Skip to main content

Advertisement

Log in

Ecotoxicological Evaluation and Treatment of a Denim-Laundry Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Several laccase-based products have been launched on the market over the years. However, there is little information about their toxicity and/or the toxicity of their residues. We evaluated the toxicity of a simulated denim-laundry wastewater containing Biolite BSN, a laccase-based product used for denim bleaching. The evaluation included a viability test with Saccharomyces cerevisiae, a phytotoxicity test with Sorghum vulgare, and a toxicity test with Daphnia magna. The viability of S. cerevisiae was reduced to 40%. The radicle and plumule growth of S. vulgare was reduced to 62 and 66%, respectively. The CL50 for D. magna was 29.7%, which classified this water as toxic (according to the percent rank method). Biolite BSN was identified as the main cause of the toxic effects; furthermore, the chemical oxygen demand (COD) of the wastewater was significantly high (3346.2 mg/L), and more than 90% of the COD corresponded to Biolite BSN. The anaerobic biodegradability tests showed that the denim-laundry wastewater could be treated anaerobically; therefore, it was treated in an upflow anaerobic sludge blanket (UASB) reactor. The treatment reduced the toxicity and COD in 50 and 77%, respectively, and a methane yield of 311.1 mL CH4/g of CODremoved was obtained. Based on these results, we recommend to analyze the toxicity of all textile chemicals, regardless of whether they are enzyme-based products. A UASB reactor can be used as the first treatment stage for similar effluents in order to reduce the COD and the toxicity and recover methane as an added benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  • Abiri, F., Fallah, N., & Bonakdarpour, B. (2017). Sequential anaerobic–aerobic biological treatment of colored wastewaters: Case study of a textile dyeing factory wastewater. Water Science and Technology, 75(6), 1261–1269. https://doi.org/10.2166/wst.2016.531

    Article  CAS  Google Scholar 

  • Ali, A. S., & Elozeiri, A. A. (2017). Metabolic processes during seed germination. In Advances in seed biology, Edited by Jimenez-Lopez, J. C., pp. 141–166. https://doi.org/10.5772/intechopen.70653

  • Al-Sayed, W., & Abdelrahman, S. H. (2021). Sustainable chemistry in textile processes (pretreatment, coloration and chemical finishing). In Green Chemistry for Sustainable Textiles (pp. 93–111). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-85204-3.00022-1

  • Amaral, F. M., Florêncio, L., Kato, M. T., Santa-Cruz, P. A., & Gavazza, S. (2017). Hydraulic retention time influence on azo dye and sulfate removal during the sequential anaerobic–aerobic treatment of real textile wastewater. Water Science and Technology, 76(12), 3319–3327. https://doi.org/10.2166/wst.2017.378

    Article  CAS  Google Scholar 

  • Amezquita-Garcia, H. J., Rangel-Mendez, J. R., Cervantes, F. J., & Razo-Flores, E. (2016). Activated carbon fibers with redox-active functionalities improves the continuous anaerobic biotransformation of 4-nitrophenol. Chemical Engineering Journal, 286, 208–215. https://doi.org/10.1016/j.cej.2015.10.085

    Article  CAS  Google Scholar 

  • APHA, American Public Health Association. (2005). Standard methods for the examination of water and wastewater, 21st Ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA.

  • Ashe, B., Nguyen, L. N., Hai, F. I., Lee, D. J., Van De Merwe, J. P., Leusch, F. D., Price, W. W., & Nghiem, L. D. (2016). Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and effluent toxicity. International Biodeterioration & Biodegradation, 113, 169–176. https://doi.org/10.1016/j.ibiod.2016.04.027

    Article  CAS  Google Scholar 

  • Balapure, K., Jain, K., Bhatt, N., & Madamwar, D. (2016). Exploring bioremediation strategies to enhance the mineralization of textile industrial wastewater through sequential anaerobic-microaerophilic process. International Biodeterioration & Biodegradation, 106, 97–105. https://doi.org/10.1016/j.ibiod.2015.10.008

    Article  CAS  Google Scholar 

  • Basu, R. N. (2020). Seed viability. In Seed quality, Edited by Basra A. S. (pp. 1–44). CRC Press. https://doi.org/10.1201/9781003075226

  • Besegatto, S. V., Costa, F. N., Damas, M. S. P., Colombi, B. L., De Rossi, A. C., de Aguiar, C. R. L., & Immich, A. P. S. (2018). Enzyme treatment at different stages of textile processing: A review. Industrial Biotechnology, 14(6), 298–307. https://doi.org/10.1089/ind.2018.0018

    Article  CAS  Google Scholar 

  • Bhatia, S. K., Vivek, N., Kumar, V., Chandel, N., Thakur, M., Kumar, D., Yang, Y. H., Pugazendhi, A., & Kumar, G. (2021). Molecular biology interventions for activity improvement and production of industrial enzymes. Bioresource Technology, 324, 124596. https://doi.org/10.1016/j.biortech.2020.124596

    Article  CAS  Google Scholar 

  • Bombaywala, S., Mandpe, A., Paliya, S., & Kumar, S. (2021). Antibiotic resistance in the environment: A critical insight on its occurrence, fate, and eco-toxicity. Environmental Science and Pollution Research, 1-28. https://doi.org/10.1007/s11356-021-13143-x

  • Buddemeier, R. W., Fautin, D. G., & Ware, J. R. (1997). Acclimation, adaptation and algal symbioses in reef-building scleractinian corals. In: Proceedings of the Sixth International Conference on Coelenterate Biology, 71–76.

  • Campos, R., Kandelbauer, A., Robra, K. H., Cavaco-Paulo, A., & Gübitz, G. M. (2001). Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. Journal of Biotechnology, 89(2–3), 131–139. https://doi.org/10.1016/S0168-1656(01)00303-0

    Article  CAS  Google Scholar 

  • Cano, M., Solis, M., Diaz, J., Solis, A., Loera, O., & Teutli, M. M. (2011). Biotransformation of indigo carmine to isatin sulfonic acid by lyophilized mycelia from Trametes versicolor. African Journal of Biotechnology, 10(57), 12224–12231. https://doi.org/10.5897/AJB11.944

    Article  CAS  Google Scholar 

  • Chen, Y., He, J., Mu, Y., Huo, Y. C., Zhang, Z., Kotsopoulos, T. A., & Zeng, R. J. (2015). Mathematical modeling of upflow anaerobic sludge blanket (UASB) reactors: Simultaneous accounting for hydrodynamics and bio-dynamics. Chemical Engineering Science, 137, 677–684. https://doi.org/10.1016/j.ces.2015.07.016

    Article  CAS  Google Scholar 

  • Çifçi, D. İ, Atav, R., Güneş, Y., & Güneş, E. (2019). Determination of the color removal efficiency of laccase enzyme depending on dye class and chromophore. Water Science and Technology, 80(1), 134–143. https://doi.org/10.2166/wst.2019.255

    Article  CAS  Google Scholar 

  • Coleman, R. N., & Qureshi, A. A. (1985). Microtox and Spirillum volutans tests for assessing toxicity of environmental samples. Bulletin of Environmental Contamination and Toxicology, 35, 443–451. https://doi.org/10.1007/BF01636536

    Article  CAS  Google Scholar 

  • de Oliveira, G. A. R., Leme, D. M., de Lapuente, J., Brito, L. B., Porredón, C., de Brito Rodrigues, L., Brull, N., Txu Serret, J., Borràs, M., Disner, G. R., Cestari, M. M., & de Oliveira, D. P. (2018). A test battery for assessing the ecotoxic effects of textile dyes. Chemico-Biological Interactions, 291, 171–179. https://doi.org/10.1016/j.cbi.2018.06.026

    Article  CAS  Google Scholar 

  • Díaz, E., Amils, R., & Sanz, J. L. (2003). Molecular ecology of anaerobic granular sludge grown at different conditions. Water Science and Technology, 48(6), 57–64. https://doi.org/10.2166/wst.2003.0357

    Article  Google Scholar 

  • Díaz Báez M., Pica Granados Y., & Ronco A. (2008). Ensayo de toxicidad aguda con el cladócero Daphnia magna. In Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo: la experiencia en México. Ramírez Romero P., Mendoza Cantú A. Ed. Instituto Nacional de Ecología. México. ISBN 978–968–817–882–9.

  • Díaz-Báez, M. C., & Valderrama-Rincon, J. D. (2017). Rapid restoration of methanogenesis in an acidified UASB reactor treating 2,4,6-trichlorophenol (TCP). Journal of Hazardous Materials, 324, 599–604. https://doi.org/10.1016/j.jhazmat.2016.11.031

    Article  CAS  Google Scholar 

  • Durán, U., Monroy, O., Gómez, J., & Ramírez, F. (2008). Biological wastewater treatment for removal of polymeric resins in UASB reactor: Influence of oxygen. Water Science and Technology, 57(7), 1047–1052. https://doi.org/10.2166/wst.2008.058

    Article  CAS  Google Scholar 

  • Finney, D. J. (1971). Probit analysis. Cambridge University Press.

    Google Scholar 

  • Gadow, S. I., Estrada, A. L., & Li, Y. Y. (2022). Characterization and potential of two different anaerobic mixed microflora for bioenergy recovery and decolorization of textile wastewater: Effect of C/N ratio, dye concentration and pH. Bioresource Technology Reports, 17, 100886. https://doi.org/10.1016/j.biteb.2021.100886

  • Gomare, S. S., Tamboli, D. P., Kagalkar, A. N., & Govindwar, S. P. (2009). Eco-friendly biodegradation of a reactive textile dye Golden Yellow HER by Brevibacillus laterosporus MTCC 2298. International Biodeterioration & Biodegradation, 63(5), 582–586. https://doi.org/10.1016/j.ibiod.2009.03.005

    Article  CAS  Google Scholar 

  • Hussain, A., & Dubey, S. K. (2017). Specific methanogenic activity test for anaerobic degradation of influents. Applied Water Science, 7(2), 535–542. https://doi.org/10.1007/s13201-015-0305-z

    Article  CAS  Google Scholar 

  • Kassab, G., Halalsheh, M., Klapwijk, A., Fayyad, M., & Van Lier, J. B. (2010). Sequential anaerobic–aerobic treatment for domestic wastewater–A review. Bioresource Technology, 101(10), 3299–3310. https://doi.org/10.1016/j.biortech.2009.12.039

    Article  CAS  Google Scholar 

  • Khlifi, R., Belbahri, L., Woodward, S., Ellouz, M., Dhouib, A., Sayadi, S., & Mechichi, T. (2010). Decolourization and detoxification of textile industry wastewater by the laccase-mediator system. Journal of Hazardous Materials, 175(1–3), 802–808. https://doi.org/10.1016/j.jhazmat.2009.10.079

    Article  CAS  Google Scholar 

  • Kim, Y. J., & Nicell, J. A. (2006). Laccase-catalysed oxidation of aqueous triclosan. Journal of Chemical Technology & Biotechnology, 81(8), 1344–1352. https://doi.org/10.1002/jctb.1507

    Article  CAS  Google Scholar 

  • Kumar, D., Bhardwaj, R., Jassal, S., Goyal, T., Khullar, A., & Gupta, N. (2021). Application of enzymes for an eco-friendly approach to textile processing. Environmental Science and Pollution Research, 1-11. https://doi.org/10.1007/s11356-021-16764-4

  • Li, W. Y., Chen, B. X., Chen, Z. J., Gao, Y. T., Chen, Z., & Liu, J. (2017). Reactive oxygen species generated by NADPH oxidases promote radicle protrusion and root elongation during rice seed germination. International Journal of Molecular Sciences, 18(1), 110. https://doi.org/10.3390/ijms18010110

    Article  CAS  Google Scholar 

  • Li, Y., Wang, Q., Liu, L., Tabassum, S., Sun, J., & Hong, Y. (2021). Enhanced phenols removal and methane production with the assistance of graphene under anaerobic co-digestion conditions. Science of the Total Environment, 759, 143523. https://doi.org/10.1016/j.scitotenv.2020.143523

    Article  CAS  Google Scholar 

  • Nguyen, L. N., Hai, F. I., Price, W. E., Leusch, F. D., Roddick, F., McAdam, E. J., & Nghiem, L. D. (2014). Continuous biotransformation of bisphenol A and diclofenac by laccase in an enzymatic membrane reactor. International Biodeterioration & Biodegradation, 95, 25–32. https://doi.org/10.1016/j.ibiod.2014.05.017

    Article  CAS  Google Scholar 

  • Puig-Castellví, F., Cardona, L., Bureau, C., Bouveresse, D. J. R., Cordella, C. B., Mazéas, L., ... Rutledge, D. N., & Chapleur, O. (2020). Effect of ammonia exposure and acclimation on the performance and the microbiome of anaerobic digestion. Bioresource Technology Reports, 11, 100488. https://doi.org/10.1016/j.biteb.2020.100488

  • Rifna, E. J., Ramanan, K. R., & Mahendran, R. (2019). Emerging technology applications for improving seed germination. Trends in Food Science & Technology, 86, 95–108. https://doi.org/10.1016/j.tifs.2019.02.029

    Article  CAS  Google Scholar 

  • Rodríguez, F. A., Mateo, M. N., Aceves, J. M., Rivero, E. P., & González, I. (2013). Electrochemical oxidation of bio-refractory dye in a simulated textile industry effluent using DSA electrodes in a filter-press type FM01-LC reactor. Environmental Technology, 34(5), 573–583. https://doi.org/10.1080/09593330.2012.706645

    Article  CAS  Google Scholar 

  • Rodríguez-Couto, S. (2012). Laccases for denim bleaching: An eco-friendly alternative. The Open Textile Journal, 5, 1–7.

    Article  Google Scholar 

  • Rumlova, L., & Dolezalova, J. (2012). A new biological test utilising the yeast Saccharomyces cerevisiae for the rapid detection of toxic substances in water. Environmental Toxicology and Pharmacology, 33(3), 459–464. https://doi.org/10.1016/j.etap.2012.01.008

    Article  CAS  Google Scholar 

  • Sakamoto, M., Ahmed, T., Begum, S., & Huq, H. (2019). Water pollution and the textile industry in Bangladesh: Flawed corporate practices or restrictive opportunities? Sustainability, 11(7), 1–14. https://doi.org/10.3390/su11071951

    Article  Google Scholar 

  • Soares, G. M., Costa-Ferreira, M., & de Amorim, M. P. (2001). Decolorization of an anthraquinone-type dye using a laccase formulation. Bioresource Technology, 79(2), 171–177. https://doi.org/10.1016/S0960-8524(01)00043-8

    Article  CAS  Google Scholar 

  • Solís-Oba, M., Almendáriz, J., & Viniegra-González, G. (2008). Biotechnological treatment for colorless denim and textil wastewater treatment with laccase and ABTS. Revista Internacional de Contaminación Ambiental, 24(1), 5–11. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992008000100001&lng=es&tlng=en.

  • Solís-Oba, M., Eloy-Juárez, M., Teutli, M., Nava, J. L., & González, I. (2009). Comparison of advanced techniques for the treatment of an indigo model solution: Electro incineration, chemical coagulation and enzymatic. Revista Mexicana de Ingeniería Química, 8(3), 275–282. https://www.redalyc.org/articulo.oa?id=62016349006.

  • Tan, Y., Zheng, C., Cai, T., Niu, C., Wang, S., Pan, Y., Lu, X., Zhen, G., Qian, G., & Zhao, Y. (2020). Anaerobic bioconversion of petrochemical wastewater to biomethane in a semi-continuous bioreactor: Biodegradability, mineralization behaviors and methane productivity. Bioresource Technology, 304, 123005. https://doi.org/10.1016/j.biortech.2020.123005

    Article  CAS  Google Scholar 

  • USEPA, U.S. Environmental Protection Agency. (1991). Methods for measuring the acute toxicity of effluent and receiving waters to freshwater and marine organisms, 4th Ed. In: Weber CI (ed.) EPA-600/4–90–027

  • Valls, C., Quintana, E., & Roncero, M. B. (2012). Assessing the environmental impact of biobleaching: Effects of the operational conditions. Bioresource Technology, 104, 557–564. https://doi.org/10.1016/j.biortech.2011.10.044

    Article  CAS  Google Scholar 

  • Wolfenden, B. S., & Willson, R. L. (1982). Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions: Pulse radiolysis studies of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Journal of the Chemical Society, Perkin Transactions, 2(7), 805–812. https://doi.org/10.1039/P29820000805

    Article  Google Scholar 

  • Woodstock, L. W. (1988). Seed imbibition: A critical period for successful germination. Journal of Seed Technology, 1–15. https://www.jstor.org/stable/23432691

  • Xu, E., Chen, M., He, H., Zhan, C., Cheng, Y., Zhang, H., & Wang, Z. (2017). Proteomic analysis reveals proteins involved in seed imbibition under salt stress in rice. Frontiers in Plant Science, 7, 2006. https://doi.org/10.3389/fpls.2016.02006

    Article  Google Scholar 

Download references

Acknowledgements

Méndez-Hernández, JE wants to thank Kevon Roberts for valuable feedback and proofreading.

Funding

This work was supported by the Mexican National Council for Science and Technology (grant number: 268164) and by the Universidad Autónoma Metropolitana.

Author information

Authors and Affiliations

Authors

Contributions

Méndez-Hernández, Jazmín Edith: Conceptualization, methodology, investigation, formal analysis, visualization. Ramírez-Vives, Florina: Resources, supervision. Sobrino-Figueroa, Alma Socorro: Resources, supervision. Garza-López, Paul Misael: Resources, funding acquisition. Loera, Octavio: Conceptualization, supervision, funding acquisition, resources, project administration, writing—reviewing.

Corresponding author

Correspondence to Octavio Loera.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez-Hernández, J.E., Ramírez-Vives, F., Sobrino-Figueroa, A.S. et al. Ecotoxicological Evaluation and Treatment of a Denim-Laundry Wastewater. Water Air Soil Pollut 233, 27 (2022). https://doi.org/10.1007/s11270-022-05500-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05500-4

Keywords

Navigation