Skip to main content
Log in

Time-Series Record of Ambient Platinum Group Elements over a Remote Himalayan Station: Insights over the Baseline Estimate to Judge Future Changes

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Platinum group element (PGE) is among the emerging airborne contaminants mainly emitting from automobile catalysts. The ambient PGE concentration in Asia is expected to rise due to an increase in vehicle sales over the last two decades. Of all the Asian countries, the automobile industry in India has grown at a spectacular rate (> 50% in the last 10 years) and is expected to become a hotspot of global PGE contamination. However, the Indian subcontinent can be regarded as a “white spot” on the global PGE contamination map, indicating the presence of very limited field data. Here, we report the annual time-series record of PGE concentrations of the airborne particulate matter <10-micron-sized (PM10) collected from a high-altitude remote site in the central Himalaya that draws a significant fraction of air mass from the heavily polluted Indo-Gangetic Plain (IGP). The time-series record reveals that the PGE concentrations in PM10 are amongst the lowest recorded levels globally, lack seasonal variability, and are derived from aged catalyst and coal combustion products. We conclude that the annual average Pt, Pd, Rh, and Ru concentrations of 0.88 ± 0.57, 2.07 ± 1.75, 0.14 ± 0.1, and 0.16 ± 0.08 pg m−3, respectively, would serve as a baseline concentration in PM10 to judge the future magnitude of PGE contamination in the Indian subcontinent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

available at https://www.oica.net/category/sales-statistics/

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

References

  • Bocca, B., Caimi, S., Smichowski, P., Gómez, D., & Caroli, S. (2006). Monitoring Pt and Rh in urban aerosols from Buenos Aires Argentina. Science of the Total Environment, 358(1–3), 255–264. https://doi.org/10.1016/j.scitotenv.2005.04.010

    Article  CAS  Google Scholar 

  • BOkhari, S. N. H., Meisel, T., & Walkner, C. (2016). Removal of interferences on platinum in platinum group elements (PGE) reference materials (RM). In The 9th international conference on the analysis of geological and environmental materials (Vol. 9, No. 14.8, p. 2015). Environmental Science and Pollution Research, 23(16), 16790–16801. https://doi.org/10.1007/s11356-016-6880-1

  • Bozlaker, A., Spada, N. J., Fraser, M. P., & Chellam, S. (2014). Elemental characterization of PM2.5 and PM10 emitted from light duty vehicles in the Washburn Tunnel of Houston, Texas: Release of rhodium, palladium, and platinum. Environmental Science and Technology, 48(1), 54–62. https://doi.org/10.1021/es4031003

  • Das, S., & Chellam, S. (2020). Estimating light-duty vehicles’ contributions to ambient PM2.5 and PM10 at a near-highway urban elementary school via elemental characterization emphasizing rhodium, palladium, and platinum. Science of the Total Environment, 747, 141268. https://doi.org/10.1016/j.scitotenv.2020.141268

  • Diong, H. T., Das, R., Khezri, B., Srivastava, B., Wang, X., Sikdar, P. K., & Webster, R. D. (2016). Anthropogenic platinum group element (Pt, Pd, Rh) concentrations in PM10 and PM2.5 from Kolkata, India. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-2854-5

  • Ek, K. H., Morrison, G. M., & Rauch, S. (2004). Environmental routes for platinum group elements to biological materials - A review. Science of the Total Environment, 334–335, 21–38. https://doi.org/10.1016/j.scitotenv.2004.04.027

    Article  CAS  Google Scholar 

  • Ely, J. C., Neal, C. R., Kulpa, C. F., Schneegurt, M. A., Seidler, J. A., & Jain, J. C. (2001). Implications of platinum-group element accumulation along U.S. roads from catalytic-converter attrition. Environmental Science and Technology, 35(19), 3816–3822. https://doi.org/10.1021/es001989s

  • Fritsche, J., & Meisel, T. (2004). Determination of anthropogenic input of Ru, Rh, Pd, Re, Os, Ir and Pt in soils along Austrian motorways by isotope dilution ICP-MS. Science of the Total Environment, 325(1–3), 145–154. https://doi.org/10.1016/j.scitotenv.2003.11.019

    Article  CAS  Google Scholar 

  • Gómez, B., Palacios, M. A., Gómez, M., Morrison, G. M., Rauch, S., McLeod, C., et al. (2002a). Platinum, palladium and rhodium contamination in airborne particulate matter and road dust of European cities. Risk assessment evaluation. Science of the Total Environment, 299, 1–19.

    Article  Google Scholar 

  • Gómez, B., Palacios, M. A., Gómez, M., Sanchez, J. L., Morrison, G., Rauch, S., et al. (2002b). Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities. Science of the Total Environment, 299(1–3), 1–19. https://doi.org/10.1016/S0048-9697(02)00038-4

    Article  Google Scholar 

  • Hays, M. D., Cho, S. H., Baldauf, R., Schauer, J. J., & Shafer, M. (2011). Particle size distributions of metal and non-metal elements in an urban near-highway environment. Atmospheric Environment, 45(4), 925–934. https://doi.org/10.1016/j.atmosenv.2010.11.010

    Article  CAS  Google Scholar 

  • Hughes, A. E., Haque, N., Northey, S. A., & Giddey, S. (2021). Platinum group metals: A review of resources, production and usage with a focus on catalysts. Resources, 10(9), 1–40. https://doi.org/10.3390/resources10090093

    Article  Google Scholar 

  • Kadi, M. W., Ismail, I., Ali, N., & Shaltout, A. A. (2020). Spectroscopic assessment of platinum group elements of PM10 particles sampled in three different areas in Jeddah, Saudi Arabia. International Journal of Environmental Research and Public Health, 17(9), 1–13. https://doi.org/10.3390/ijerph17093339

    Article  CAS  Google Scholar 

  • Kanitsar, K., Koellensperger, G., Hann, S., Limbeck, A., Puxbaum, H., & Stingeder, G. (2003). Determination of Pt, Pd and Rh by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) in size-classified urban aerosol samples. Journal of Analytical Atomic Spectrometry, 18(3), 239–246. https://doi.org/10.1039/b212218a

    Article  CAS  Google Scholar 

  • Lüthi, Z. L., Škerlak B., Kim, S., Lauer, A., Mues, A., & Rupakheti, M. (2014). Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas, 28105–28146. https://doi.org/10.5194/acpd-14-28105-2014

  • Mathur, R., Balaram, V., Satyanarayanan, M., Sawant, S. S., & Ramesh, S. L. (2011). Anthropogenic platinum, palladium and rhodium concentrations in road dusts from Hyderabad city India. Environmental Earth Sciences, 62(5), 1085–1098. https://doi.org/10.1007/s12665-010-0597-0

    Article  CAS  Google Scholar 

  • Mitra, A., & Sen, I. S. (2017). Anthrobiogeochemical platinum, palladium and rhodium cycles of earth: Emerging environmental contamination. Geochimica Et Cosmochimica Acta, 216, 417–432. https://doi.org/10.1016/j.gca.2017.08.025

    Article  CAS  Google Scholar 

  • Mitra, A., Sen, I. S., Pandey, S. K., Velu, V., Reisberg, L., Bizimis, M., et al. (2021). Lead Isotope evidence for enhanced anthropogenic particle transport to the Himalayas during summer months. Environmental Science & Technology, acs.est.1c03830. https://doi.org/10.1021/acs.est.1c03830

  • Mitra, A., Sen, I. S., Walkner, C., & Meisel, T. C. (2021). Simultaneous determination of platinum group elements and rhenium mass fractions in road dust samples using isotope dilution inductively coupled plasma-tandem mass spectrometry after cation exchange separation. Spectrochimica Acta - Part B Atomic Spectroscopy, 177(May 2020), 106052. https://doi.org/10.1016/j.sab.2020.106052

  • Moldovan, M., Veschambre, S., Amouroux, D., Bénech, B., & Donard, O. F. X. (2007). Platinum, palladium, and rhodium in fresh snow from the Aspe Valley (Pyrenees Mountains, France). Environmental Science and Technology, 41(1), 66–73. https://doi.org/10.1021/es061483v

    Article  CAS  Google Scholar 

  • Morcelli, C. P. R., Figueiredo, A. M. G., Sarkis, J. E. S., Enzweiler, J., Kakazu, M., & Sigolo, J. B. (2005). PGEs and other traffic-related elements in roadside soils from São Paulo Brazil. Science of the Total Environment, 345(1–3), 81–91. https://doi.org/10.1016/j.scitotenv.2004.10.018

    Article  CAS  Google Scholar 

  • Morton, O., Puchelt, H., Hernández, E., & Lounejeva, E. (2001). Traffic-related platinum group elements (PGE) in soils from Mexico City. Journal of Geochemical Exploration, 72(3), 223–227. https://doi.org/10.1016/S0375-6742(01)00163-7

    Article  CAS  Google Scholar 

  • Nizam, S., Sen, I. S., Vinoj, V., Galy, V., Selby, D., Azam, M. F., et al. (2020). Biomass-derived provenance dominates glacial surface organic carbon in the Western Himalaya. Environmental Science & Technology, 54(14), 8612–8621. https://doi.org/10.1021/acs.est.0c02710

    Article  CAS  Google Scholar 

  • Pan, S., Sun, Y., Zhang, G., & Chakraborty, P. (2013). Spatial distributions and characteristics of platinum group elements (PGEs) in urban dusts from China and India. Journal of Geochemical Exploration, 128, 153–157. https://doi.org/10.1016/j.gexplo.2013.02.002

    Article  CAS  Google Scholar 

  • Pan, S., Zhang, G., Sun, Y., & Chakraborty, P. (2009). Accumulating characteristics of platinum group elements (PGE) in urban environments China. Science of the Total Environment, 407(14), 4248–4252. https://doi.org/10.1016/j.scitotenv.2009.03.030

    Article  CAS  Google Scholar 

  • Petrucci, F., Bocca, B., Alimonti, A., & Caroli, S. (2000). Determination of Pd, Pt and Rh in airborne particulate and road dust by high-resolution ICP-MS: A preliminary investigation of the emission from automotive catalysts in the urban area of Rome. Journal of Analytical Atomic Spectrometry, 15(5), 525–528. https://doi.org/10.1039/a909792i

    Article  CAS  Google Scholar 

  • Prachiti, P. K., Manikyamba, C., Singh, P. K., Balaram, V., Lakshminarayana, G., Raju, K., et al. (2011). Geochemical systematics and precious metal content of the sedimentary horizons of Lower Gondwanas from the Sattupalli coal field, Godavari Valley India. International Journal of Coal Geology, 88(2–3), 83–100. https://doi.org/10.1016/j.coal.2011.08.005

    Article  CAS  Google Scholar 

  • Ramanathan, V., Li, F., Ramana, M. V., Praveen, P. S., Kim, D., Corrigan, C. E., et al. (2007). Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing. Journal of Geophysical Research, 112(D22), D22S21. https://doi.org/10.1029/2006JD008124

  • Rauch, S., Lu, M., & Morrison, G. M. (2001). Heterogeneity of platinum group metals in airborne particles. Environmental Science and Technology, 35(3), 595–599. https://doi.org/10.1021/es000048c

    Article  CAS  Google Scholar 

  • Rauch, S., Hemond, H. F., Peucker-Ehrenbrink, B., Ek, K. H., & Morrison, G. M. (2005). Platinum group element concentrations and osmium isotopic composition in urban airborne particles from Boston Massachusetts. Environmental Science & Technology, 39(24), 9464–9470. https://doi.org/10.1021/es051310q

    Article  CAS  Google Scholar 

  • Rauch, S., Peucker-Ehrenbrink, B., Molina, L. T., Molina, M. J., Ramos, R., & Hemond, H. F. (2006). Platinum group elements in airborne particles in Mexico city. Environmental Science and Technology, 40(24), 7554–7560. https://doi.org/10.1021/es061470h

    Article  CAS  Google Scholar 

  • Rinkovec, J., Pehnec, G., Godec, R., Davila, S., & Bešlić, I. (2018). Spatial and temporal distribution of platinum, palladium and rhodium in Zagreb air. Science of the Total Environment, 636, 456–463. https://doi.org/10.1016/j.scitotenv.2018.04.295

    Article  CAS  Google Scholar 

  • Schäfer, J., & Puchelt, H. (1998). Platinum-Group-Metals (PGM) emitted from automobile catalytic converters and their distribution in roadside soils. Journal of Geochemical Exploration, 64(1–3–3 pt 1), 307–314. https://doi.org/10.1016/S0375-6742(98)00040-5

  • Sen, I. S. (2013). Platinum group element pollution is a growing concern in countries with developing economy. Environmental Science and Technology, 47(24), 13903–13904. https://doi.org/10.1021/es404890e

    Article  CAS  Google Scholar 

  • Sen, I. S., Mitra, A., Peucker-Ehrenbrink, B., Rothenberg, S. E., Tripathi, S. N., & Bizimis, M. (2016). Emerging airborne contaminants in India: Platinum group elements from catalytic converters in motor vehicles. Applied Geochemistry, 75, 100–106. https://doi.org/10.1016/j.apgeochem.2016.10.006

    Article  CAS  Google Scholar 

  • Sen, I. S., & Peucker-Ehrenbrink, B. (2012). Anthropogenic disturbance of element cycles at the Earth’s surface. Environmental Science and Technology, 46(16), 8601–8609. https://doi.org/10.1021/es301261x

    Article  CAS  Google Scholar 

  • Sen, I. S., Peucker-Ehrenbrink, B., & Geboy, N. (2013). Complex Anthropogenic sources of platinum group elements in aerosols on Cape Cod, USA. Environmental Science & Technology, 47(18), 130827135610007. https://doi.org/10.1021/es4016348

    Article  CAS  Google Scholar 

  • Sugiyama, N., & Shikamori, Y. (2015). Removal of spectral interferences on noble metal elements using MS/MS reaction cell mode of a triple quadrupole ICP-MS. Journal of Analytical Atomic Spectrometry, 30(12), 2481–2487. https://doi.org/10.1039/c5ja00308c

    Article  CAS  Google Scholar 

  • Wichmann, H., Anquandah, G. A. K., Schmidt, C., Zachmann, D., & Bahadir, M. A. (2007). Increase of platinum group element concentrations in soils and airborne dust in an urban area in Germany. Science of the Total Environment, 388(1–3), 121–127. https://doi.org/10.1016/j.scitotenv.2007.07.064

    Article  CAS  Google Scholar 

  • Wiseman, C. L. S., Niu, J., Levesque, C., Chénier, M., & Rasmussen, P. E. (2018). An assessment of the inhalation bioaccessibility of platinum group elements in road dust using a simulated lung fluid. Environmental Pollution, 241, 1009–1017. https://doi.org/10.1016/j.envpol.2018.06.043

    Article  CAS  Google Scholar 

  • Wiseman, C. L. S., & Zereini, F. (2009). Airborne particulate matter, platinum group elements and human health: A review of recent evidence. Science of the Total Environment, 407(8), 2493–2500. https://doi.org/10.1016/j.scitotenv.2008.12.057

    Article  CAS  Google Scholar 

  • Zereini, F., Alsenz, H., Wiseman, C. L. S., Püttmann, W., Reimer, E., Schleyer, R., et al. (2012). Platinum group elements (Pt, Pd, Rh) in airborne particulate matter in rural vs. urban areas of Germany: Concentrations and spatial patterns of distribution. Science of the Total Environment, 416, 261–268. https://doi.org/10.1016/j.scitotenv.2011.11.070

    Article  CAS  Google Scholar 

  • Zereini, F., Alt, F., Messerschmidt, J., Von Bohlen, A., Liebl, K., & Püttmann, W. (2004). Concentration and distribution of platinum group elements (Pt, Pd, Rh) in airborne particulate matter in Frankfurt am Main Germany. Environmental Science and Technology, 38(6), 1686–1692. https://doi.org/10.1021/es030127z

    Article  CAS  Google Scholar 

  • Zereini, F., Alt, F., Messerschmidt, J., Wiseman, C., Feldmann, I., Von Bohlen, A., et al. (2005). Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am Main Germany. Environmental Science and Technology, 39(9), 2983–2989. https://doi.org/10.1021/es040040t

    Article  CAS  Google Scholar 

  • Zhang, L., Wang, Y., Liu, Y., Li, Z., & Li, X. (2019). Variation of platinum group elements (PGE) in airborne particulate matter (PM2.5) in the Beijing urban area, China: A case study of the 2014 APEC summit. Atmospheric Environment, 198(January 2018), 70–76. https://doi.org/10.1016/j.atmosenv.2018.10.044

Download references

Funding

This project was funded by Science & Engineering Research Board (SERB) (Grant EMR/2015/000439) to I.S.S. S.N. and A.M is thankful for the IIT-Kanpur PhD scholarship. I.S.S. and A.M. also thanks Thomas Meisel for his help in PGE analysis and Indo-Austria Grant Number: INT/Austria/BMWF/P-27/2018. All the authors acknowledge the help of Mr. Aditya Tripathi, Mr. Bhupendra Sharma and Mr. Deepak Rana for field sampling supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarwar Nizam.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.88 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizam, S., Mitra, A., Shukla, S. et al. Time-Series Record of Ambient Platinum Group Elements over a Remote Himalayan Station: Insights over the Baseline Estimate to Judge Future Changes. Water Air Soil Pollut 233, 10 (2022). https://doi.org/10.1007/s11270-021-05478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05478-5

Keywords

Navigation