Skip to main content

Advertisement

Log in

Mitigation of Water Deficit in Two Cultivars of Panicum maximum by the Application of Silicon

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Silicon (Si) is known as an attenuator for water deficit through increasing water status. The mechanisms involved in Si to mitigate this stress may be linked to decreasing oxidative stress and increasing phenolic compounds, associated with stoichiometric homeostasis of carbon (C), nitrogen (N), and Si, although there is a lack of research especially in forage crops. This research aimed to evaluate whether the supply of Si via fertigation improves the antioxidant defense system and modifies the C/N/Si stoichiometry and the growth of two cultivars of Panicum maximum cultivated under two soil water regimes (70 and 40% water retention capacity). Two experiments were developed, and the same treatments were applied using a 2 × 2 factorial arrangement, with Si applied via fertigation (2.5 mmol L−1) to the soil, while the control (without Si) was combined with two levels of soil moisture (70 and 40% of the soil water retention capacity). The two cultivars showed high accumulation of silicon in the shoot, low C content, low C/Si and C/N ratios, and high nutritional efficiency for the use of C in both water conditions. This is related to the potential of the Si to provide the greater antioxidant defense owing to higher production of phenolic compounds and decreased electrolyte leakage index. There was an increase in relative water content, leaf water potential, total chlorophyll content, and quantum efficiency of photosystem II, as shown by greater growth and dry mass production. Si application is a promising strategy to mitigate water deficit, ensuring new physiological and nutritional homeostasis, contributing to a more sustainable agriculture by means of feeding the herds that depend on pasturelands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Abd El-Mageed, T. A., Shaaban, A., Abd El-Mageed, S. A., Semida, W. M., & Rady, M. O. A. (2020). Silicon defensive role in maize (Zea mays L.) against drought stress and metals-contaminated irrigation water. Silicon, 1–12. https://doi.org/10.1007/s12633-020-00690-0

  • Abdelaal, K. A. A., Mazrou, Y. S. A., & Hafez, Y. M. (2020). Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plants, 9(6), 733. https://doi.org/10.3390/plants9060733

    Article  CAS  Google Scholar 

  • Aninbon, C., Jogloy, S., Vorasoot, N., Patanothai, A., Nuchadomrong, S., & Senawong, T. (2016). Effect of end of season water deficit on phenolic compounds in peanut genotypes with different levels of resistance to drought. Food Chemistry, 196, 123–129. https://doi.org/10.1016/j.foodchem.2015.09.022

    Article  CAS  Google Scholar 

  • Ashfaque, F., Inam, A., Inam, A., Iqbal, S., & Sahay, S. (2017). Response of silicon on metal accumulation, photosynthetic inhibition and oxidative stress in chromium-induced mustard (Brassica juncea L.). South African Journal of Botany, 111, 153–160. https://doi.org/10.1016/j.sajb.2017.03.002

    Article  CAS  Google Scholar 

  • Barrs, H., & Weatherley, P. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3), 413. https://doi.org/10.1071/bi9620413

    Article  Google Scholar 

  • Bataglia, O., Furlani, A., Teixeira, J., & Agronômico, J. G. (1983). Métodos de análise química de plantas-Boletim técnico 78. Instituto Agronômico de Campinas (IAC).

  • Bechtold, U., & Field, B. (2018). Molecular mechanisms controlling plant growth during abiotic stress. Journal of Experimental Botany, 69(11), 2753–2758. https://doi.org/10.1093/jxb/ery157

    Article  CAS  Google Scholar 

  • Besharat, S., Barão, L., & Cruz, C. (2020). New strategies to overcome water limitation in cultivated maize: Results from sub-surface irrigation and silicon fertilization. Journal of Environmental Management, 263, 110398. https://doi.org/10.1016/j.jenvman.2020.110398

    Article  CAS  Google Scholar 

  • Biju, S., Fuentes, S., & Gupta, D. (2017). Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Plant Physiology and Biochemistry, 119, 250–264. https://doi.org/10.1016/j.plaphy.2017.09.001

    Article  CAS  Google Scholar 

  • Birchall, J. D. (1995). The essentiality of silicon in biology. Chemical Society Reviews. The Royal Society of Chemistry. https://doi.org/10.1039/CS9952400351

  • Borjas-Ventura, R., Alves, L. R., de Oliveira, R., Martínez, C. A., & Gratão, P. L. (2018). Impacts of warming and water deficit on antioxidant responses in Panicum maximum Jacq. Physiologia Plantarum, 165(2), 12907. https://doi.org/10.1111/ppl.12907

    Article  CAS  Google Scholar 

  • Borjas-Ventura, R., Ferraudo, A. S., Martínez, C. A., & Gratão, P. L. (2020). Global warming: Antioxidant responses to deal with drought and elevated temperature in Stylosanthes capitata, a forage legume. Journal of Agronomy and Crop Science, 206(1), 13–27. https://doi.org/10.1111/jac.12367

    Article  CAS  Google Scholar 

  • Boyer, J. S. (1970). Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf “water potentials.” Plant Physiol (Vol. 46). www.plantphysiol.org. Accessed 12 October 2020

  • Calero Hurtado, A., Chiconato, D. A., Prado, RdeM., Sousa Junior, GdaS., OliveraViciedo, D., & Piccolo, MdeC. (2020). Silicon application induces changes C:N: P stoichiometry and enhances stoichiometric homeostasis of sorghum and sunflower plants under salt stress. Saudi Journal of Biological Sciences, 27(12), 3711–3719. https://doi.org/10.1016/j.sjbs.2020.08.017

    Article  CAS  Google Scholar 

  • Cocker, K. M., Evans, D. E., & Hodson, M. J. (1998). The amelioration of aluminium toxicity by silicon in higher plants: Solution chemistry or an in planta mechanism? Physiologia Plantarum, 104(4), 608–614. https://doi.org/10.1034/j.1399-3054.1998.1040413.x

    Article  CAS  Google Scholar 

  • Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J. F., et al. (2019). The controversies of silicon’s role in plant biology. New Phytologist. Blackwell Publishing Ltd. https://doi.org/10.1111/nph.15343

  • da Silva, E. S., de Mello Prado, R., Soares, AdeAVL., de Almeida, H. J., & dos Santos, D. M. M. (2021). Response of corn seedlings (Zea mays L) to different concentrations of nitrogen in absence and presence of silicon. Silicon, 13(3), 813–818. https://doi.org/10.1007/s12633-020-00480-8

    Article  CAS  Google Scholar 

  • Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science. Frontiers Media S.A. https://doi.org/10.3389/fenvs.2014.00053

  • de Oliveira, R. L. L., de Mello Prado, R., Felisberto, G., Checchio, M. V., & Gratão, P. L. (2019). Silicon mitigates manganese deficiency stress by regulating the physiology and activity of antioxidant enzymes in sorghum plants. Journal of Soil Science and Plant Nutrition, 19(3), 524–534. https://doi.org/10.1007/s42729-019-00051-w

    Article  CAS  Google Scholar 

  • Dionisio-Sese, M. L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135(1), 1–9. https://doi.org/10.1016/S0168-9452(98)00025-9

    Article  CAS  Google Scholar 

  • EMBRAPA. (2015). Panicum maximum BRS Zuri, produção e resistência para a pecuária. Campo Grande, MS: Embrapa Gado de Corte, 2013. http://www.infoteca.cnptia.embrapa.br/handle/doc/989349. Accessed 19 January 2022

  • EMBRAPA. (2017). Manual de metodos de análises. Manual de métodos de análise de solo. https://www.infoteca.cnptia.embrapa.br/handle/doc/1085209

  • Emerenciano Neto, J. V., Difante, G. S., Lana, M. Q., Medeiros, H. R., Aguiar, E. M., Montagner, D. B., & Souza, J. S. (2018). Forage quality and performance of sheep in Massai grass pastures managed at pre-grazing canopy heights. South African Journal of Animal Sciences, 48(6), 1073–1081. https://doi.org/10.4314/sajas.v48i6.10

    Article  CAS  Google Scholar 

  • Fariaszewska, A., Aper, J., Van Huylenbroeck, J., De Swaef, T., Baert, J., & Pecio. (2020). Physiological and biochemical responses of forage grass varieties to mild drought stress under field conditions. International Journal of Plant Production, 14(2), 335–353. https://doi.org/10.1007/s42106-020-00088-3

    Article  Google Scholar 

  • Fernandes, S., Pereira Da Silva, G., Prado, R. D. M., & Rossatto, D. R. (2021). Association of root and leaf silicon application decreases the C/Si ratio, increasing carbon gain and dry mass production in peanut plants. Communications in Soil Science and Plant Analysis, 1–9. https://doi.org/10.1080/00103624.2021.1928168

  • Frazão, J. J., Prado, RdeM., de Souza Júnior, J. P., & Rossatto, D. R. (2020). Silicon changes C:N: P stoichiometry of sugarcane and its consequences for photosynthesis, biomass partitioning and plant growth. Scientific Reports, 10(1), 12492. https://doi.org/10.1038/s41598-020-69310-6

    Article  CAS  Google Scholar 

  • Ganieva, R. A., Allahverdiyev, S. R., Guseinova, N. B., Kavakli, H. I., & Nafisi, S. (1998). Effect of salt stress and synthetic hormone Polystimuline K on the photosynthetic activity of cotton (Gossypium hirsutum). Turkish Journal of Botany, 22(4), 217–221. http://acikarsiv.beun.edu.tr/xmlui/handle/20.500.12628/1438. Accessed 12 October 2020

  • Gee, G. W., & Or, D. (2018). 2.4 Particle-Size Analysis. In J. H. Dane & C. G. Topp (Eds.), Methods of soil analysis, Part 4: Physical Methods (pp. 255–293). John Wiley & Sons Ltd. https://doi.org/10.2136/sssabookser5.4.c12

    Chapter  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Anee, T. I., Khan, M. I. R., & Fujita, M. (2018). Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. South African Journal of Botany, 115, 50–57. https://doi.org/10.1016/j.sajb.2017.12.006

    Article  CAS  Google Scholar 

  • Hattori, T., Inanaga, S., Araki, H., An, P., Morita, S., Luxová, M., & Lux, A. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123(4), 459–466. https://doi.org/10.1111/j.1399-3054.2005.00481.x

    Article  CAS  Google Scholar 

  • Imtiaz, M., Rizwan, M. S., Mushtaq, M. A., Ashraf, M., Shahzad, S. M., Yousaf, B., et al. (2016). Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: A review. Journal of Environmental Management. Academic Press. https://doi.org/10.1016/j.jenvman.2016.09.009

  • Jinger, D., Dhar, S., Dass, A., Sharma, V. K., Shukla, L., Parihar, M., et al. (2020). Crop productivity, grain quality, water use efficiency, and soil enzyme activity as influenced by silicon and phosphorus application in aerobic rice (Oryza sativa). Communications in Soil Science and Plant Analysis, 51(16), 2147–2162. https://doi.org/10.1080/00103624.2020.1812629

    Article  CAS  Google Scholar 

  • Karimi, V., Karami, E., & Keshavarz, M. (2018). Climate change and agriculture: Impacts and adaptive responses in Iran. Journal of Integrative Agriculture. Chinese Academy of Agricultural Sciences. https://doi.org/10.1016/S2095-3119(17)61794-5

  • Kim, Y. H., Khan, A. L., Waqas, M., & Lee, I. J. (2017). Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: A review. Frontiers in Plant Science, 8, 510. https://doi.org/10.3389/fpls.2017.00510

    Article  Google Scholar 

  • Korndörfer, G. (2004). Análise de silício: solo, planta e fertilizante.

  • Korndörfer, G. H., Coelho, N. M., Snyder, G. H., & Mizutani, C. T. (1999). Avaliação de métodos de extração de silício em solos cultivados com arroz de sequeiro. Revista Brasileira De Ciência Do Solo, 23(1), 101–106. https://doi.org/10.1590/s0100-06831999000100013

    Article  Google Scholar 

  • Kraska, J. E., & Breitenbeck, G. A. (2010). Simple, robust method for quantifying silicon in plant tissue. Communications in Soil Science and Plant Analysis, 41(17), 2075–2085. https://doi.org/10.1080/00103624.2010.498537

    Article  CAS  Google Scholar 

  • Krause, G. H., & Weis, E. (1991). Chlorophyll fluorescence and photosynthesis: The basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42(1), 313–349. https://doi.org/10.1146/annurev.pp.42.060191.001525

    Article  CAS  Google Scholar 

  • Lata-Tenesaca, L. F., de Mello Prado, R., de Cássia Piccolo, M., da Silva, D. L., & da Silva, J. L. F. (2021). Silicon modifies C:N: P stoichiometry, and increases nutrient use efficiency and productivity of quinoa. Scientific Reports, 11(1), 9893. https://doi.org/10.1038/s41598-021-89416-9

    Article  CAS  Google Scholar 

  • Lavinsky, A. O., Magalhães, P. C., Ávila, R. G., Diniz, M. M., & de Souza, T. C. (2015). Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity. Crop Journal, 3(5), 379–386. https://doi.org/10.1016/j.cj.2015.04.008

    Article  Google Scholar 

  • Lichtenthaler, H. K., Buschmann, C., & Knapp, M. (2005). How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica, 43(3), 379–393. https://doi.org/10.1007/s11099-005-0062-6

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148(C), 350–382. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  • Liu, J., Hasanuzzaman, M., Wen, H., Zhang, J., Peng, T., Sun, H., & Zhao, Q. (2019). High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma, 256(5), 1217–1227. https://doi.org/10.1007/s00709-019-01354-6

    Article  CAS  Google Scholar 

  • Ma, D., Sun, D., Wang, C., Qin, H., Ding, H., Li, Y., & Guo, T. (2016). Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. Journal of Plant Growth Regulation, 35(1), 1–10. https://doi.org/10.1007/s00344-015-9500-2

    Article  CAS  Google Scholar 

  • Monteiro, J. G., Cruz, F. J. R., Nardin, M. B., & dos Santos, D. M. M. (2014). Crescimento e conteúdo de prolina em plântulas de guandu submetidas a estresse osmótico e à putrescina exógena. Pesquisa Agropecuaria Brasileira, 49(1), 18–25. https://doi.org/10.1590/S0100-204X2014000100003

  • Moro, A. L., Pacheco, A. C., & Moro, E. (2018). Physiological and biochemical alterations of Urocholoa brizantha submitted to water deficit and silicate fertilization. Journal of Agricultural Science, 10(8), 166. https://doi.org/10.5539/jas.v10n8p166

    Article  Google Scholar 

  • Parveen, A., Liu, W., Hussain, S., Asghar, J., Perveen, S., & Xiong, Y. (2019). Silicon priming regulates morpho-physiological growth and oxidative metabolism in maize under drought stress. Plants, 8(10), 431. https://doi.org/10.3390/plants8100431

    Article  CAS  Google Scholar 

  • Perlikowski, D., Augustyniak, A., Masajada, K., Skirycz, A., Soja, A. M., Michaelis, Ä., et al. (2019). Structural and metabolic alterations in root systems under limited water conditions in forage grasses of Lolium-Festuca complex. Plant Science, 283(February), 211–223. https://doi.org/10.1016/j.plantsci.2019.02.001

    Article  CAS  Google Scholar 

  • Petridis, A., Therios, I., Samouris, G., Koundouras, S., & Giannakoula, A. (2012). Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiology and Biochemistry, 60, 1–11. https://doi.org/10.1016/j.plaphy.2012.07.014

    Article  CAS  Google Scholar 

  • Prakash Aryal, J., Sapkota, T. B., Khurana, R., Khatri-Chhetri, A., Bahadur Rahut, D., Jat, M. L., & Aryal, J. P. (2020). Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environment, Development and Sustainability, 22, 5045–5075. https://doi.org/10.1007/s10668-019-00414-4

    Article  Google Scholar 

  • Qureshi, M. K., Munir, S., Shahzad, A. N., Rasul, S., Nouman, W., & Aslam, K. (2018). Role of reactive oxygen species and contribution of new players in defense mechanism under drought stress in rice. International Journal of Agriculture and Biology. https://doi.org/10.17957/IJAB/15.0640

  • Raij, B. van, Andrade, J. C., Cantarella, H., & Quaggio, J. A. (2001). Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico. www.iac.br. Accessed 10 October 2020

  • Raven, J. A. (1983). The transport and function of silicon in plants. Biological Reviews, 58(2), 179–207. https://doi.org/10.1111/j.1469-185x.1983.tb00385.x

    Article  CAS  Google Scholar 

  • Rocha, J. R., Mello Prado, R., Teixeira, G. C. M., & Oliveira Filho, A. S. B. (2021). Si fertigation attenuates water stress in forages by modifying carbon stoichiometry, favouring physiological aspects. Journal of Agronomy and Crop Science, jac.12479. https://doi.org/10.1111/jac.12479

  • Rosales, M. A., Franco-Navarro, J. D., Peinado-Torrubia, P., Díaz-Rueda, P., Álvarez, R., & Colmenero-Flores, J. M. (2020). Chloride improves nitrate utilization and NUE in plants. Frontiers in Plant Science, 11, 442. https://doi.org/10.3389/fpls.2020.00442

    Article  Google Scholar 

  • Santana Batista De Oliveira Filho, A., De Mello Prado, R., Carliane, G., Teixeira, M., De Cássia Piccolo, M., Márcio, A., et al. (2021). Water deficit modifies C:N: P stoichiometry affecting sugarcane and energy cane yield and its relationships with silicon supply. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-00441-0

    Article  CAS  Google Scholar 

  • SAS, S. (2008). STAT. User’s guide, version 9.2. Cary: SAS Inst.

  • Schoelynck, J., Bal, K., Backx, H., Okruszko, T., Meire, P., & Struyf, E. (2010). Silica uptake in aquatic and wetland macrophytes: A strategic choice between silica, lignin and cellulose? New Phytologist, 186(2), 385–391. https://doi.org/10.1111/j.1469-8137.2009.03176.x

    Article  CAS  Google Scholar 

  • Siddiqi, M. Y., & Glass, A. D. M. (1981). Utilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants. Journal of Plant Nutrition, 4(3), 289–302. https://doi.org/10.1080/01904168109362919

    Article  Google Scholar 

  • Silva, F. L. B., Vieira, L. G. E., Ribas, A. F., Moro, A. L., Neris, D. M., & Pacheco, A. C. (2018). Proline accumulation induces the production of total phenolics in transgenic tobacco plants under water deficit without increasing the G6PDH activity. Theoretical and Experimental Plant Physiology, 30(3), 251–260. https://doi.org/10.1007/s40626-018-0119-0

    Article  CAS  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.

    CAS  Google Scholar 

  • Sloat, L. L., Gerber, J. S., Samberg, L. H., Smith, W. K., Herrero, M., Ferreira, L. G., et al. (2018). Increasing importance of precipitation variability on global livestock grazing lands. Nature Climate Change, 8(3), 214–218. https://doi.org/10.1038/s41558-018-0081-5

    Article  Google Scholar 

  • Teixeira, G. C. M., de Mello Prado, R., & Rocha, A. M. S. (2021). Low absorption of silicon via foliar in comparison to root application has an immediate antioxidant effect in mitigating water deficit damage in sugarcane. Journal of Agronomy and Crop Science. https://doi.org/10.1111/JAC.12511

    Article  Google Scholar 

  • Teixeira, G. C. M., de Mello Prado, R., Rocha, A. M. S., dos Santos, L. C. N., dos Santos Sarah, M. M., Gratão, P. L., & Fernandes, C. (2020). Silicon in pre-sprouted sugarcane seedlings mitigates the effects of water deficit after transplanting. Journal of Soil Science and Plant Nutrition, 20(3), 849–859. https://doi.org/10.1007/s42729-019-00170-4

    Article  CAS  Google Scholar 

  • Tenikecier, H. S., & Ates, E. (2018). Chemical composition of six grass species (Poaceae sp.) from protected forest range in northern bulgaria. Asian Journal of Applied Sciences, 11(2), 71–75. https://doi.org/10.3923/ajaps.2018.71.75

    Article  CAS  Google Scholar 

  • Torres, F. E., De Oliveira, E. P., Teodoro, P. E., Da Silveira, M. V, Ribeiro, L. P., De, L. P., & Silveira, O. (2013). Forage production of Panicum maximum cultivars under different growing seasons and seed types. Revista de Ciências Agrárias (Vol. 36).

  • Tsimogiannis, D., & Oreopoulou, V. (2019). Classification of phenolic compounds in plants. In Polyphenols in Plants (pp. 263–284). Elsevier. https://doi.org/10.1016/b978-0-12-813768-0.00026-8

  • Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58(1–3), 339–366. https://doi.org/10.1007/BF02180062

    Article  Google Scholar 

  • USDA, S. S. S. (2014). Keys to soil taxonomy. Soil Conservation Service, 12, 360. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051546.pdf

  • Wang, J., Liu, X., Zhang, X., Li, L., Lam, S. K., & Pan, G. (2019). Changes in plant C, N and P ratios under elevated [CO 2 ] and canopy warming in a rice-winter wheat rotation system. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-41944-1

    Article  CAS  Google Scholar 

  • Wang, Z., Li, J., Lai, C., Wang, R. Y., Chen, X., & Lian, Y. (2018). Drying tendency dominating the global grain production area. Global Food Security. Elsevier B.V. https://doi.org/10.1016/j.gfs.2018.02.001

  • Yan, G. Chao, Nikolic, M., Ye, M. Jun, Xiao, Z. Xi, Liang, Y. Chao. (2018). Silicon acquisition and accumulation in plant and its significance for agriculture. Journal of Integrative Agriculture. Chinese Academy of Agricultural Sciences. https://doi.org/10.1016/S2095-3119(18)62037-4

  • Yang, S., Hao, Q., Liu, H., Zhang, X., Yu, C., Yang, X., et al. (2019). Impact of grassland degradation on the distribution and bioavailability of soil silicon: Implications for the Si cycle in grasslands. Science of the Total Environment, 657, 811–818. https://doi.org/10.1016/j.scitotenv.2018.12.101

    Article  CAS  Google Scholar 

  • Zhang, W., Xie, Z., Wang, L., Li, M., & Lang, D. (2017). O silício alivia o estresse salino e hídrico da muda de Glycyrrhiza uralensis ao alterar o metabolismo antioxidante e o ajuste osmótico. Journal of plant research. https://link.springer.com/content/pdf/10.1007/s10265-017-0927-3.pdf. Accessed 10 October 2020

Download references

Acknowledgements

The authors acknowledged the support of the São Paulo State University (UNESP).

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Juan Ricardo Rocha: Conceptualization, methodology, software, formal analysis, investigation, data curation, writing (original draft preparation), writing (review and editing), and visualization. Renato de Mello Prado: Term, methodology, validation, investigation, supervision, and project administration. Marisa de Cassia Piccolo: Resources and data curation.

Corresponding author

Correspondence to Juan Ricardo Rocha.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, J.R., de Mello Prado, R. & de Cassia Piccolo, M. Mitigation of Water Deficit in Two Cultivars of Panicum maximum by the Application of Silicon. Water Air Soil Pollut 233, 63 (2022). https://doi.org/10.1007/s11270-022-05539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05539-3

Keywords

Navigation