Skip to main content
Log in

Evaluation of Halloysite Nanotube–Loaded Chitosan-Based Nanocomposite Membranes for Water Desalination by Pervaporation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, halloysite nanotube (HNT)–loaded chitosan-based nanocomposite membranes were synthesized and used for pervaporative desalination of water. Structural and morphological properties of the nanocomposite membranes were investigated. The effects of the HNT content, feed temperature, and feed NaCl concentration on the flux and salt rejection were investigated. As the HNT content was increased, the degree of swelling decreased. At all temperature values, higher than 99% of salt rejections were achieved. The flux value increased from 1.63 to 4.89 kg/m2h, when the HNT content increased from 0 to 20 wt% at 30 °C. While the highest salt rejection value was obtained as 99.90% using the 10 wt% HNT-loaded nanocomposite membrane, the highest flux value was obtained as 5.81 kg/m2h using the 20 wt% HNT-loaded membrane at 50 °C. The pervaporation desalination results showed that HNT simultaneously increased the swelling resistance and the separation capability of the chitosan membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albergamo, V., Blankert, B., Cornelissen, E. R., Hofs, B., Knibbe, W. J., van der Meer, W., & de Voogt, P. (2019). Removal of polar organic micropollutants by pilot-scale reverse osmosis drinking water treatment. Water Research, 148, 535–545.

    CAS  Google Scholar 

  • Alghamdi, M. M., & El-Zahhar, A. A. (2020). Novel cellulose acetate propionate-halloysite composite membranes with improved permeation flux, salt rejection, and antifouling properties. Polymers for Advanced Technologies, 31.https://doi.org/10.1002/pat.4979

  • Ali, M. E. A., Wang, L., Wang, X., & Feng, X. (2016). Thin film composite membranes embedded with graphene oxide for water desalination. Desalination, 386, 67–76.

    CAS  Google Scholar 

  • Ali, S., Rehman, S. A. U., Luan, H. Y., Farid, M. U., & Huang, H. (2019). Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Science of the Total Environment, 646(19), 1126–1139.

    CAS  Google Scholar 

  • Ang, W. L., Mohammad, A. W., Hilal, N., & Leo, C. P. (2015). A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination, 363, 2–18.

    CAS  Google Scholar 

  • Attarde, D., Jain, M., Singh, P. K., & Gupta, S. K. (2017). Energy-efficient seawater desalination and wastewater treatment using osmotically driven membrane processes. Desalination, 413, 86–100.

    CAS  Google Scholar 

  • Barman, M., Mahmood, S., Augustine, R., Hasan, A., Thomas, S., & Ghosal, K. (2020). Natural halloysite nanotubes /chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent in sustained release manner. International Journal of Biological Macromolecules, 162, 1849–1861.

    CAS  Google Scholar 

  • Branca, C., D’Angelo, G., Crupi, C., Khouzami, K., Rifici, S., Ruello, G., & Wanderlingh, U. (2016). Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films. Polymer, 99, 614–622.

    CAS  Google Scholar 

  • Cai, J., & Guo, F. (2017). Study of mass transfer coefficient in membrane desalination. Desalination, 407, 46–51.

    CAS  Google Scholar 

  • Chaudhri, S. G., Rajai, B. H., & Singh, P. S. (2015). Preparation of ultra-thin poly(vinyl alcohol) membranes supported on polysulfone hollow fiber and their application for production of pure water from seawater. Desalination, 367(July 2015), 272–284.

  • Chen, Y., Zhang, Y., Zhang, H., Liu, J., & Song, C. (2013). Biofouling control of halloysite nanotubes-decorated polyethersulfone ultrafiltration membrane modified with chitosan-silver nanoparticles. Chemical Engineering Journal, 228, 12–20.

    CAS  Google Scholar 

  • Choi, J., Oh, Y., Chae, S., & Hong, S. (2019). Membrane capacitive deionization-reverse electrodialysis hybrid system for improving energy efficiency of reverse osmosis seawater desalination. Desalination, 462, 19–28.

    CAS  Google Scholar 

  • Croisier, F., & Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 49(4), 780–792.

    CAS  Google Scholar 

  • Deng, H., Sun, P., Zhang, Y., & Zhu, H. (2016). Reverse osmosis desalination of chitosan cross-linked graphene oxide/titania hybrid lamellar membranes. Nanotechnology, 27(27), 1–8.

    CAS  Google Scholar 

  • Dong, Y., Marshall, J., Haroosh, H. J., Mohammadzadehmoghadam, S., Liu, D., Qi, X., & Lau, K. T. (2015). Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: Influence of HNT content and modification. Composites Part a: Applied Science and Manufacturing, 76, 28–36.

    CAS  Google Scholar 

  • Elimelech, M., & Phillip, W. A. (2011). The future of seawater desalination: Energy, technology, and the environment. Science, 333(6043), 712–717.

    CAS  Google Scholar 

  • Esfahani, M. R., Aktij, S. A., Dabaghian, Z., Firouzjaei, M. D., Rahimpour, A., Eke, J., et al. (2019). Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purification Technology, 213, 465–499.

    CAS  Google Scholar 

  • Ezugbe, E. O., & Rathilal, S. (2020). Membrane technologies in wastewater treatment: A review. Membranes, 10(89). https://doi.org/10.3390/membranes10050089

  • Fujioka, T., Ngo, M. T. T., Makabe, R., Ueyama, T., Takeuchi, H., Nga, T. T. V., et al. (2021). Submerged nanofiltration without pre-treatment for direct advanced drinking water treatment. Chemosphere, 265, 129056. https://doi.org/10.1016/j.chemosphere.2020.129056

    Article  CAS  Google Scholar 

  • Ganesh, B. M., Isloor, A. M., & Ismail, A. F. (2013). Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination, 313, 199–207.

    CAS  Google Scholar 

  • Ghanbari, M., Emadzadeh, D., Lau, W. J., Lai, S. O., Matsuura, T., & Ismail, A. F. (2015). Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination. Desalination, 358, 33–41.

    CAS  Google Scholar 

  • Govindasamy, K., Dahlan, N. A., Janarthanan, P., Goh, K. L., Chai, S. P., & Pasbakhsh, P. (2020). Electrospun chitosan/polyethylene-oxide (PEO)/halloysites (HAL) membranes for bone regeneration applications. Applied Clay Science, 190, 105601. https://doi.org/10.1016/j.clay.2020.105601

    Article  CAS  Google Scholar 

  • Haroosh, H. J., Dong, Y., Chaudhary, D. S., Ingram, G. D., & Yusa, S. I. (2013). Electrospun PLA: PCL composites embedded with unmodified and 3-aminopropyltriethoxysilane (ASP) modified halloysite nanotubes (HNT). Applied Physics a: Materials Science and Processing, 110(2), 433–442.

    CAS  Google Scholar 

  • Homaeigohar, S., & Elbahri, M. (2017). Graphene membranes for water desalination. NPG Asia Materials, 9.https://doi.org/10.1038/am.2017.135

  • Huang, A., & Feng, B. (2018). Synthesis of novel graphene oxide-polyimide hollow fiber membranes for seawater desalination. Journal of Membrane Science, 548(2017), 59–65.

    CAS  Google Scholar 

  • Jia, L., Zhang, X., Zhu, J., Cong, S., Wang, J., Liu, J., & Zhang, Y. (2019). Polyvinyl alcohol-assisted high-flux thin film nanocomposite membranes incorporated with halloysite nanotubes for nanofiltration. Environmental Science: Water Research and Technology, 5(8), 1412–1422.

    CAS  Google Scholar 

  • Kaminski, W., Marszalek, J., & Tomczak, E. (2018). Water desalination by pervaporation – Comparison of energy consumption. Desalination, 433, 89–93.

    CAS  Google Scholar 

  • Karagiannis, I. C., & Soldatos, P. G. (2008). Water desalination cost literature: Review and assessment. Desalination, 223(1–3), 448–456.

    CAS  Google Scholar 

  • Kausar, A., Sher, F., Hazafa, A., Javed, A., Sillanpää, M., & Iqbal, M. (2020). Biocomposite of sodium-alginate with acidified clay for wastewater treatment: Kinetic, equilibrium and thermodynamic studies. International Journal of Biological Macromolecules, 161, 1272–1285.

    CAS  Google Scholar 

  • Kim, J., Park, K., Yang, D. R., & Hong, S. (2019). A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Applied Energy, 254, 113652. https://doi.org/10.1016/j.apenergy.2019.113652

    Article  CAS  Google Scholar 

  • Kumar, R., Isloor, A. M., Ismail, A. F., Rashid, S. A., & Ahmed, A. A. (2013). Permeation, Antifouling and desalination performance of TiO2 nanotube incorporated PSf/CS blend membranes. Desalination, 316, 76–84.

    CAS  Google Scholar 

  • Kuznetsov, Y. P., Kruchinina, E. V., Baklagina, Y. G., Khripunov, A. K., & Tulupova, O. A. (2007). Deep desalination of water by evaporation through polymeric membranes. Russian Journal of Applied Chemistry, 80(5), 790–798.

    CAS  Google Scholar 

  • Liang, B., Pan, K., Li, L., Giannelis, E. P., & Cao, B. (2014). High performance hydrophilic pervaporation composite membranes for water desalination. Desalination, 347, 199–206.

    CAS  Google Scholar 

  • Liang, B., Zhan, W., Qi, G., Lin, S., Nan, Q., Liu, Y., et al. (2015). High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. Journal of Materials Chemistry A, 3(9), 5140–5147.

    CAS  Google Scholar 

  • Liao, Y., Loh, C. H., Tian, M., Wang, R., & Fane, A. G. (2018). Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science, 77, 69–94.

    CAS  Google Scholar 

  • Lin, Y. K., Nguyen, V. H., Yu, J. C. C., Lee, C. W., Deng, Y. H., Wu, J. C. S., et al. (2017). Biodiesel production by pervaporation-assisted esterification and pre-esterification using graphene oxide/chitosan composite membranes. Journal of the Taiwan Institute of Chemical Engineers, 79, 23–30.

    CAS  Google Scholar 

  • Liu, C., & Lindsay, W. T. (1972). Thermodynamics of sodium chloride solutions at high temperatures. Journal of Solution Chemistry, 1(1), 45–69.

    CAS  Google Scholar 

  • Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014). Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science, 39(8), 1498–1525.

    CAS  Google Scholar 

  • Liu, Y., Tong, Z., Zhu, H., Zhao, X., Du, J., & Zhang, B. (2022). Polyamide composite membranes sandwiched with modified carbon nanotubes for high throughput pervaporation desalination of hypersaline solutions. Journal of Membrane Science, 641(2021), 119889. https://doi.org/10.1016/j.memsci.2021.119889

    Article  CAS  Google Scholar 

  • Long, Y., You, X., Chen, Y., Hong, H., Liao, B. Q., & Lin, H. (2020). Filtration behaviors and fouling mechanisms of ultrafiltration process with polyacrylamide flocculation for water treatment. Science of the Total Environment, 703, 135540. https://doi.org/10.1016/j.scitotenv.2019.135540

    Article  CAS  Google Scholar 

  • Ma, B., Xue, W., Hu, C., Liu, H., Qu, J., & Li, L. (2019). Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal, 359, 159–167.

    CAS  Google Scholar 

  • Mai, Z., Gui, S., Fu, J., Jiang, C., Ortega, E., Zhao, Y., et al. (2019). Activity-derived model for water and salt transport in reverse osmosis membranes: A combination of film theory and electrolyte theory. Desalination, 469, 114094. https://doi.org/10.1016/j.desal.2019.114094

    Article  CAS  Google Scholar 

  • Naim, M., Elewa, M., El-Shafei, A., & Moneer, A. (2015). Desalination of simulated seawater by purge-air pervaporation using an innovative fabricated membrane. Water Science and Technology, 72(5), 785–793.

    CAS  Google Scholar 

  • Nigiz, F. U. (2020). Graphene oxide-sodium alginate membrane for seawater desalination through pervaporation. Desalination, 485, 114465. https://doi.org/10.1016/j.desal.2020.114465

    Article  CAS  Google Scholar 

  • Nikpour, M. R., Rabiee, S. M., & Jahanshahi, M. (2012). Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications. Composites Part b: Engineering, 43(4), 1881–1886.

    CAS  Google Scholar 

  • Padaki, M., Isloor, A. M., Wanichapichart, P., & Ismail, A. F. (2012). Preparation and characterization of sulfonated polysulfone and N-phthloyl chitosan blend composite cation-exchange membrane for desalination. Desalination, 298, 42–48.

    CAS  Google Scholar 

  • Prihatiningtyas, I., & Van der Bruggen, B. (2020). Nanocomposite pervaporation membrane for desalination. Chemical Engineering Research and Design, 164, 147–161.

    CAS  Google Scholar 

  • Prihatiningtyas, I., Gebreslase, G. A., & Van der Bruggen, B. (2020a). Incorporation of Al2O3 into cellulose triacetate membranes to enhance the performance of pervaporation for desalination of hypersaline solutions. Desalination, 474, 114198. https://doi.org/10.1016/j.desal.2019.114198

    Article  CAS  Google Scholar 

  • Prihatiningtyas, I., Li, Y., Hartanto, Y., Vananroye, A., Coenen, N., & Van der Bruggen, B. (2020b). Effect of solvent on the morphology and performance of cellulose triacetate membrane/cellulose nanocrystal nanocomposite pervaporation desalination membranes. Chemical Engineering Journal, 388, 124216. https://doi.org/10.1016/j.cej.2020.124216

    Article  CAS  Google Scholar 

  • Qasim, M., Badrelzaman, M., Darwish, N. N., Darwish, N. A., & Hilal, N. (2019). Reverse osmosis desalination: A state-of-the-art review. Desalination, 459, 59–104.

    CAS  Google Scholar 

  • Qian, X., Li, N., Wang, Q., & Ji, S. (2018). Chitosan/graphene oxide mixed matrix membrane with enhanced water permeability for high-salinity water desalination by pervaporation. Desalination, 438, 83–96.

    CAS  Google Scholar 

  • Reino Olegário da Silva, D. A., BosmulerZuge, L. C., & de Paula Scheer, A. (2020). Preparation and characterization of a novel green silica/PVA membrane for water desalination by pervaporation. Separation and Purification Technology, 247, 116852. https://doi.org/10.1016/j.seppur.2020.116852

    Article  CAS  Google Scholar 

  • Rezaei-DashtArzhandi, M., Sarrafzadeh, M. H., Goh, P. S., Lau, W. J., Ismail, A. F., & Mohamed, M. A. (2018). Development of novel thin film nanocomposite forward osmosis membranes containing halloysite/graphitic carbon nitride nanoparticles towards enhanced desalination performance. Desalination, 447, 18–28.

    CAS  Google Scholar 

  • Saleem, H., Trabzon, L., Kilic, A., & Zaidi, S. J. (2020). Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination. Desalination, 478, 114178. https://doi.org/10.1016/j.desal.2019.114178

    Article  CAS  Google Scholar 

  • Selim, A., Toth, A. J., Haaz, E., Fozer, D., Szanyi, A., Hegyesi, N., & Mizsey, P. (2019). Preparation and characterization of PVA/GA/Laponite membranes to enhance pervaporation desalination performance. Separation and Purification Technology, 221, 201–210.

    CAS  Google Scholar 

  • Shakeri, A., Salehi, H., & Rastgar, M. (2017). Chitosan-based thin active layer membrane for forward osmosis desalination. Carbohydrate Polymers, 174, 658–668.

    CAS  Google Scholar 

  • Szczepanik, B., Słomkiewicz, P., Garnuszek, M., Czech, K., & Banas̈, D., Kubala-Kukus̈, A., & Stabrawa, I. (2015). The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies. Journal of Molecular Structure, 1084, 16–22.

    CAS  Google Scholar 

  • Talaeipour, M., Nouri, J., Hassani, A. H., & Mahvi, A. H. (2017). An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment. Journal of Environmental Health Science and Engineering, 15(1), 1–9.

    Google Scholar 

  • Tirnakci, B., & Salt, Y. (2020). Preparation and characterization of PVA-SiO2 nanocomposite membranes for seawater desalination by pervaporation. Chemical Industry and Chemical Engineering Quarterly, 27. http://www.akrabjuara.com/index.php/akrabjuara/article/view/919

  • Wang, Q., Li, N., Bolto, B., Hoang, M., & Xie, Z. (2016a). Desalination by pervaporation: A review. Desalination, 387, 46–60.

    CAS  Google Scholar 

  • Wang, Q., Lu, Y., & Li, N. (2016b). Preparation, characterization and performance of sulfonated poly(styrene-ethylene/butylene-styrene) block copolymer membranes for water desalination by pervaporation. Desalination, 390, 33–46.

    CAS  Google Scholar 

  • Xie, Z., Hoang, M., Duong, T., Ng, D., Dao, B., & Gray, S. (2011). Sol-gel derived poly(vinyl alcohol)/maleic acid/silica hybrid membrane for desalination by pervaporation. Journal of Membrane Science, 383(1–2), 96–103.

    CAS  Google Scholar 

  • Xue, Y., & long, Lau, C. H., Cao, B., & Li, P. (2019). Elucidating the impact of polymer crosslinking and fixed carrier on enhanced water transport during desalination using pervaporation membranes. Journal of Membrane Science, 575, 135–146.

    CAS  Google Scholar 

  • Yang, G., Xie, Z., Cran, M., Ng, D., & Gray, S. (2019). Enhanced desalination performance of poly (vinyl alcohol)/carbon nanotube composite pervaporation membranes via interfacial engineering. Journal of Membrane Science, 579, 40–51.

    CAS  Google Scholar 

  • Yu, H., Zhang, Y., Sun, X., Liu, J., & Zhang, H. (2014). Improving the antifouling property of polyethersulfone ultrafiltration membrane by incorporation of dextran grafted halloysite nanotubes. Chemical Engineering Journal, 237, 322–328.

    CAS  Google Scholar 

  • Zhang, R., Xu, X., Cao, B., & Li, P. (2018). Fabrication of high-performance PVA/PAN composite pervaporation membranes crosslinked by PMDA for wastewater desalination. Petroleum Science, 15(1), 146–156.

    CAS  Google Scholar 

  • Zhao, X., Tong, Z., Liu, X., Wang, J., & Zhang, B. (2020). Facile preparation of polyamide-graphene oxide composite membranes for upgrading pervaporation desalination performances of hypersaline solutions. Industrial and Engineering Chemistry Research, 59(26), 12232–12238.

    CAS  Google Scholar 

Download references

Acknowledgements

The equipment used in this study was provided by the Scientific and Technological Research Council of Turkey (Grant Number: 121Y080). The authors would like to thank Esan Eczacıbaşı for kindly supplying HNT material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuba Ünügül.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünügül, T., Nigiz, F.U. Evaluation of Halloysite Nanotube–Loaded Chitosan-Based Nanocomposite Membranes for Water Desalination by Pervaporation. Water Air Soil Pollut 233, 34 (2022). https://doi.org/10.1007/s11270-022-05505-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05505-z

Keywords

Navigation