Skip to main content

Advertisement

Log in

Soil Properties, Litter Dynamics and Biomass Carbon Storage in Three-Bamboo Species of Sub-Himalayan Region of Eastern India

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Information on biomass carbon storage in bamboo plantations/groves at local or regional landscapes is crucial to understand its potential in carbon stock management and climate change mitigation. The present work aims to study soil properties, litter dynamics and biomass carbon storage for the three common bamboo species from the Terai region of Indian Eastern Himalayas. Bambusa nutans, Dendrocalamus giganteus and Melocanna baccifera groves were selected for the present study. The soil pH, moisture and electrical conductivity under different bamboo groves of three species varied significantly, but moisture and electrical conductivity responded inconsistently with increasing soil depth. Similarly, the amount of soil available primary nutrients also varied significantly, where soils of M. baccifera grove were quantified with highest amount of these nutrients at all depths. M. baccifera grove produced the highest litter, although the difference with the other two groves was non-significant. The amount of oxidizable soil organic carbon quantified varied significantly among the bamboo groves, with the highest SOC content under the M. baccifera grove. The decomposition rate gradually increased with time, and within 9 months, the entire litter got decomposed. The annual return of nutrients was in the order N > K > P. The total biomass of D. giganteus, B. nutans and M. baccifera was estimated at 270.97, 127.21 and 16.31 Mg ha−1, respectively. Based on the higher R2 and adj R2, and lower AIC and HQC, Model 1 was more appropriate for B. nutans and D. giganteus, whereas Model 2 was suitable for M. baccifera. The ecosystem carbon stock of D. giganteus was significantly (163.28 Mg ha−1) higher than the other two species because of its significantly higher biomass carbon accumulation. This amount of biomass carbon storage and ecosystem carbon stock is comparable with agroforestry and forest ecosystems in the study region or elsewhere. The present study suggests these bamboos can be a feasible option for carbon farming and carbon trading, climate change adaptation and mitigation, apart from its contribution in social and economic contributions to the region’s rural life. Therefore, value addition and nationalizing of bamboo are recommended to improve rural folks’ livelihood. Encouraging value-added bamboo products can be negative feedback to climate change because of their durability and thus permanency of carbon stored in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed in this study has been included in this article. No additional data is associated with this study.

References

  • Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R., & Wood, S. A. (2016). Understanding the dominant controls on litter decomposition. Journal of Ecology, 104, 229–238.

    CAS  Google Scholar 

  • Chakravarty, S., Rai, P., Vineeta, Pala N A and Shukla, G. (2020) Litter production and decomposition in tropical forest. In: Handbook of Research on the Conservation and Restoration of Tropical Dry Forests, ed. Bhadouria, R.; Tripathi, S.; Srivastava, P and Singh, P. IGI Global, Hershey PA, USA. Pp. 193–212

  • Chakravarty, S., & Shukla, G. (2012). Bamboo diversity, utilization and conservation with special reference to West Bengal. Indian Forester, 138, 518–530.

    Google Scholar 

  • Darabant, A., Haruthaithanasan, M., Atkla, W., Phudphong, T., Thanavat, E., & Haruthaithanasan, K. (2014). Bamboo biomass yield and feedstock characteristics of energy plantations in Thailand. Energy Procedia, 59, 134–141.

    Google Scholar 

  • Darcha, G., & Birhane, E. (2015). Biomass and carbon sequestration potential of Oxytenanthera abyssinicain the homestead agroforestry system of Tigray Ethiopia. Journal of Natural Sciences Research, 5, 69–77.

    Google Scholar 

  • Devi, A. S., Singh, K. S., & Lalramnghinglova, H. (2018). Aboveground biomass production of Melocanna baccifera and Bambusa tulda in a sub-tropical bamboo forest in Lengpui, North-East India. International Research Journal of Environmental Sciences, 7, 23–28.

    Google Scholar 

  • Fotis, A. T., Murphy, S. J., Ricart, R. D., Krishnadas, M., Whitacre, J., Wenzel, J. W., Queenborough, S. A., & Comita, L. S. (2018). Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous. Forest Ecology and Management, 106, 561–571.

    CAS  Google Scholar 

  • Gairola S, Sharma C M, Ghildiyal S K and Suyal S (2012) Chemical properties of soils in relation to forest composition in moist temperate valley slopes of Garhwal Himalaya, India. Environmentalist, https://doi.org/10.1007/s10669-012-9420-7.

  • García, P. P., Shaw, E. A., Wall, D. H., & Hattenschwiler, S. (2016). Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecology Letters, 19, 554–563.

    Google Scholar 

  • Gupta, M. K., & Sharma, S. D. (2008). Effect of tree plantation on soil properties, profile morphology and productivity index I Poplar in Uttarakhand. Annals of Forestry, 16, 209–224.

    Google Scholar 

  • Hariprasath, C. N., Sudarshan, A., & Goroji, P. (2014). Quantification of litter fall and assessment of nutrient composition in bamboo (Bambusa vulgaris var. Vulgaris) plantation. International Journal of Forestry and Crop Improvement, 5, 54–60.

    Google Scholar 

  • Hein, L., & van der Meer, J. P. (2012). REDD+ in the context of ecosystem management. Current Opinion in Environmental Sustainability, 4, 604–611.

    Google Scholar 

  • Hoogendoorn, J. C and Benton, A. (2014) Bamboo and rattan production and the implications of globalization. In: Forest and Globalization: Challenges and Opportunities for Sustainable Development, Vol. 711. Nikolakis W and Innes J (Eds.). Third Avenue, New York.

  • IPCC (2003) Good practice guidance for land use, land-use change and forestry. IPCC/OECD/IEA/IGES, Hayama, Japan.

  • Jackson, M. L. (1967). Soil chemistry analysis. Prentice-Hall of India Pvt. Ltd.

    Google Scholar 

  • Joao Carlos de M. Sa, Carlos C C, Warren A D, Lal R, Solismar P, Venske F, Marisa C, Piccolo and Brigitte E F (2001) Organic matter dynamics and carbon sequestration rates for a tillage chronosequence in Brazilian Oxisol. Soil Science Society of America Journal 65: 1486-1499.

  • Jha, M. N., Gupta, M. K., Saxena, A., & Kumar, R. (2003). Soil organic carbon store in different forest in India. Indian Forester, 129, 715–724.

    Google Scholar 

  • Jucker, T., Avacariței, D., Barnoaiea, I., Duduman, G., Bouriaud, O., & Coomes, D. A. (2016). Climate modulates the effects of tree diversity on forest productivity. Journal of Ecology, 104, 388–398.

    Google Scholar 

  • Kerry, R., Goovaerts, P., Rawlins, B. G., & Marchant, B. P. (2012). Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale. Geoderma, 170, 347–358.

    CAS  Google Scholar 

  • Khera, N., Kumar, A., Ram, J., & Tewari, A. (2001). Plant biodiversity assessment in relation to disturbances in mid-elevational forest of Central Himalaya, India. Tropical Ecology, 42, 83–95.

    Google Scholar 

  • Koul, D. N. (2004) Carbon sequestration estimates of various land uses in Terai Zone of West Bengal. M. Sc. Thesis. Uttar Banga Krishi Viswavidyalaya, Pundibari, West Bengal. Unpubl.

  • Krishna, M. P., & Mohan, H. (2017). Litter decomposition in forest ecosystems: A review. Energy, Ecology and Environment, 2, 236–249.

    Google Scholar 

  • Kumar, B. M., Rajesh, G., & Sudheesh, K. G. (2005). Above ground biomass production and nutrient uptake of thorny bamboo [Bambusa bamboos (L.) Voss] in the home gardens of Thrissur Kerala. Journal of Tropical Agriculture, 43, 61–66.

    Google Scholar 

  • Lal, R., Kimble, J. M., & Follett, R. F. (2000). Methodological challenges toward balancing soil C pool and fluxes. In R. Lal, J. M. Kimble, R. F. Follett, & B. A. Stewart (Eds.), Assessment Methods for Soil Carbon Pools (pp. 659–667). CRC/Lewis Publishers.

    Google Scholar 

  • Li, Y., Bao, W., Bongers, F., Chene, B., Chen, G., Guo, K., Jiang, M., Lai, J., Ling, D., Liu, C., Liu, X., Liua, Y., Mi, X., Tian, X., Wang, X., Xu, W., Yan, J., Yang, B., Zheng, Y., & Ma, K. (2019). Drivers of tree carbon storage in subtropical forests. Science of the Total Environment, 654, 684–693.

    CAS  Google Scholar 

  • Lobovikov, M., Schoene, D., & Yiping, L. (2012). Bamboo in climate change and rural livelihood. Mitigation and Adaptation Strategies for Global Change, 17, 261–276.

    Google Scholar 

  • Marín-Spiotta, E., & Sharma, S. (2013). Carbon storage in successional and plantation forest soils: A tropical analysis. Global Ecology and Biogeography, 22, 105–117.

    Google Scholar 

  • Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z. S., Cheng, K., Das, B. S., Field, D., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., … Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86.

    Google Scholar 

  • Mishra, G., Giri, K., Panday, S., Kumar, R., & Bisht, N. S. (2014). Bamboo: Potential resource for eco-restoration of degraded lands. Journal of Biology and Earth Sciences, 4, B130–B136.

    Google Scholar 

  • Mondal, G. K., Pal, S. K., & Roy, A. (2002). Forms of soil phosphorus in Terai zone of West Bengal. Agropedology, 12, 127–132.

    Google Scholar 

  • Muoghalu, J. I., & Odiwe, A. I. (2011). Litter production and decomposition in cacao (Theobroma cacao) and kolanut (Cola nitida) plantations. Esotropia, 17, 79–90.

    Google Scholar 

  • Nair, P. K. R., Buresh, R. J., Mugendi, D. N., & Latt, C. R. (1999). Nutrient cycling in tropical agroforestry systems: Myths and science. In L. E. Buck, J. P. Lassoie, & E. C. M. Fernandes (Eds.), Agroforestry in Sustainable Agricultural Systems (pp. 1–31). CRC Press.

    Google Scholar 

  • Naitham, R., & Bhattacharyya, T. (2004). Quasi-equilibrium of organic carbon in shrink-swell soils of the sub-humid tropics in India under forest, horticultural, and agricultural systems. Australian Journal of Soil Research, 42, 181–188.

    Google Scholar 

  • Nath, A. J., & Das, A. K. (2011a). Carbon storage and sequestration in bamboo-based smallholder homegardens of Barak Valley, Assam. Current Science, 100, 229–233.

    CAS  Google Scholar 

  • Nath, A. J., & Das, A. K. (2011b). Decomposition dynamics of three priority bamboo species of homegardens in Barak Valley, Northeast India. Tropical Ecology, 52, 325–330.

    Google Scholar 

  • Nath, A. J., & Das, A. K. (2012). Carbon pool and sequestration potential of village bamboos in the agroforestry system of northeast India. Tropical Ecology, 53, 287–293.

    CAS  Google Scholar 

  • Nath, A. J., Das, J., & Das, A. K. (2009). Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass and Bioenergy, 33, 1188–1196.

    Google Scholar 

  • Nath, A. J., Lal, R., & Das, A. K. (2015). Managing woody bamboos for carbon farming and carbon trading. Global Ecology and Conservation, 3, 654–664.

    Google Scholar 

  • Nath, A. J., Sileshi, G. W., & Das, A. K. (2018). Bamboo based family forests offer opportunities for biomass production and carbon farming in northeast India. Land Use Policy, 75, 191–200.

    Google Scholar 

  • Nath, A. J., Tiwari, B. K., Sileshi, G. W., Sahoo, U. K., Brahma, B., Deb, S., Devi, N. B., Das, A. K., Reang, D., Chaturvedi, S. S., Tripathi, O. P., Das, D. J., & Gupta, A. (2019). Allometric models for estimation of forest biomass in North East India. Forests, 10, 103.

    Google Scholar 

  • Nisharaj, S., Pauls Amy, S., & Sekaran, S. (2003). Litter fall and nutrient return in four tropical deciduous forests of Western Ghats. My Forest, 39, 25–30.

    Google Scholar 

  • Pande, P. K. (2001). Litter nutrient dynamics of Shorea robusta Gaertn. plantation at Doon Valley (Uttaranchal) India. Indian Forester, 127, 980–994.

    CAS  Google Scholar 

  • Paudel, S., & Sah, J. P. (2003). Physiochemical characteristic of soil in Sal (Shorea robusta) forests in eastern Nepal. Himalayan Journal of Sciences, 1, 107–110.

    Google Scholar 

  • Paul S C (2004) Land use effects on soil characteristics of Terai region of West Bengal. M. Sc. Thesis. Uttar Banga Krishi Viswavidyalaya, West Bengal, India. Unpubl.

  • Polyakova, O., & Billor, N. (2007). Impact of deciduous tree species on litter fall quality, decomposition rates and nutrient circulation in pine stands. Forest Ecology and Management, 253, 11–18.

    Google Scholar 

  • Pongon, R. F. A. R. S. S., Aranico, E. C., & Dagoc, F. L. S. (2016). Carbon stock assessment of bamboo plantations in Northern Mindanao, Philippines. Journal of Biodiversity and Environmental Studies, 9, 97–112.

    Google Scholar 

  • Poorter, L., van der Sande, M. T., Arets, E. J. M. M., Ascarrunz, N., Enquist, B., Finegan, B., Licona, J. C., Martínez-Ramos, M., Mazzei, L., Meave, J. A., Muñoz, R., Nytch, C. J., de Oliveira, A. A., Pérez-García, E. A., Prado-Junior, J., Rodríguez-Velázques, J., Ruschel, A. R., Salgado-Negret, B., Schiavini, I., … Peña-Claros, M. (2017). Biodiversity and climate determine the functioning of Neotropical forests. Global Ecology and Biogeography, 26, 1423–1434.

    Google Scholar 

  • Rai, P., Vineeta, Shukla, G., Manohar, K. A., Bhat, J. A, Kumar, A., Kumar, M., Cabral-Pinto, M., Chakravarty, S. (2021) Carbon storage of single tree and mixed tree dominant species stands in a reserve forest- a case study of the eastern sub-Himalayan region of India. Land 10: 435. https://doi.org/10.3390/land10040435.

  • Ram, N., Sing, L., & Kumar, P. (2010). Bamboo plantation diversity and its economic role in North Bihar India. Nature and Science, 8, 111–115.

    Google Scholar 

  • Rawat, N., Nautiyal, B. P., & Nautiyal, M. C. (2010). Annual nutrients budget for the grazed and ungrazed sites of an alpine expanse in North-West Himalaya, India. The Environmentalist, 30, 54–66.

    Google Scholar 

  • Sangha, K. K., Jalota, R. K., & Midmore, D. J. (2006). Litter production, decomposition and nutrient release in cleared and uncleared pasture systems of central Queensland, Australia. Journal of Tropical Ecology, 22, 177–189.

    Google Scholar 

  • Scharlemann, J. P., Tanner, E. V., Hiederer, R., & Kapos, V. (2014). Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5, 81–91.

    CAS  Google Scholar 

  • Seethalakshmi, K. K., Jijeesh, C. M. and Balagopalan, M. (2009) Bamboo plantations: An approach to carbon sequestration. Proc. National workshop on Global warming and its implications for Kerala. Kerala Forest Research Institute.

  • Shanmughavel P, Peddappaiah R S and Muthu Kumar T (2000) Litter production and nutrient return in Bambusa bamboos Plantation. Journal of Sustainable Forestry 71–82.

  • Sheikh, M. A., & Kumar, M. (2010). Nutrient status and economic analysis of soils in oak and pine forests in Garhwal Himalaya. Journal of American Science, 6, 117–122.

    Google Scholar 

  • Shukla G, Pala N A and Chakravarty S (2017a) Quantification of organic carbon and primary nutrients in litter and soil in a foothill forest plantation of eastern Himalayas. Journal of Forestry Research. https://doi.org/10.1007/s11676-017-0394-7.

  • Shukla, G., Pala, N. A., Gantait, S. and Chakravarty, S. (2017b) Quantitative description of upper storey vegetation at a foothill forest in Indian Eastern Himalayas. In: Plant Biodiversity: Monitoring, Assessment and Conservation, eds. Ansari A A, Gill SS, Abbas Z K and Naeem M. CAB International. Pp. 309–316.

  • Shukla, G. (2010) Vegetation analysis and production potential of Chilapatta reserve forest ecosystem of West Bengal. Ph. D. Thesis. Uttar Banga Krishi Viswavidyalaya, Pundibari.

  • Sileshi, G. W. (2014). A critical review of forest biomass estimation models, common mistakes and corrective measures. Forest Ecology and Management, 329, 237–254.

    Google Scholar 

  • Singh, A. N., & Singh, J. S. (1999). Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. Forest Ecology and Management, 119, 195–207.

    Google Scholar 

  • Singh, P., Dubey, P., & Jha, K. K. (2006). Biomass production and carbon storage at harvest in superior Dendrocalamus strictus Nees plantation in dry deciduous forest region of India. Indian Forester, 29, 353–360.

    Google Scholar 

  • Singh, P., Dubey, P., Jha, K. (2004) Biomass production and carbon storage at harvest age in superior Dendrocalamus strictus plantation in dry deciduous forest region in India. In: Abstract Volume of VIIth World Bamboo Congress, eds. Singh HP and Daldani N K.

  • Singnar, P., Das, M. C., Sileshi, G. W., Brahma, B., Nath, A. J., & Das, A. K. (2017). Allometric scaling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboo Schizostachyum dullooa, Pseudostachyum polymorphum and Melocanna baccifera. Forest Ecology and Management, 395, 81–91.

    Google Scholar 

  • Singnar, P., Sileshi, G. W., Nath, A., Nath, A. J., & Das, A. K. (2021). Modelling the scaling of belowground biomass with aboveground biomass in tropical bamboo. Trees for People, 3, 100054. https://doi.org/10.1016/j.tfp.2020.100054

    Article  Google Scholar 

  • Song, X., Zhou, G., Jiang, H., Yu, S., Fu, J., Li, W., Wang, W., Ma, Z., & Peng, C. (2011). Carbon sequestration by Chinese bamboo forests and their ecological benefits: Assessment of potential, problems, and future challenge. Environmental Reviews, 19, 418–428.

    CAS  Google Scholar 

  • Surekha, K., Reddy, M. N., Rao, K. V., & Cruz, P. C. S. (2004). Evaluation of crop residue management practices for improving yields, nutrient balance and soil health under intensive rice-rice system. Journal of Indian Society of Soil Science, 52, 448–453.

    CAS  Google Scholar 

  • Tandon, H. L. S. (2005). Methods of analysis of soils, plants, waters, fertilizers and organic manures (p. 204p). Fertilizer Development and Consultation Organization, New Delhi.

    Google Scholar 

  • Tariyal, K., Upadhyay, A., Tewari, S., & Melkania, U. (2013). Plant and soil carbon stock and carbon sequestration potential in four major bamboo species of North India. Journal of Advanced Laboratory Research in Biology, 4, 100–108.

    Google Scholar 

  • Thokchom, A., & Yadava, P. S. (2017). Biomass, carbon stock and sequestration potential of Schizostachyumpergracile bamboo forest of Manipur, northeast India. Tropical Ecology, 58, 23–32.

    Google Scholar 

  • Wang, B., Wei, W. J., Liu, C. J., You, W. Z., Niu, X., & Man, R. Z. (2013). Biomass and carbon stock in moso bamboo forests in subtropical china: Characteristics and implications. Journal of Tropical Forest Science, 25, 137–148.

    Google Scholar 

  • Weil, R. R and Brady, N. C. (2017) The nature and properties of soil. 15th Edition. Pearson, Delhi. 1071p.

  • Xayalath S, Hirota I, Tomita S and Nakagawa M (2019) Allometric equations for estimating the aboveground biomass of bamboos in northern Laos. Journal of Forest Research. https://doi.org/10.1080/13416979.2019.1569749.

  • Yen, T. M. (2015). Comparing aboveground structure and aboveground carbon storage of an age series of Moso bamboo forests subjected to different management strategies. Journal of Forest Research, 20, 1–8.

    CAS  Google Scholar 

  • Yen, T. M. (2016). Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing Moso bamboo (Phyllostachyspubescens). Botanical Studies, 57, 10.

    Google Scholar 

  • Yen, T. M., & Wang, C. T. (2013). Assessing carbon storage and carbon sequestration for natural forests, man-made forests, and bamboo forests in Taiwan. International Journal of Sustainable Development and World Ecology, 20, 455–460.

    Google Scholar 

  • Yuen, J. Q., Fung, T., & Ziegler, A. D. (2017). Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. Forest Ecology and Management, 393, 113–138.

    Google Scholar 

  • Zhang, R., Shen, G., Zhang, X., Zhang, L., & Gao, S. (2014). Carbon stock and sequestration of a Phyllostachys edulis forest in Changing, Sichuan Province. Acta Ecologica Sinica, 34, 3592–3601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Shukla.

Ethics declarations

Conflict of Interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.S., Shukla, G., Nath, A.J. et al. Soil Properties, Litter Dynamics and Biomass Carbon Storage in Three-Bamboo Species of Sub-Himalayan Region of Eastern India. Water Air Soil Pollut 233, 12 (2022). https://doi.org/10.1007/s11270-021-05477-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05477-6

Keywords

Navigation