Skip to main content
Log in

Simplifying Complex Contaminant Mixtures: Selective Ammonia Adsorption and Toxicity Reduction using 3D Printable Polymer–Zeolite

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Evaluations of field sites containing multiple contaminants are commonly impacted by ammonia from anthropogenic and natural sources. Scientifically defensible lines of evidence regarding which contaminants cause toxicity inform management decisions. Methods are needed to isolate ammonia toxicity from other contaminant effects without the treatment confounding results. Treatment columns packed with zeolite remove ammonia, but loose powder cannot be recovered and can physically harm organisms. Solutions such as in situ bioassay cages containing resins or immobilizing zeolite in a non-toxic matrix are needed. This study employed 3D printable polylactic acid (PLA) to immobilize zeolite and enable on-demand customization of high surface area, deployable and retrievable structures. The impact of incorporating zeolite loadings (8–32% w/w) was investigated for relative efficacy. PLA–zeolite structures in ammonia-contaminated water indicated 24 h treatment reduced ammonia below toxic levels. To demonstrate efficacy for complex environmental samples, contaminated sediments were collected and used to prepare sediment–water slurries (elutriates) and analyzed for ammonia, metals and polyaromatic hydrocarbons (PAH) before and after treatment. The 32% zeolite composite reduced 44 mg/L ammonia-N by 74% (24 h) and 83% (48 h). Results indicated successful treatment of sediment elutriates by 3D printed PLA–zeolite in bioassay chambers, based on reduced toxicity to Ceriodaphnia dubia. The study provides evidence that in situ PLA–zeolite treatment did not alter metals or PAH concentrations, which is desirable for ammonia-specific toxicity reduction evaluations of complex samples. This technology is applicable to adsorption of other chemicals by integration of different adsorbent powders into printable polymer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data are available by contacting the corresponding author (mbortner@vt.edu).

References

  • Andersen, H. B., & Buckley, J. A. (1998). Acute toxicity of ammonia to Ceriodaphhnia dubia and a procedure to improove control survival. Bulletin of Environmental Contamination and Toxicology, 61, 116–122.

    Article  CAS  Google Scholar 

  • Arthur, J. W., West, C. W., Allen, K. N., & Hedtke, S. F. (1987). Seasonal toxicity of ammonia to five fish and nine invertebrate species. Bulletin of Environmental Contamination and Toxicology, 38(2).

  • Bokuniewicz, H. J., & Gordon, R. B. (1980). Deposition of dredged sediment at open water sites. Estuarine and Coastal Marine Science, 10(3), 289–303.

    Article  Google Scholar 

  • Bonnet, C., Babut, M., Férard, J.-F., Martel, L., & Garric, J. (2000). Assessing the potential toxicity of resuspended sediment. Environmental Toxicology and Chemistry, 19(5), 1290–1296.

    Article  CAS  Google Scholar 

  • Burgess, R. M., Perron, M. M., Cantwell, M. G., Ho, K. T., Serbst, J. R., & Pelletier, M. C. (2004). Use of Zeolite for Removing Ammonia and Ammonia-Caused Toxicity in Marine Toxicity. Archives of Environmental Contamination and Toxicology, 47(440), 447.

    Google Scholar 

  • Burton, G. A., & Nordstrom, J. F. (2004). An in situ toxicity identification evaluation method part I: Laboratory validation. Environmental Toxicology and Chemistry: An International Journal, 23(12), 2844–2850.

    Article  Google Scholar 

  • Burton, G. A., & Nordstrom, J. F. (2004). An in situ toxicity identification evaluation method part II: Field validation. Environmental Toxicology and Chemistry: An International Journal, 23(12), 2851–2855.

    Article  Google Scholar 

  • Burton, G. A., Cervi, E. C., Meyer, K., Steigmeyer, A., Verhamme, E., Daley, J., Hudson, M., Colvin, M., & Rosen, G. (2020). A novel in situ toxicity identification evaluation (iTIE) system for determining which chemicals drive impairments at contaminated sites. Environmental Toxicology and Chemistry, 39(9), 1746–1754.

    Article  CAS  Google Scholar 

  • Cabrerizo, A., Dachs, J., Moeckel, C., Ojeda, M.-J., Caballero, G., Barceló, D., & Jones, K. C. (2011). Ubiquitous Net Volatilization of Polycyclic Aromatic Hydrocarbons from Soils and Parameters Influencing Their Soil−Air Partitioning. Environmental Science and Technology, 45(11), 4740–4747.

    Article  CAS  Google Scholar 

  • Chen, A., Wu, X., Simonich, S. L. M., Kang, H., & Xie, Z. (2021). Volatilization of polycyclic aromatic hydrocarbons (PAHs) over the North Pacific and adjacent Arctic Ocean: The impact of offshore oil drilling. Environmental Pollution, 268, 115963.

  • Cowgill, U. M., & Milazzo, D. P. (1991). The sensitivity of two cladocerans to water quality variables: Salinity<467 mg NaCl/L and hardness <200 mg CaCO3/L. Archives of Environmental Contamination and Toxicology, 21, 218–223.

    Article  CAS  Google Scholar 

  • Fallon, J. J., McKnight, S. H., & Bortner, M. J. (2019). Highly Loaded Fiber Filled Polymers for Material Extrusion: A Review of Current Understanding. Additive Manufacturing, 100810.

  • Gersich, F. M., & Hopkins, D. L. (1986). Site-specific acute and chronic toxicity of ammonia to Daphnia magna Staus. Environmental Toxicology and Chemistry, 5, 443–447.

    CAS  Google Scholar 

  • Hedström, A. (2001). Ion Exchange of Ammonium in Zeolites: A Literature Review. Journal of Environmental Engineering, 127(8), 673–681.

    Article  Google Scholar 

  • Hu, L., & Jiang, G. (2017). 3D Printing Techniques in Environmental Science and Engineering Will Bring New Innovation. Environmental Science and Technology, 51(7), 3597–3599.

    Article  CAS  Google Scholar 

  • Jones, J. G., Simon, B. M., & Horsley, R. W. (1982). Microbiological Sources of Ammonia in Freshwater Lake Sediments. Microbiology, 128(12), 2823–2831.

    Article  CAS  Google Scholar 

  • Kennedy, A. J., Hull, M. S., Steevens, J. A., Dontsova, K. M., Chappell, M. A., Gunter, J. C., & Weiss, C. A. (2008). Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environmental Toxicology & Chemistry, 27(9), 1932–1941.

    Article  CAS  Google Scholar 

  • Kennedy, A. J., Lindsay, J. H., Biedenbach, J. M., & Harmon, A. R. (2017). Life stage sensitivity of the marine mussel Mytilus edulis to ammonia. Environmental Toxicology and Chemistry, 36, 89–95.

    Article  CAS  Google Scholar 

  • Kennedy, A. J., Biber, T. W., May, L. R., Lotufo, G. R., Farrar, J. D., & Bednar, A. J. (2019). Sensitivity of the Marine Calanoid Copepod Pseudodiaptomus pelagicus to Copper, Phenanthrene, and Ammonia. Environmental Toxicology and Chemistry, 38(6), 1221–1230.

    Article  CAS  Google Scholar 

  • Kennedy, A. J., Ballentine, M. L., Das, A., Griggs, C. S., Klaus, K. L., & Bortner, M. J. (2021). Additive Manufacturing for Contaminants: Ammonia Removal Using 3D Printed Polymer-Zeolite Composites. ACS ES&T Water, 1(3), 621–629.

    Article  CAS  Google Scholar 

  • Kennedy, A. J., Lotufo, G. R., & Steevens, J. A. (2015). Review of dredged elutriate application factors: relevance to acute-to-chronic protection, contaminant, and endpoint specificity.

  • Kreitinger, J. P., Farrar, D. J., & Lotufo, G. R. (2017). Application of Toxicity Identification and Evaluation Procedures for Dredged Material Management. (ERDC TN-DOER-R25). Vicksburg, MS: US Army Engineer Research and Development Center Vicksburg United States

  • Lehman, S. E., & Larsen, S. C. (2014). Zeolite and mesoporous silica nanomaterials: Greener syntheses, environmental applications and biological toxicity. Environmental Science: Nano, 1(3), 200–213.

    CAS  Google Scholar 

  • Losso, C., Novelli, A. A., Picone, M., Marchetto, D., Pantani, C., Ghetti, P. F., & Ghirardini, A. V. (2007). Potential role of sulfide and ammonia as confounding factors in elutriate toxicity bioassays with early life stages of sea urchins and bivalves. Ecotoxicology and Environmental Safety, 66, 252–257. (IN FILE).

    Article  CAS  Google Scholar 

  • McQueen, A. D., Ballentine, M. L., May, L. R., Laber, C. C., Das, A., Bortner, M. J., & Kennedy, A. J. (2022). Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbons in Water by 3D Printed TiO2 Composites. ACS ES&T Water, 2(1), 137–147.

    Article  CAS  Google Scholar 

  • Meisel Nicholas, A. (2016). Decision support for additive manufacturing deployment in remote or austere environments. Journal of Manufacturing Technology Management, 27(7), 898–914.

    Article  Google Scholar 

  • Melby, M. L., Kennedy, A. J., Farrar, J. D., Bednar, A., Moore, D., & Lehmann, W. (2018). Toxicity reduction (and identification) evaluation for dredging evaluations: methods for whole sediment elutriate bioassays. (ERDC/TN DOER-R26). Vicksburg, MS.: U.S. Army Engineer Research and Development Center

  • Moore, D. W., Bridges, T. S., Gray, B. R., & Duke, B. M. (1997). Risk of ammonia toxicity during sediment bioassays with the estuarine amphipod Leptocheirus plumulosus. Environmental Toxicology and Chemistry, 16(5), 1020–1027. (IN FILE).

    Article  CAS  Google Scholar 

  • Moussavi, G., Talebi, S., Farrokhi, M., & Sabouti, R. M. (2011). The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. Chemical Engineering Journal, 171(3), 1159–1169.

    Article  CAS  Google Scholar 

  • Muthuraj, R., Misra, M., & Mohanty, A. K. (2018). Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 135(24), 45726.

    Article  Google Scholar 

  • Nimmo, D. W. R., Link, D., & Parrish, L. P. (1989). Comparison of on-site and laboratory toxicity tests: Derivation of site-specific criteria for un-ionized ammonia in a Colorado transitional stream. Environmental Toxicology and Chemistry, 8, 1177–1189. (IN FILE).

    Article  CAS  Google Scholar 

  • Pereira, A., Ferreira, A. F. P., Rodrigues, A. E., Ribeiro, A. M., & Regufe, M. J. (2021). Additive manufacturing for adsorption-related applications - a review. Journal of Advanced Manufacturing and Processing. https://doi.org/10.1002/amp2.10108

    Article  Google Scholar 

  • Petersen, E. J., Diamond, S. A., Kennedy, A. J., Goss, G. G., Ho, K., Lead, J. R., Hanna, S. K., Hartman, N. B., Hund-Rinke, K., Mader, B., Manier, N., Pandard, P., Salinas, E. R., & Sayre, P. (2015). Adapting OECD Aquatic Toxcity Tests for Use with Manufactured Nanomaterials: Key Issues and Consensus Recommendations. Environmental Science and Technology, 49, 9532–9547.

    Article  CAS  Google Scholar 

  • Ruhl, E. J., & Dixson, D. L. (2019). 3D printed objects do not impact the behavior of a coral-associated damselfish or survival of a settling stony coral. PLoS One, 14(8), e0221157.

    Article  CAS  Google Scholar 

  • Schroeder, P. R., Price, R. A., Averett, D. E., Wade, R., & Pranger, S. A. (2003). Case Study to Illustrate Evaluation of Contaminant Pathways for Upland Dredged Material Disposal. In Dredging'02: Key Technologies for Global Prosperity (pp. 1–12).

  • Shenoy, A. V. (1999). Rheology of filled polymer systems. Springer Science and Business Media. https://doi.org/10.1007/978-94-015-9213-0

    Article  Google Scholar 

  • USEPA. (1988). Methods for Aquatic Toxicity Identification Evaluations. Phase 1 Toxicity Characterization Procedures. (EPA/600/3–88/034). Duluth, MN: U.S. Environmental Protection Agency

  • USEPA/USACE. (1991). Evaluation of dredged material proposed for ocean disposal (testing manual). (503/8–91/001). Washington, D.C.: US Environmental Protection Agency and US Army Corps of Engineers

  • USEPA. (1991). Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures, 2nd ed. (EPA/ 600/6–91/003). Washington, D.C.

  • USEPA. (1992). Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I. (EPA/600?6–91/005F). Washington, D.C.: U.S. Environmental Protection Agency

  • USEPA. (1993). Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity. (EPA/600/R-92/080). Washington, D.C.: U.S. Environmental Protection Agency

  • USEPA/USACE. (1998). Evaluation of dredged material proposed for discharge in waters of the US-testing manual: Inland Testing Manual. (EPA-823-B-987–004). Washington, D.C.: US Environmental Protection Agency and US Army Corps of Engineers

  • USEPA. (1999). 1999 Update of Ambient Water Quality Criteria for Ammonia. (EPA-822-R-99–014). Washington, D.C.: U.S. Environmental Protection Agency

  • USEPA. (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. (EPA-821-R-02–012). Washington DC: US Environmental Protection Agency

  • USEPA. (2007). Sediment Toxicity Identification Evaluation: Phases I, II, and III Guidance Document. (EPA-600-R-07–080). Washington, D.C.: U.S. Environmental Protection Agency

  • USEPA. (2013). Aquatic Life Ambient Water Quality Criteria for Ammonia - Freshwater 2013. (EPA 822-R-18–002). Washington, D.C.: U.S. Environmental Protection Agency

  • USEPA. (2014). Method 8270 (SW-846): Semivolatile organic compounds by Gas Chromatography/Mass Spectrometry (GC/MS). Washington, DC.

  • Xing, X., Liu, L., Yan, W., Wu, T., Zhao, L., & Wang, X. (2018). Bioturbation effects of Chironomid larvae on nitrogen release and ammonia-oxidizing bacteria abundance in sediments. Water, 10(4), 512.

    Article  Google Scholar 

  • Yusoff Nurul Husna, M., Irene Teo, L.-R., Phang, S.-J., Wong, V.-L., Cheah, K.-H., & Lim, S.-S. (2021). Recent Advances in Polymer-based 3D Printing for Wastewater Treatment Application: An Overview. Chemical Engineering Journal, 132311. https://doi.org/10.1016/j.cej.2021.132311

  • Zhang, C., Shan, B., Tang, W., Wang, C., & Zhang, L. (2019). Identifying sediment-associated toxicity in rivers affected by multiple pollutants from the contaminant bioavailability. Ecotoxicology and Environmental Safety, 171, 84–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Use of trade names does not imply endorsement by the U.S. Government. The work described, unless otherwise noted, was funded by the Dredging Operations Environmental Research (DOER) Program of the Army Corps of Engineers (Dr. Todd Bridges, directors; Dr. David Moore, focus area manager) and Advanced Materials for Resilient Sensors. We thank Paige Krupa for preprocessing of the test zeolite and Andrew Bray and Charles Laber performed analytical measurement of metals and PAHs. We thank Richard (Oscar) Reihsmann for graphic art. We thank Andrew Lenox and Jay Miller for field collection of sediments. We thank Guilherme Lotufo and Burton Suedel for internal review. A.D. acknowledges funding from Adhesive Manufacturers Association Adhesive and Sealant Science scholarship (Macromolecules Innovation Institute, Virginia Tech). The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Contributions

A. Kennedy designed experiments, characterized polymer composites and led writing and analysis. M. Ballentine lead CAD design and assisted in composite extrusion. L. May conducted bioassays and ammonia measurements. A. Das performed adsorption kinetics analysis. A. Bednar led metals and PAH analysis and contributed to the manuscript. C. Griggs interpreted adsorption experiments. M. Hull interpreted ecotoxicological results.  M. Bortner advised the project and provided equipment.

Corresponding author

Correspondence to Michael J. Bortner.

Ethics declarations

Declaration

The work was primarily funded by the Dredging Operations Environmental Research (DOER) Program of the Army Corps of Engineers and secondarily by Advanced Materials for Resilient Sensors. The authors declare no competing or financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2639 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, A.J., Ballentine, M.L., May, L.R. et al. Simplifying Complex Contaminant Mixtures: Selective Ammonia Adsorption and Toxicity Reduction using 3D Printable Polymer–Zeolite. Water Air Soil Pollut 233, 148 (2022). https://doi.org/10.1007/s11270-022-05606-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05606-9

Keywords

Navigation