j.scitotenv.2019.07.052

    Article  CAS  Google Scholar 

  • Lu, F., & Astruc, D. (2018). Nanomaterials for removal of toxic elements from water. Coordination Chemistry Reviews, 356, 147–164. https://doi.org/10.1016/j.ccr.2017.11.003

    Article  CAS  Google Scholar 

  • Lu, H., Wang, J., Stoller, M., Wang, T., Bao, Y., & Hao, H. (2016). An Overview of Nanomaterials for Water and Wastewater Treatment. Advances in Materials Science and Engineering, 2016, 1–10. https://doi.org/10.1155/2016/4964828

    Article  CAS  Google Scholar 

  • Luan, H., Teychene, B., & Huang, H. (2019). Efficient removal of As(III) by Cu nanoparticles intercalated in carbon nanotube membranes for drinking water treatment. Chemical Engineering Journal, 355, 341–350. https://doi.org/10.1016/j.cej.2018.08.104

  • Lunge, S., Singh, S., & Sinha, A. (2014). Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. Journal of Magnetism and Magnetic Materials, 356, 21-31. https://doi.org/10.1016/j.jmmm.2013.12.008

    Article  Google Scholar 

  • Mahimairaja, S., Bolan, N. S., Adriano, D. C., & Robinson, B. (2005). Arsenic Contamination and its Risk Management in Complex Environmental Settings. In Advances in Agronomy (pp. 1–82). https://doi.org/10.1016/S0065-2113(05)86001-8

  • Malik, D. S., Jain, C. K., & Yadav, A. K. (2017). Removal of heavy metals from emerging cellulosic low-cost adsorbents: A review. Applied Water Science,  7(5), 2113–2136. https://doi.org/10.1007/s13201-016-0401-8

  • Malinauskaite, J., Jouhara, H., Czajczyńska, D., Stanchev, P., Katsou, E., Rostkowski, P., et al. (2017). Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy, 141, 2013–2044. https://doi.org/10.1016/j.energy.2017.11.128

    Article  Google Scholar 

  • March, G., Nguyen, T., & Piro, B. (2015). Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors, 5(2), 241–275. https://doi.org/10.3390/bios5020241

    Article  Google Scholar 

  • Marjani, A., Nakhjiri, A. T., Adimi, M., Jirandehi, H. F., & Shirazian, S. (2020). Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-58472-y

  • Martínez-Cabanas, M., López-García, M., Barriada, J. L., Herrero, R., & Sastre de Vicente, M. E. (2016). Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal. Chemical Engineering Journal, 301, 83–91. https://doi.org/10.1016/j.cej.2016.04.149

  • Martínez-Paz, P., Negri, V., Esteban-Arranz, A., Martínez-Guitarte, J. L., Ballesteros, P., & Morales, M. (2019). Effects at molecular level of multi-walled carbon nanotubes (MWCNT) in Chironomus riparius (DIPTERA) aquatic larvae. Aquatic Toxicology, 209, 42–48. https://doi.org/10.1016/j.aquatox.2019.01.017

  • Martinson, C. A., & Reddy, K. J. (2009). Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. Journal of Colloid and Interface Science, 336(2), 406–411. https://doi.org/10.1016/j.jcis.2009.04.075

    Article  CAS  Google Scholar 

  • Matouq, M., Dabbas, D., & Abbassi, B. (2018). Solar photocatalytic detoxification using immobilised titanium oxide: A cost-effective tertiary treatment method for decentralised wastewater effluents. International Journal of Hydrology Science and Technology, 8(2), 175–189. https://doi.org/10.1504/ijhst.2018.090898

  • Maulin, P. S. (2017). Waste water pollution. Journal of Applied Biotechnology & Bioengineering, 3(1), 262–263. https://doi.org/10.15406/jabb.2017.03.00054

  • Mayo, J. T., Yavuz, C., Yean, S., Cong, L., Shiple, H., Yu, W., et al. (2007). The effect of nanocrystalline magnetite size on arsenic removal. Science and Technology of Advanced Materials, 8(1–2), 71–75. https://doi.org/10.1016/j.stam.2006.10.005

    Article  CAS  Google Scholar 

  • Melo, A., Pinto, E., Aguiar, A., Mansilha, C., Pinho, O., & Ferreira, I. M. P. L. V. O. (2012). Impact of intensive horticulture practices on groundwater content of nitrates, sodium, potassium, and pesticides. Environmental Monitoring and Assessment, 184(7), 4539–4551. https://doi.org/10.1007/s10661-011-2283-4

  • Migahed, F., Abdelrazak, A., & Fawzy, G. (2017). Batch and continuous removal of heavy metals from industrial effluents using microbial consortia. International Journal of Environmental Science and Technology, 14(6), 1169–1180. https://doi.org/10.1007/s13762-016-1229-3

    Article  CAS  Google Scholar 

  • Mishra, R. K., Sabu, A., & Tiwari, S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 22(8), 949–978. https://doi.org/10.1016/j.jscs.2018.02.005

  • Mishra, A., & Clark, J. H. (2013). Green Materials for Sustainable Water Remediation and Treatment. (A. Mishra & J. H. Clark, Eds.)Green Materials for Sustainable Water Remediation and Treatment. Cambridge: Royal Society of Chemistry. https://doi.org/10.1039/9781849735001

  • Mocan, T., Matea, C. T., Pop, T., Mosteanu, O., Buzoianu, A. D., Puia, C., et al. (2017). Development of nanoparticle-based optical sensors for pathogenic bacterial detection. Journal of Nanobiotechnology, 15(1), 25. https://doi.org/10.1186/s12951-017-0260-y

    Article  CAS  Google Scholar 

  • Mohammad, N., & Atassi, Y. (2021). Enhancement of removal efficiency of heavy metal ions by polyaniline deposition on electrospun polyacrylonitrile membranes. Water Science and Engineering, 14(2), 129–138. https://doi.org/10.1016/j.wse.2021.06.004

    Article  Google Scholar 

  • Mohammad, A. W., Teow, Y. H., Ang, W. L., Chung, Y. T., Oatley-Radcliffe, D. L., & Hilal, N. (2015). Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356, 226–254. https://doi.org/10.1016/j.desal.2014.10.043

    Article  CAS  Google Scholar 

  • Moharrami, P., & Motamedi, E. (2020). Application of cellulose nanocrystals prepared from agricultural wastes for synthesis of starch-based hydrogel nanocomposites: Efficient and selective nanoadsorbent for removal of cationic dyes from water. Bioresource Technology, 313, 123661. https://doi.org/10.1016/j.biortech.2020.123661

  • Mongillo, J. (2008). Nanotechnology 101(science 101) (Vol. 45). USA: Greenwood Press Westport. https://doi.org/10.5860/CHOICE.45-4336

  • Mousavi, S. M., Hashemi, S. A., Arjmand, O., Amani, A. M., Babapoor, A., Fateh, M. A., et al. (2018a). Erythrosine adsorption from aqueous solution via decorated graphene oxide with magnetic iron oxide nano particles: Kinetic and equilibrium studies. Acta Chimica Slovenica, 65(4), 882–894. https://doi.org/10.17344/acsi.2018.4537

    Article  CAS  Google Scholar 

  • Mousavi, S. M., Hashemi, S. A., Amani, A. M., Esmaeili, H., Ghasemi, Y., Babapoor, A., et al. (2018b). Pb(II) removal from synthetic wastewater using Kombucha Scoby and graphene oxide/Fe3O4. Physical Chemistry Research, 6(4), 759–771. https://doi.org/10.22036/pcr.2018a.133392.1490

  • Mousavi, Seyyed Mojtaba, Hashemi, S. A., Esmaeili, H., Amani, A. M., & Mojoudi, F. (2018c). Synthesis of Fe3O4 nanoparticles modified by oak shell for treatment of wastewater containing Ni(II). Acta Chimica Slovenica, 65(3), 750–756. https://doi.org/10.17344/acsi.2018c.4536

  • Muthukumar, H., & Matheswaran, M. (2015). Amaranthus spinosus Leaf Extract Mediated FeO Nanoparticles: Physicochemical Traits, Photocatalytic and Antioxidant Activity. ACS Sustainable Chemistry and Engineering, 3(12), 3149–3156. https://doi.org/10.1021/acssuschemeng.5b00722

  • Nagar, A., & Pradeep, T. (2020). Clean Water through Nanotechnology: Needs, Gaps, and Fulfillment. ACS Nano, 14(6), 6420–6435. https://doi.org/10.1021/acsnano.9b01730

  • Nam, Y., Lim, J. H., Ko, K. C., & Lee, J. Y. (2019). Photocatalytic activity of TiO2 nanoparticles: A theoretical aspect. Journal of Materials Chemistry A, 7(23), 13833–13859. https://doi.org/10.1039/C9TA03385H

  • Nasir, S., Hussein, M., Zainal, Z., & Yusof, N. (2018). Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications. Materials, 11(2), 295. https://doi.org/10.3390/ma11020295

  • Nasr, R. A., & Ali, E. A. (2022). Polyethersulfone/gelatin nano-membranes for the Rhodamine B dye removal and textile industry effluents treatment under cost effective condition. Journal of Environmental Chemical Engineering, 10(2), 107250. https://doi.org/10.1016/j.jece.2022.107250

    Article  CAS  Google Scholar 

  • Nasrollahzadeh, M., Sajjadi, M., Iravani, S., & Varma, R. S. (2021). Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. Journal of Hazardous Materials, 401, 123401. https://doi.org/10.1016/j.jhazmat.2020.123401

  • Nayl, A. A., Abd-Elhamid, A. I., El-Shanshory, A. A., Soliman, H. M. A., Kenawy, E.-R., & Aly, H. F. (2019). Development of sponge/graphene oxide composite as eco-friendly filter to remove methylene blue from aqueous media. Applied Surface Science, 496, 143676. https://doi.org/10.1016/j.apsusc.2019.143676

    Article  CAS  Google Scholar 

  • Nemcic-Jurec, J., & Jazbec, A. (2017). Point source pollution and variability of nitrate concentrations in water from shallow aquifers. Applied Water Science, 7(3), 1337–1348. https://doi.org/10.1007/s13201-015-0369-9

    Article  CAS  Google Scholar 

  • Ntengwe, F. W. (2005). An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies—the case of Nkana Mine in Zambia. Physics and Chemistry of the Earth, Parts a/b/c, 30(11–16), 726–734. https://doi.org/10.1016/j.pce.2005.08.014

    Article  Google Scholar 

  • Nzila, A., Razzak, S., & Zhu, J. (2016). Bioaugmentation: An emerging strategy of industrial wastewater treatment for reuse and discharge. International Journal of Environmental Research and Public Health, 13(9), 846. https://doi.org/10.3390/ijerph13090846

    Article  CAS  Google Scholar 

  • Obare, S. O., & Meyer, G. J. (2004). Nanostructured Materials for Environmental Remediation of Organic Contaminants in Water. Journal of Environmental Science and Health, Part A, 39(10), 2549–2582. https://doi.org/10.1081/ESE-200027010

    Article  Google Scholar 

  • Obi, F., Ugwuishiwu, B., & Nwakaire, J. (2016). Agriculture waste concept, generation, utilization and management. Nigerian Journal of Technology, 35(4), 957. https://doi.org/10.4314/njt.v35i4.34

  • Olyaie, E., Banejad, H., Afkhami, A., Rahmani, A., & Khodaveisi, J. (2012). Development of a cost-effective technique to remove the arsenic contamination from aqueous solutions by calcium peroxide nanoparticles. Separation and Purification Technology, 95, 10–15. https://doi.org/10.1016/j.seppur.2012.04.021

    Article  CAS  Google Scholar 

  • Ouyang, S., Hu, X., & Zhou, Q. (2015). Envelopment-Internalization Synergistic Effects and Metabolic Mechanisms of Graphene Oxide on Single-Cell Chlorella vulgaris Are Dependent on the Nanomaterial Particle Size. ACS Applied Materials and Interfaces, 7(32), 18104–18112. https://doi.org/10.1021/acsami.5b05328

  • Owa, F. W. (2014). Water pollution: Sources, effects, control and management. International Letters of Natural Sciences, 8, 1–6. https://doi.org/10.18052/www.scipress.com/ILNS.8.1

    Article  Google Scholar 

  • Ozkan, Z. Y., Cakirgoz, M., Kaymak, E. S., & Erdim, E. (2018). Rapid decolorization of textile wastewater by green synthesized iron nanoparticles. Water Science and Technology, 77(2), 511–517. https://doi.org/10.2166/wst.2017.559

  • Pandey, P. K., Kass, P. H., Soupir, M. L., Biswas, S., & Singh, V. P. (2014). Contamination of water resources by pathogenic bacteria. AMB Express, 4(1), 51. https://doi.org/10.1186/s13568-014-0051-x

    Article  Google Scholar 

  • Pang, W., Gao, N., & Xia, S. (2010). Removal of DDT in drinking water using nanofiltration process. Desalination, 250(2), 553–556. https://doi.org/10.1016/j.desal.2009.09.022

    Article  CAS  Google Scholar 

  • Paradise, J., Wolf, S. M., Kuzma, J., Kuzhabekova, A., Tisdale, A. W., Kokkoli, E., & Ramachandran, G. (2009). Developing U.S. oversight strategies for nanobiotechnology: Learning from past oversight experiences. The Journal of Law, Medicine & Ethics, 37(4), 688–705. https://doi.org/10.1111/j.1748-720X.2009.00441.x

  • Patanjali, P., Singh, R., Kumar, A., & Chaudhary, P. (2019). Nanotechnology for water treatment: A green approach. In Green Synthesis, Characterization and Applications of Nanoparticles, 485–512. https://doi.org/10.1016/b978-0-08-102579-6.00021-6

  • Paulino, A. T., Guilherme, M. R., Reis, A. V., Campese, G. M., Muniz, E. C., & Nozaki, J. (2006). Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. Journal of Colloid and Interface Science, 301(1), 55–62. https://doi.org/10.1016/j.jcis.2006.04.036

    Article  CAS  Google Scholar 

  • Peng, H.-B., Zhang, D., Li, H., Wang, C., & Pan, B. (2014). Organic contaminants and carbon nanoparticles: Sorption mechanisms and impact parameters. J Zhejiang Univ-Sci A (appl Phys & Eng), 15(8), 606–617. https://doi.org/10.1631/jzus.A1400112

  • Petersen, E. J., Zhang, L., Mattison, N. T., O’Carroll, D. M., Whelton, A. J., Uddin, N., et al. (2011). Potential release pathways, environmental fate and ecological risks of carbon nanotubes. Environmental Science & Technology, 45(23), 9837–9856. https://doi.org/10.1021/es201579y

    Article  CAS  Google Scholar 

  • Petrik, L., Missengue, R., Fatoba, O., Tuffin, M., & Sachs, J. (2012). Silver / Zeolite Nano Composite-Based Clay Filters. Water Research Commission (WRC), ISSN: 9781431203062. http://www.ircwash.org/resources/silver-zeolite-nano-composite-based-clay-filters-water-disinfection

  • Pi, Y., Li, X., Xia, Q., Wu, J., Li, Y., Xiao, J., & Li, Z. (2018). Adsorptive and photocatalytic removal of Persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs). Chemical Engineering Journal, 337, 351–371. https://doi.org/10.1016/j.cej.2017.12.092

  • Pillay, K., Cukrowska, E. M., & Coville, N. J. (2009). Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. Journal of Hazardous Materials, 166(2–3), 1067–1075. https://doi.org/10.1016/j.jhazmat.2008.12.011

    Article  CAS  Google Scholar 

  • Pradeep, T., & Anshup. (2009). Detection and extraction of pesticides from drinking Water using nanotechnologies. In Nanotechnology Applications for Clean Water (pp. 191–212). Elsevier. https://doi.org/10.1016/B978-0-8155-1578-4.50024-X

  • Pretti, C., Oliva, M., Pietro, R. D., Monni, G., Cevasco, G., Chiellini, F., et al. (2014). Ecotoxicity of pristine graphene to marine organisms. Ecotoxicology and Environmental Safety, 101, 138–145. https://doi.org/10.1016/j.ecoenv.2013.11.008

  • Qiao, J., Cui, Z., Sun, Y., Hu, Q., & Guan, X. (2014). Simultaneous removal of arsenate and fluoride from water by Al-Fe (hydr)oxides. Frontiers of Environmental Science & Engineering, 8(2), 169–179. https://doi.org/10.1007/s11783-013-0533-0

    Article  CAS  Google Scholar 

  • Qu, X., Alvarez, P. J. J., & Li, Q. (2013a). Applications of nanotechnology in water and wastewater treatment. Water Research, 47(12), 3931–3946. https://doi.org/10.1016/j.watres.2012.09.058

    Article  CAS  Google Scholar 

  • Qu, X., Brame, J., Li, Q., & Alvarez, P. J. J. (2013b). Nanotechnology for a safe and sustainable water supply: Enabling integrated water treatment and reuse. Accounts of Chemical Research, 46(3), 834–843. https://doi.org/10.1021/ar300029v

  • Raghunath, A., & Perumal, E. (2017). Metal oxide nanoparticles as antimicrobial agents: A promise for the future. International Journal of Antimicrobial Agents, 49(2), 137–152. https://doi.org/10.1016/j.ijantimicag.2016.11.011

    Article  CAS  Google Scholar 

  • Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  Google Scholar 

  • Roberts, J. R., & Karr, C. J. (2012). Pesticide Exposure in Children. Pediatrics, 130(6), 1765–1788. https://doi.org/10.1542/peds.2012-2758

    Article  Google Scholar 

  • Rout, T. K., Verma, R., Dennis, R. V., & Banerjee, S. (2015). Study the removal of fluoride from aqueous medium by using nanocomposites. Journal of Encapsulation and Adsorption Sciences, 05(01), 38–52. https://doi.org/10.4236/jeas.2015.51004

    Article  Google Scholar 

  • Rozman, D., Hrkal, Z., Vana, M., Vymazal, J., & Boukalova, Z. (2017). Occurrence of Pharmaceuticals in Wastewater and Their Interaction with Shallow Aquifers: A Case Study of Horní Berkovice, Czech Republic. Water, 9(3), 218. https://doi.org/10.3390/w9030218

    Article  CAS  Google Scholar 

  • Saadoun, I. M. K. (2015). Impact of Oil Spills on Marine Life. In Emerging Pollutants in the Environment - Current and Further Implications (pp. 76–103). InTech. https://doi.org/10.5772/60455

  • Sachan, D., Ramesh, A., & Das, G. (2021). Green synthesis of silica nanoparticles from leaf biomass and its application to remove heavy metals from synthetic wastewater: A comparative analysis. Environmental Nanotechnology, Monitoring and Management,16,100467https://doi.org/10.1016/j.enmm.2021.100467

  • Saha, S., & Sinha, A. (2018). Review on treatment of acid mine drainage with waste materials: A novel approach. Global NEST Journal, 20(3), 512–528. https://doi.org/10.30955/gnj.002610

    Article  CAS  Google Scholar 

  • Salgot, M., & Folch, M. (2018). Wastewater treatment and water reuse. Current Opinion in Environmental Science & Health, 2, 64–74. https://doi.org/10.1016/j.coesh.2018.03.005

    Article  Google Scholar 

  • Samer, M. (2015). Biological and chemical wastewater treatment processes. In Wastewater Treatment Engineering (p. 51). InTech. https://doi.org/10.5772/61250

  • Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S. K., Grace, A. N., & Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: A review. Chemical Engineering Journal, 306, 1116–1137. https://doi.org/10.1016/j.cej.2016.08.053

    Article  CAS  Google Scholar 

  • Semerád, J., Čvančarová, M., Filip, J., Kašlík, J., Zlotá, J., Soukupová, J., & Cajthaml, T. (2018). Novel assay for the toxicity evaluation of nanoscale zero-valent iron and derived nanomaterials based on lipid peroxidation in bacterial species. Chemosphere,  213, 568–577. https://doi.org/10.1016/j.chemosphere.2018.09.029

  • Shahbazi, A., Younesi, H., & Badiei, A. (2011). Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chemical Engineering Journal, 168(2), 505–518. https://doi.org/10.1016/j.cej.2010.11.053

    Article  CAS  Google Scholar 

  • Shan, S. J., Zhao, Y., Tang, H., & Cui, F. Y. (2017). A Mini-review of carbonaceous nanomaterials for removal of contaminants from wastewater. IOP Conference Series: Earth and Environmental Science, 68, 012003. https://doi.org/10.1088/1755-1315/68/1/012003

    Article  Google Scholar 

  • Shao, G. (2008). Electronic structures of manganese-doped rutile TiO2 from first principles. The Journal of Physical Chemistry C, 112(47), 18677–18685. https://doi.org/10.1021/jp8043797

    Article  CAS  Google Scholar 

  • Sharma, V., & Sharma, A. (2013). Nanotechnology : An emerging future trend in wastewater treatment with its innovative products and processes. International Journal of Enhanced Research in Science Technology & Engineering, 2(1), 1–8. www.erpublications.com

  • Sharma, S., & Bhattacharya, A. (2017). Drinking water contamination and treatment techniques. Applied Water Science, 7(3), 1043–1067. https://doi.org/10.1007/s13201-016-0455-7

    Article  CAS  Google Scholar 

  • Sharma, N., & Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: A review. International Journal of Agriculture, Environment and Biotechnology, 10(6), 675. https://doi.org/10.5958/2230-732X.2017.00083.3

    Article  Google Scholar 

  • Shilina, A. S., Bakhtin, V. D., Burukhin, S. B., & Askhadullin, S. R. (2017). Sorption of cations of heavy metals and radionuclides from the aqueous media by new synthetic zeolite-like sorbent. Nuclear Energy and Technology, 3(4), 249–254. https://doi.org/10.1016/j.nucet.2017.10.001

    Article  Google Scholar 

  • Shittu, K. O., & Ihebunna, O. (2017). Purification of simulated waste water using green synthesized silver nanoparticles of Piliostigma thonningii aqueous leave extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(4), 045003https://doi.org/10.1088/2043-6254/aa8536

  • Shukla, S. P., Kumar, S., Gita, S., Bharti, V. S., Kumar, K., & Rathi Bhuvaneswari, G. (2018). Recent technologies for wastewater Treatment: A brief review. In Wastewater Management Through Aquaculture.Springer Singapore, (pp. 225–234). https://doi.org/10.1007/978-981-10-7248-2_11

  • Sinha, T., & Ahmaruzzaman, M. (2015). Biogenic synthesis of Cu nanoparticles and its degradation behavior for methyl red. Materials Letters, 159, 168–171. https://doi.org/10.1016/j.matlet.2015.06.099

  • Skipperud, L., & Salbu, B. (2018). Radionuclides: Sources, speciation, transfer and impacts in the aquatic and terrestrial tnvironment. In Encyclopedia of the Anthropocene (pp. 195–206). Elsevier. https://doi.org/10.1016/B978-0-12-809665-9.09897-9

  • Solomon, K., Sibley, P., Linton, B., Mattu, G., Keen, P., Hall, K., & Ritter, L. (2002). Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. Journal of Toxicology and Environmental Health. Part A, 11(65), 1–142. 11809004.

    Google Scholar 

  • Song, H., & Carraway, E. R. (2005). Reduction of chlorinated ethanes by nanosized zero-valent iron: Kinetics, pathways and effects of reaction conditions. Environmental Science & Technology, 39(16), 6237–6245. https://doi.org/10.1021/es048262e

  • Song, B., Xu, P., Zeng, G., Gong, J., Wang, X., Yan, J., et al. (2018). Modeling the transport of sodium dodecyl benzene sulfonate in riverine sediment in the presence of multi-walled carbon nanotubes. Water Research, 129, 20–28https://doi.org/10.1016/j.watres.2017.11.003

  • Srivastava, R. (2019). Emerging trends of nanotechnology in environment and sustainability: A review based approach. Australasian Journal of Environmental Management, 26(2), 191–192. https://doi.org/10.1080/14486563.2019.1584490

    Article  Google Scholar 

  • Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R., & Ajayan, P. M. (2004). Carbon nanotube filters. Nature Materials,3(9), 610–614. https://doi.org/10.1038/nmat1192

  • Srivastava, S., Agrawal, S. B., & Mondal, M. K. (2017). Synthesis, characterization and application of Lagerstroemia speciosa embedded magnetic nanoparticle for Cr(VI) adsorption from aqueous solution. Journal of Environmental Sciences (China), 55, 283–293. https://doi.org/10.1016/j.jes.2016.08.012

  • Stewart, F. (2013). Review: Recycling Reconsidered: The Present Failure and Future Promise of Environmental Action in the United States. Environment and Planning c: Government and Policy, 31(1), 186–187. https://doi.org/10.1068/c461wr4

  • Street, A., Sustich, R., Duncan, J., & Savage, N. (2014). Nanotechnology applications for clean water. Nanotechnology Applications for Clean Water (2nd ed.). Elsevier. https://doi.org/10.1016/C2012-0-00675-8

  • Su, Y., Xiao, Y., Fu, X., Deng, Y., & Zhang, F. (2009). Photocatalytic properties and electronic structures of iodine-doped TiO2 nanotubes. Materials Research Bulletin, 44(12), 2169–2173. https://doi.org/10.1016/j.materresbull.2009.08.017

  • Subramonian, W., Wu, T. Y., & Chai, S.-P. (2017). Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2 O3-TiO2: Treatment efficiency and characterizations of reused photocatalyst. Journal of Environmental Management, 187, 298–310. https://doi.org/10.1016/j.jenvman.2016.10.024

  • Sun, C., Qu, R., Ji, C., Wang, C., Sun, Y., Yue, Z., & Cheng, G. (2006). Preparation and adsorption properties of crosslinked polystyrene-supported low-generation diethanolamine-typed dendrimer for metal ions. Talanta, 70(1), 14–19. https://doi.org/10.1016/j.talanta.2006.01.011

    Article  CAS  Google Scholar 

  • Sun, T. Y., Bornhöft, N. A., Hungerbühler, K., & Nowack, B. (2016). Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials. Environmental Science and Technology, 50(9),4701–4711. https://doi.org/10.1021/acs.est.5b05828

  • Suresh Kumar, K., Dahms, H.-U., Won, E.-J., Lee, J.-S., & Shin, K.-H. (2015). Microalgae – A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352. https://doi.org/10.1016/j.ecoenv.2014.12.019

    Article  CAS  Google Scholar 

  • Suwanchawalit, C., Wongnawa, S., Sriprang, P., & Meanha, P. (2012). Enhancement of the photocatalytic performance of Ag-modified TiO2 photocatalyst under visible light. Ceramics International, 38(6), 5201–5207.https://doi.org/10.1016/j.ceramint.2012.03.027

  • Tabasi, E., Vafa, N., Firoozabadi, B., Salmankhani, A., Nouranian, S., Habibzadeh, S., et al. (2022). Ion Rejection Performance of Functionalized Porous Graphene Nanomembranes for Wastewater Purification: A Molecular Dynamics Simulation Study. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4022151

  • Tabei, Y., Fukui, H., Nishioka, A., Hagiwara, Y., Sato, K., Yoneda, T., et al. (2019). Effect of iron overload from multi walled carbon nanotubes on neutrophil-like differentiated HL-60 cells. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-38598-4

  • Tao, W., Chen, G., Zeng, G., Yan, M., Chen, A., Guo, Z., et al. (2016). Influence of silver nanoparticles on heavy metals of pore water in contaminated river sediments. Chemosphere,162, 117–124. https://doi.org/10.1016/j.chemosphere.2016.07.043

  • Tayel, A., Ramadan, A., & El Seoud, O. (2018). Titanium dioxide/Graphene and Titanium dioxide/Graphene oxide nanocomposites: Synthesis, characterization and photocatalytic applications for water decontamination. Catalysts, 8(11), 491. https://doi.org/10.3390/catal8110491

    Article  CAS  Google Scholar 

  • Thakkar, M., Mitra, S., & Wei, L. (2016). Effect on Growth, Photosynthesis, and Oxidative Stress of Single Walled Carbon Nanotubes Exposure to Marine Alga Dunaliella tertiolecta. Journal of Nanomaterials, 2016, 1–9. https://doi.org/10.1155/2016/8380491

    Article  CAS  Google Scholar 

  • Thanh, D. N., Novák, P., Vejpravova, J., Vu, H. N., Lederer, J., & Munshi, T. (2018). Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods. Journal of Magnetism and Magnetic Materials, 456, 451–460. https://doi.org/10.1016/j.jmmm.2017.11.064

    Article  CAS  Google Scholar 

  • Thines, R. K., Mubarak, N. M., Nizamuddin, S., Sahu, J. N., Abdullah, E. C., & Ganesan, P. (2017). Application potential of carbon nanomaterials in water and wastewater treatment: A review. Journal of the Taiwan Institute of Chemical Engineers, 72, 116–133. https://doi.org/10.1016/j.jtice.2017.01.018

    Article  CAS  Google Scholar 

  • Tijing, L. D., Yao, M., Ren, J., Park, C.-H., Kim, C. S., & Shon, H. K. (2019). Nanofibers for Water and Wastewater Treatment: Recent Advances and Developments. In Bui XT, C. C, & V. S (Eds.), Water and Wastewater Treatment Technologies, Energy, Environment and Sustainability (pp. 431–468). Springer Nature,Singapore. https://doi.org/10.1007/978-981-13-3259-3_20

  • Tiwari, J. N., Tiwari, R. N., & Kim, K. S. (2012). Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science,57(4), 724–803. https://doi.org/10.1016/j.pmatsci.2011.08.003

  • Tlili, I., & Alkanhal, T. A. (2019). Nanotechnology for water purification: Electrospun nanofibrous membrane in water and wastewater treatment. Journal of Water Reuse and Desalination, 9(3), 232–248. https://doi.org/10.2166/wrd.2019.057

  • Tuccillo, M. E., Boyd, G. R., Sandvig, A., Shatkin, J. A., & Dionysiou, D. D. (2012). Nanotechnology what are the Challenges and Emerging Benefits for Water Treatment? Opflow, 38(1), 10–13. https://doi.org/10.5991/OPF.2012.38.0001

    Article  Google Scholar 

  • Turco, A., Monteduro, A., Mazzotta, E., Maruccio, G., & Malitesta, C. (2018). An innovative porous nanocomposite material for the removal of phenolic compounds from aqueous Solutions. Nanomaterials, 8(5), 334. https://doi.org/10.3390/nano8050334

    Article  CAS  Google Scholar 

  • Uddin, Z., Ahmad, F., Ullan, T., Nawab, Y., Ahmad, S., Azam, F., et al. (2021). Recent trends in water purification using electrospun nanofibrous membranes. International Journal of Environmental Science and Technology,1–28. https://doi.org/10.1007/s13762-021-03603-9

  • Ursino, C., Castro-Muñoz, R., Drioli, E., Gzara, L., Albeirutty, M. H., & Figoli, A. (2018). Progress of nanocomposite membranes for water treatment. Membranes, 8(2),18. https://doi.org/10.3390/membranes8020018

  • Van der Bruggen, B., Everaert, K., Wilms, D., & Vandecasteele, C. (2001). Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: Rejection properties and economic evaluation. Journal of Membrane Science, 193(2), 239–248. https://doi.org/10.1016/S0376-7388(01)00517-8

    Article  Google Scholar 

  • Van Der Bruggen, Bart, Lejon, L., & Vandecasteele, C. (2003). Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes. Environmental Science and Technology, 37(17), 3733–3738. https://doi.org/10.1021/es0201754

  • Van Der Bruggen, B., & Vandecasteele, C. (2003). Removal of pollutants from surface water and groundwater by nanofiltration: Overview of possible applications in the drinking water industry. Environmental Pollution, 122(3), 435–445. https://doi.org/10.1016/S0269-7491(02)00308-1

  • Venkateswarlu, S., Lee, D., & Yoon, M. (2016). Bioinspired 2D-Carbon Flakes and Fe3O4 Nanoparticles Composite for Arsenite Removal. ACS Applied Materials and Interfaces, 8(36), 23876–23885. https://doi.org/10.1021/acsami.6b03583

  • Vidal, F., Sedan, D., D’Agostino, D., Cavalieri, M., Mullen, E., Parot Varela, M., et al. (2017). Recreational exposure during Algal Bloom in Carrasco beach, Uruguay: A liver failure case report. Toxins, 9(9), 267. https://doi.org/10.3390/toxins9090267

    Article  CAS  Google Scholar 

  • Vidmar, J., Oprckal, P., Milacic, R., Mladenovic, A., & Scancar, J. (2018). Investigation of the behaviour of zero-valent iron nanoparticles and their interactions with Cd2+ in wastewater by single particle ICP-MS. Science of the Total Environment, 634, 1259–1268. https://doi.org/10.1016/j.scitotenv.2018.04.081

  • Vinothkannan, M., Karthikeyan, C., Gnana kumar, G., Kim, A. R., & Yoo, D. J. (2015). One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 256–264. https://doi.org/10.1016/j.saa.2014.09.031

  • Vu, T. H. T., Nguyen, T. T. T., Nguyen, P. H. T., Do, M. H., Au, H. T., Nguyen, T. B., et al. (2012). Fabrication of photocatalytic composite of multi-walled carbon nanotubes/TiO2 and its application for desulfurization of diesel. Materials Research Bulletin, 47(2), 308–314. https://doi.org/10.1016/j.materresbull.2011.11.016

  • Vuong Hoan, N. T., Anh Thu, N. T., Duc, H. V., Cuong, N. D., Quang Khieu, D., & Vo, V. (2016). Fe3O4 /Reduced graphene oxide nanocomposite: Synthesis and its application for toxic metal ion removal. Journal of Chemistry, 2016, 1–10. https://doi.org/10.1155/2016/2418172

  • Wang, Q., & Yang, Z. (2016). Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution, 218, 358–365. https://doi.org/10.1016/j.envpol.2016.07.011

    Article  CAS  Google Scholar 

  • Wang, M.-C., Lin, H.-J., Wang, C.-H., & Wu, H.-C. (2012a). Effects of annealing temperature on the photocatalytic activity of N-doped TiO2 thin films. Ceramics International, 38(1), 195–200. https://doi.org/10.1016/j.ceramint.2011.05.160

  • Wang, X., Guo, Y., Yang, L., Han, M., Zhao, J., & Cheng, X. (2012b). Nanomaterials as Sorbents to Remove Heavy Metal Ions in Wastewater Treatment. Journal of Environmental & Analytical Toxicology, 02(07), 1–5. https://doi.org/10.4172/2161-0525.1000154

    Article  Google Scholar 

  • Wang, Z. G., Zhou, R., Jiang, D., Song, J. E., Xu, Q., Si, J., et al. (2015). Toxicity of graphene quantum dots in zebrafish embryo. Biomedical and Environmental Sciences28(5), 341–351. https://doi.org/10.3967/bes2015.048

  • Wang, M., Gao, B., & Tang, D. (2016). Review of key factors controlling engineered nanoparticle transport in porous media. Journal of Hazardous Materials, 318, 233–246. https://doi.org/10.1016/j.jhazmat.2016.06.065

    Article  CAS  Google Scholar 

  • Wang, Z., Shen, D., Wu, C., & Gu, S. (2018). State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chemistry, 20(22), 5031–5057. https://doi.org/10.1039/c8gc01748d

  • Wang, Y., Pan, C., Chu, W., Vipin, A., & Sun, L. (2019). Environmental remediation applications of carbon nanotubes and graphene oxide: Adsorption and catalysis. Nanomaterials, 9(3), 439. https://doi.org/10.3390/nano9030439

    Article  CAS  Google Scholar 

  • Wen, Y., Schoups, G., & van de Giesen, N. (2017). Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change. Scientific Reports, 7(1), 43289. https://doi.org/10.1038/srep43289

    Article  CAS  Google Scholar 

  • Werkneh, A., A., & Rene, E. R. (2019). Applications of nanotechnology and biotechnology for sustainable water and wastewater treatment. In Water and wastewater treatment technologies, energy, environment, and sustainability (pp. 405–430). Springer Nature,Singapore. https://doi.org/10.1007/978-981-13-3259-3_19

  • Werkneh, A., A., Rene, E. R., & Lens, P. N. L. (2018). Application of nanomaterials in food, cosmetics and other related process industries. In Nanotoxicology (pp. 63–79). Boca Raton : CRC Press, Taylor & Francis Group, 2018.: CRC Press. https://doi.org/10.1201/b21545-4

  • WHO. (2013). World health statistics 2013. World health organization. Geneva 27, Switzerland. https://www.who.int/gho/publications/world_health_statistics/2013/en/

  • World Health Organization. (2014). Guidelines for drinking-water quality: Fourth edition incorporating the first addendum. In Guidelines for drinking-water quality: Fourth edition incorporating the first Addendum. Microbial fact sheets.

  • Wu, Z., Luo, W., Zhang, H., & Jia, Y. (2020). Strong pyro-catalysis of shape-controllable bismuth oxychloride nanomaterial for wastewater remediation. Applied Surface Science, 513, 145630. https://doi.org/10.1016/j.apsusc.2020.145630

  • Xia, W.-J., Guo, L.-X., Yu, L.-Q., Zhang, Q., Xiong, J.-R., Zhu, X.-Y., et al. (2021). Phosphorus removal from diluted wastewaters using a La/C nanocomposite-doped membrane with adsorption-filtration dual functions. Chemical Engineering Journal, 405, 126924. https://doi.org/10.1016/j.cej.2020.126924

    Article  CAS  Google Scholar 

  • Xie, H., & Ringler, C. (2017). Agricultural nutrient loadings to the freshwater environment: The role of climate change and socioeconomic change. Environmental Research Letters, 12(10), 104008. https://doi.org/10.1088/1748-9326/aa8148

    Article  Google Scholar 

  • Xie, Y., Dong, H., Zeng, G., Tang, L., Jiang, Z., Zhang, C., et al. (2017). The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. Journal of Hazardous Materials. 321, 390–407. https://doi.org/10.1016/j.jhazmat.2016.09.028

  • Xu, X., Chen, C., Wang, A., Fang, N., Yuan, Y., Ren, N., & Lee, D.-J. (2012). Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition. Bioresource Technology, 116, 517–521. https://doi.org/10.1016/j.biortech.2012.03.095

    Article  CAS  Google Scholar 

  • Xu, L., Wang, S.-H., Jin, Y., Liu, N.-P., Wu, X.-Q., & Wang, X. (2021). Preparation of Cobalt tungstate nanomaterials and study on sonocatalytic degradation of Safranin t. Separation and Purification Technology, 276, 119405. https://doi.org/10.1016/j.seppur.2021.119405

    Article  CAS  Google Scholar 

  • Yakout, A. A., & Khan, Z. A. (2021). High performance Zr-MnO2@reduced graphene oxide nanocomposite for efficient and simultaneous remediation of arsenates As(V) from environmental water samples. Journal of Molecular Liquids334, 116427. https://doi.org/10.1016/j.molliq.2021.116427

  • Yamindago, A., Lee, N., Woo, S., Choi, H., Mun, J. Y., Jang, S.-W., et al. (2018). Acute toxic effects of zinc oxide nanoparticles on Hydra magnipapillata. Aquatic Toxicology, 205, 130–139. https://doi.org/10.1016/j.aquatox.2018.10.008

    Article  CAS  Google Scholar 

  • Yang, Q., Tu, S., Wang, G., Liao, X., & Yan, X. (2012). Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris Vittata L. International Journal of Phytoremediation, 14(1), 89–99. https://doi.org/10.1080/15226510903567471

    Article  Google Scholar 

  • Yanyan, L., Kurniawan, T. A., Albadarin, A. B., & Walker, G. (2018). Enhanced removal of acetaminophen from synthetic wastewater using multi-walled carbon nanotubes (MWCNTs) chemically modified with NaOH, HNO3/H2SO4, ozone, and/or chitosan. Journal of Molecular Liquids, 251, 369–377.https://doi.org/10.1016/j.molliq.2017.12.051

  • Yao, G., Wang, K., Wang, M., Shao, X., Qiu, F., & Zhang, T. (2021). Magnetic FeS@Lignin-derived carbon nanocomposites as an efficient adsorbent for multistage collaborative selective recovery of tellurium (IV) from wastewater. Journal of Environmental Chemical Engineering, 9(5), 106135.https://doi.org/10.1016/j.jece.2021.106135

  • Yoon, K., Kim, K., Wang, X., Fang, D., Hsiao, B. S., & Chu, B. (2006). High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer, 47(7), 2434–2441. https://doi.org/10.1016/j.polymer.2006.01.042

    Article  CAS  Google Scholar 

  • Yu, S., & Lu, H. (2018). Relationship between urbanisation and pollutant emissions in transboundary river basins under the strategy of the Belt and Road Initiative. Chemosphere, 203, 11–20. https://doi.org/10.1016/j.chemosphere.2018.03.172

    Article  CAS  Google Scholar 

  • Yu, H., Irie, H., Shimodaira, Y., Hosogi, Y., Kuroda, Y., Miyauchi, M., & Hashimoto, K. (2010). An efficient visible-light-sensitive Fe(III)-grafted TiO2 photocatalyst. The Journal of Physical Chemistry C, 114(39), 16481–16487. https://doi.org/10.1021/jp1071956

  • Yue, D., Qian, X., & Zhao, Y. (2015). Photocatalytic remediation of ionic pollutant. Science Bulletin, 60(21), 1791–1806. https://doi.org/10.1007/s11434-015-0918-5

    Article  CAS  Google Scholar 

  • Zaytseva, O., & Neumann, G. (2016). Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture, 3(1), 17. https://doi.org/10.1186/s40538-016-0070-8

    Article  CAS  Google Scholar 

  • Zekić, E., Vuković, Ž, & Halkijević, I. (2018). Application of nanotechnology in wastewater treatment. Journal of the Croatian Association of Civil Engineers, 70(04), 315–323. https://doi.org/10.14256/JCE.2165.2017

  • Zeng, W., Yang, Y., Li, L., Wang, X., & Peng, Y. (2011). Effect of nitrite from nitritation on biological phosphorus removal in a sequencing batch reactor treating domestic wastewater. Bioresource Technology, 102(12), 6657–6664. https://doi.org/10.1016/j.biortech.2011.03.091

    Article  CAS  Google Scholar 

  • Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5, 323–332. https://doi.org/10.1023/A:1025520116015

  • Zhang, K., Dwivedi, V., Chi, C., & Wu, J. (2010). Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. Journal of Hazardous Materials, 182(1–3), 162–168. https://doi.org/10.1016/j.jhazmat.2010.06.010

    Article  CAS  Google Scholar 

  • Zhang, Y., Wu, B., Xu, H., Liu, H., Wang, M., He, Y., & Pan, B. (2016). Nanomaterials-enabled water and wastewater treatment. NanoImpact, 3–4, 22–39. https://doi.org/10.1016/j.impact.2016.09.004

    Article  Google Scholar 

  • Zhang, Y., Sivakumar, M., Yang, S., Enever, K., & Ramezanianpour, M. (2018). Application of solar energy in water treatment processes: A review. Desalination, 428, 116–145. https://doi.org/10.1016/j.desal.2017.11.020

    Article  CAS  Google Scholar 

  • Zhang, T., Jin, X., Owens, G., & Chen, Z. (2021). Remediation of malachite green in wastewater by ZIF-8@Fe/Ni nanoparticles based on adsorption and reduction. Journal of Colloid and Interface Science, 594, 398–408. https://doi.org/10.1016/j.jcis.2021.03.065

  • Zhang, X. H. (2011). Remediation techniques for soil and groundwater. In Point sources of pollution: local effects and its control - Vol II (pp. 350–364). Encyclopedia of Life Support Systems (EOLSS)

  • Zhao, Y. Y., & Pei, Y. S. (2012). Risk evaluation of groundwater pollution by pesticides in China: A short review. Procedia Environmental Sciences, 13, 1739–1747. https://doi.org/10.1016/j.proenv.2012.01.167

    Article  CAS  Google Scholar 

  • Zhao, W., Chen, I.-W., & Huang, F. (2019a). Toward large-scale water treatment using nanomaterials. Nano Today, 27, 11–27. https://doi.org/10.1016/j.nantod.2019.05.003

    Article  CAS  Google Scholar 

  • Zhao, Y., Qiu, Y., Mai, Z., Ortega, E., Shen, J., Gao, C., & Van der Bruggen, B. (2019b). Symmetrically recombined nanofibers in a high-selectivity membrane for cation separation in high temperature and organic solvent. Journal of Materials Chemistry A, 7(34), 20006–20012. https://doi.org/10.1039/C9TA07416C

  • Zheng, Y., & Wang, A. (2009). Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. Journal of Hazardous Materials, 171(1-3), 671–677. https://doi.org/10.1016/j.jhazmat.2009.06.053

  • Zhong, Y., Mahmud, S., He, Z., Yang, Y., Zhang, Z., Guo, F., et al. (2020). Graphene oxide modified membrane for highly efficient wastewater treatment by dynamic combination of nanofiltration and catalysis. Journal of Hazardous Materials, 397, 122774. https://doi.org/10.1016/j.jhazmat.2020.122774

  • Zhu, X., Hondroulis, E., Liu, W., & Li, C. (2013). Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small, 9(9–10), 1821–1830. https://doi.org/10.1002/smll.201201593

    Article  CAS  Google Scholar 

  • Zhu, B., Zhu, S., Li, J., Hui, X., & Wang, G.-X. (2018). The developmental toxicity, bioaccumulation and distribution of oxidized single walled carbon nanotubes in Artemia salina. Toxicology Research, 7(5), 897–906. https://doi.org/10.1039/C8TX00084K

  • Zielińska, A., Santos, D., Campos, J. R., Santini, A., Severino, P., Shimojo, A. A. M., et al. (2020). Cellular and Molecular Toxicology of Nanoparticles. In Handbook of Materials for Nanomedicine (pp. 489–528). Jenny Stanford Publishing. https://doi.org/10.1201/9781003045151-11

  • Zirehpour, A., Rahimpour, A., Khoshhal, S., Firouzjaei, M. D., & Ghoreyshi, A. A. (2016). The impact of MOF feasibility to improve the desalination performance and antifouling properties of FO membranes. RSC Advances, 6(74), 70174–70185. https://doi.org/10.1039/C6RA14591D

Download references

Acknowledgements

This research work was financially supported by the Impact-Oriented Interdisciplinary Research Grant (No. IIRG018-2019), NANOCAT RU GRANT 2019, Global Collaborative Programme – SATU Joint Research Scheme (No. ST012-2019), and Fundamental Research Grant Scheme FRGS/1/2020/TK0/UM/02/8 (No.FP023-2020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chin Wei Lai or Yew Hoong Wong.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naskar, J., Boatemaa, M.A., Rumjit, N.P. et al. Recent Advances of Nanotechnology in Mitigating Emerging Pollutants in Water and Wastewater: Status, Challenges, and Opportunities. Water Air Soil Pollut 233, 156 (2022). https://doi.org/10.1007/s11270-022-05611-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05611-y

Keywords

Navigation