Skip to main content
Log in

Application of Computational Fluid Dynamics in Sedimentation Tank Design and Its Recent Developments: a Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sedimentation tanks are the workhorses of both water treatment plants (WTPs) and waste water treatment plants (WWTPs) and are crucial cogs in their respective treatment machinery. Therefore, it is desirable to operate them at maximum efficiency. But sedimentation tanks are usually overdesigned with a large safety factor to make up for the lack of knowledge and be safe from failures that may be of biological, physicochemical, or hydraulic origin. A new era of settling tank design began after the advent of computational fluid dynamics (CFD). Rapid development in the design and optimisation of sedimentation tanks had taken place since then. This paper aims to provide a review of the state-of-the-art in applying CFD in sedimentation tank design and analysis, focussing on the main factors that affect its hydrodynamics — density current, inlet and outlet configuration, baffle structures, wind, and a special type of settling tank called lamella settler or inclined plate settler (IPS), whose design may be the saviour for the numerous ageing settling tanks currently in existence. Although improvement in settling tank design went up by leaps and bounds in recent years with the help of CFD, researchers still have to compromise on many vital areas due to lack of computational power. However, with exciting revolutionary developments in computational technology like quantum computing that promises a monumental leap in computational power, a full-scale realistic transient simulation of settling tank incorporating sub-models for flocculation, sludge rheology, thermal, and wind all at once is hopeful in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Aalderink, R. H., Lijklema, L., Breukelman, J., Van Raaphorst, W., & Brinkman, A. G. (1985). Quantification of wind induced resuspension in a shallow lake. Water Science and Technology, 17(6–7), 903–914.

    Article  Google Scholar 

  • Abdel-Gawad, S., & McCorquodale, J. A. (1985). Simulation of particle concentration distribution in primary clarifiers. Canadian Journal of Civil Engineering, 12(3), 454–463. https://doi.org/10.1139/l85-053

    Article  Google Scholar 

  • Adams, E. W., & Rodi, W. (1990). Modeling flow and mixing in sedimentation tanks. Journal of Hydraulic Engineering, 116(7), 895–913. https://doi.org/10.1061/(asce)0733-9429(1990)116:7(895)

    Article  Google Scholar 

  • Ahmed, F. H., Kamel, A., & Jawad, S. A. (1996). Experimental determination of the optimal location and contraction of sedimentation tank baffles. Water, Air, and Soil Pollution, 92(3), 251–271.

    Article  CAS  Google Scholar 

  • Akiyama, J., & Stefan, H. G. (1984). Plunging flow into a reservoir: Theory. Journal of Hydraulic Engineering, 110(4), 484–499. https://doi.org/10.1061/(asce)0733-9429(1984)110:4(484)

    Article  Google Scholar 

  • Al-Mafraji, E. A., & Al-Mussawy, H. A. (2021). Using lower and upper baffle arrangements to enhance sedimentation tank performance using lower and upper baffle arrangements to enhance sedimentation tank performance. 4th International Conference on Engineering Sciences (ICES 2020). https://doi.org/10.1088/1757-899X/1067/1/012009

  • Al-Sammarraee, M., & Chan, A. (2009). Large-eddy simulations of particle sedimentation in a longitudinal sedimentation basin of a water treatment plant. Part 2: The effects of baffles. Chemical Engineering Journal, 152(2–3), 315–321. https://doi.org/10.1016/j.cej.2009.01.052

    Article  CAS  Google Scholar 

  • de Almeida, R. A., de Rezende, R. V. P., Mataczinski, A. K., Khan, A. I., Camilo, R., Ravagnani, M. A. S. S., & Lautenschlager, S. R. (2020). Three-dimensional simulation of a secondary circular settling tank: Flow pattern and sedimentation process. Brazilian Journal of Chemical Engineering, 37(2), 333–350. https://doi.org/10.1007/s43153-020-00030-0

    Article  Google Scholar 

  • Alonso, G., & Alex, M. J. (2006). Optimum design of your center well: Use of a CFD model to understand the balance between flocculation and improved hydrodynamics. Proceedings of the Water Environment Federation, 2006(13), 263–280. https://doi.org/10.2175/193864706783710587

    Article  Google Scholar 

  • Anderson, J. D., & Wendt, J. (1995). Computational fluid dynamics (Vol. 206). Springer.

    Google Scholar 

  • Asgharzadeh, H., Firoozabadi, B., & Afshin, H. (2011). Experimental investigation of effects of baffle configurations on the performance of a secondary sedimentation tank. Scientia Iranica, 18(4 B), 938–949. https://doi.org/10.1016/j.scient.2011.07.005

    Article  CAS  Google Scholar 

  • Asgharzadeh, H., Firoozabadi, B., & Afshin, H. (2012). Experimental and numerical simulation of the effect of particles on flow structures in secondary sedimentation tanks. Journal of Applied Fluid Mechanics.

  • Augustus, M., Baler, J. M., Chen, C., Daigger, G. T., Griffith, G. T., & TeKippe, R. J. (1985). Clarifier design. Lancaster Press USA.

    Google Scholar 

  • Bajcar, T., Gosar, L., Širok, B., Steinman, F., & Rak, G. (2010). Influence of flow field on sedimentation efficiency in a circular settling tank with peripheral inflow and central effluent. Chemical Engineering and Processing: Process Intensification, 49(5), 514–522.

    Article  CAS  Google Scholar 

  • Bajcar, T., Steinman, F., Širok, B., & Prešeren, T. (2011). Sedimentation efficiency of two continuously operating circular settling tanks with different inlet- and outlet arrangements. Chemical Engineering Journal, 178, 217–224. https://doi.org/10.1016/j.cej.2011.10.054

    Article  CAS  Google Scholar 

  • Boycott, A. E. (1920). Sedimentation of blood corpuscles. Nature, 104(2621), 532.

    Article  CAS  Google Scholar 

  • Bretscher, U., Krebs, P., & Hager, W. H. (1992). Improvement of flow in final settling tanks. Journal of Environmental Engineering, 118(3), 307–321. https://doi.org/10.1061/(asce)0733-9372(1992)118:3(307)

    Article  CAS  Google Scholar 

  • Bridgeman, J., Jefferson, B., & Parsons, S. A. (2009). Computational fluid dynamics modelling of flocculation in water treatment: A review. Engineering Applications of Computational Fluid Mechanics, 3(2), 220–241.

    Article  Google Scholar 

  • Brouckaert, C. J., & Buckley, C. A. (1999). The use of computational fluid dynamics for improving the design and operation of water and wastewater treatment plants. Water Science and Technology, 40(4–5), 81–89. https://doi.org/10.1016/S0273-1223(99)00488-6

    Article  CAS  Google Scholar 

  • Cacchione, D. A., & Southard, J. B. (1974). Incipient sediment movement by shoaling internal gravity waves. Journal of Geophysical Research, 79(15), 2237–2242.

    Article  Google Scholar 

  • Camp, T. R. (1945). Sedimentation and the design of settling tanks. Transactions of the American Society of Civil Engineers, 5027(1), 1–5. https://doi.org/10.1061/TACEAT.0005912

    Article  Google Scholar 

  • Cao, Y., Romero, J., & Aspuru-Guzik, A. (2018). Potential of quantum computing for drug discovery. IBM Journal of Research and Development, 62(6), 1–6.

    Article  Google Scholar 

  • Celik, I., Rodi, W., & Stamou, A. I. (1987). Prediction of hydrodynamic characteristics of rectangular settling tanks.0((eds.), Washington, U.S.A., Hemisphere Publishing Corp., 1987, pp.641–651. (ISBN 3–540–17284-X)), 0–0. https://www.sid.ir/en/journal/ViewPaper.aspx?ID=126373

  • Chen, T. S. (1970). Circular tubes for high-rate sedimentation. MS Thesis, National Taiwan University, China.

  • Clercq, B. De. (2004). Computational fluid dynamics of settling tanks: Development of experiments and rheological, settling, and scraper submodels.

  • Coe, H.S., Clevenger, & G.H. (1916). Coe and Clevenger Original Paper | Colloid | Liquids. https://www.scribd.com/document/170303982/Coe-and-Clevenger-Original-Paper

  • Crosby, R. M. (1984). Hydraulic characteristics of activated sludge secondary clarifiers.

  • Culp, G., Hansen, S., & Richardson, G. (1968). High-rate sedimentation in water treatment works. Journal-American Water Works Association, 60(6), 681–698.

    Article  Google Scholar 

  • Das, S., Bai, H., Wu, C., Kao, J. H., Barney, B., Kidd, M., & Kuettel, M. (2016). Improving the performance of industrial clarifiers using three-dimensional computational fluid dynamics. Engineering Applications of Computational Fluid Mechanics, 10(1), 130–144. https://doi.org/10.1080/19942060.2015.1121518

    Article  Google Scholar 

  • Deininger, A. (1994). Influence of combined sewage influent on secondary clarifiers of activated sludge plants. Water Science and Technology, 30(4), 67.

    Article  CAS  Google Scholar 

  • Deininger, A., Holthausen, E., & Wilderer, P. A. (1998). Velocity and solids distribution in circular secondary clarifiers: Full scale measurements and numerical modelling. Water Research, 32(10), 2951–2958. https://doi.org/10.1016/S0043-1354(98)00072-4

    Article  CAS  Google Scholar 

  • Deldar, S., Dehkordi, A. J., & Arani, H. K. (2018). Investigating the effect of flow entrance and existence of baffle on sedimentation efficiency using Discrete Phase Model ( DPM ). Transport Phenomena In Nano And Micro Scales, 6, 29–36. https://doi.org/10.22111/tpnms.2018.23893.1143

    Article  Google Scholar 

  • Demir, A. (1995). Determination of settling efficiency and optimum plate angle for plated settling tanks. Water Research, 29(2), 611–616. https://doi.org/10.1016/0043-1354(94)00165-4

    Article  CAS  Google Scholar 

  • DeVantier, B. A., & Larock, B. E. (1987). Modeling sediment-induced density currents in sedimentation basins. Journal of Hydraulic Engineering, 113(1), 80–94. https://doi.org/10.1061/(asce)0733-9429(1987)113:1(80)

    Article  Google Scholar 

  • Doroodchi, E., Galvin, K. P., & Fletcher, D. F. (2005). The influence of inclined plates on expansion behaviour of solid suspensions in a liquid fluidised bed — A computational fluid dynamics study. Powder Technology, 156(1), 1–7. https://doi.org/10.1016/j.powtec.2005.05.057

    Article  CAS  Google Scholar 

  • Ekama, G. A., & Marais, P. (2004). Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model. Water Research, 38(3), 495–506. https://doi.org/10.1016/j.watres.2003.10.026

    Article  CAS  Google Scholar 

  • Ekama, G. A., Pitman, A. R., Smollen, M., & Marais, G. V. R. (1997). Secondary settling tanks. https://www.researchgate.net/publication/265205347

  • Esler, J. K., Hartnett, W. J., & Haug, R. A. (2001). Enhanced flocculation and energy dissipation feedwell assembly for water and wastewater treatment clarifiers. Google Patents.

  • Fadel, A. A., & Baumann, E. R. (1990). Tube settler modeling. Journal of Environmental Engineering, 116(1), 107–124.

    Article  CAS  Google Scholar 

  • Fan, L., Xu, N., Ke, X., & Shi, H. (2007). Numerical simulation of secondary sedimentation tank for urban wastewater. Journal of the Chinese Institute of Chemical Engineers, 38(5–6), 425–433.

    Article  CAS  Google Scholar 

  • Ferziger, J. H., Perić, M., & Street, R. L. (2002). Computational methods for fluid dynamics (Vol. 3). Springer.

    Book  Google Scholar 

  • Fischerstrom, C. N. H., Isgard, E., & Larsen, I. (1967). Settling of activated sludge in horizontal tanks. Journal of the Sanitary Engineering Division, 93(3), 73–83.

    Article  Google Scholar 

  • Fletcher, Ca. (1991). Computational techniques for fluid dynamics, Volume II (2"* Ed). Springer-Yerlag.

  • Fluent, A. (2019). Ansys fluent theory guide. In ANSYS Inc., USA (Vol. 15317, pp. 724–746).

  • Fujisaki, K., & Terashi, M. (2005). Improvement of settling tank performance using inclined tube settlers. 80, 475–484

  • Gao, H., & Stenstorm, M. K. (2017). Computational fluid dynamics applied to secondary clarifier analysis. World Environmental and Water Resources Congress, 2017, 301–315.

    Google Scholar 

  • Gao, H., & Stenstrom, M. K. (2019a). Evaluating the effects of inlet geometry on the limiting flux of secondary settling tanks with CFD model and 1D flux theory model. Journal of Environmental Engineering, 145(10), 04019065. https://doi.org/10.1061/(asce)ee.1943-7870.0001582

    Article  CAS  Google Scholar 

  • Gao, H., & Stenstrom, M. K. (2019b). Generalizing the effects of the baffling structures on the buoyancy-induced turbulence in secondary settling tanks with eleven different geometries using CFD models. Chemical Engineering Research and Design, 143, 215–225. https://doi.org/10.1016/j.cherd.2019.01.015

    Article  CAS  Google Scholar 

  • Gao, H., & Stenstrom, M. K. (2019). The influence of wind in secondary settling tanks for wastewater treatment—A computational fluid dynamics study. Part I: Circular secondary settling tanks. Water Environment Research, 92(4), 541–550. https://doi.org/10.1002/wer.1241

    Article  CAS  Google Scholar 

  • Gao, H., & Stenstrom, M. K. (2019d). The influence of wind in secondary settling tanks for wastewater treatment — A computational fluid dynamics study. Part II: Rectangular secondary settling tanks. Water Environment Research, 1–11https://doi.org/10.1002/wer.1244

  • Gao, H., & Stenstrom, M. K. (2020). Development and applications in computational fluid dynamics modeling for secondary settling tanks over the last three decades: A review. Water Environment Research, 92(6), 796–820. https://doi.org/10.1002/wer.1279

    Article  CAS  Google Scholar 

  • Gerges, H. Z., & McCorquodale, J. A. (1998). Winter temperature gradients in circular clarifiers. Water Environment Research, 72(2), 248–249. https://doi.org/10.2175/106143098X123642

    Article  Google Scholar 

  • Ghawi, A. H., & Kriš, J. (2008). Design and optimisation of settling tanks performances in Slovakia. XX-TH Jubilee-National, VIII-TH International Scientific and Technical Conference "Water Supply and Water Quality” Poland 15–18 June 2008.

  • Ghawi, A. H., & Kriš, J. (2012). A computational fluid dynamics model of flow and settling in sedimentation tanks. 10(27160), 19–34

  • Gkesouli, A., & Stamou, A. (2017). CFD modelling of wind effect on rectangular settling tanks of water treatment plants. European Water, 58, 61–67.

    Google Scholar 

  • Goodarzi, D., Lari, K. S., & Alighardashi, A. (2018). A large eddy simulation study to assess low-speed wind and baffle orientation effects in a water treatment sedimentation basin. Water Science and Technology, 2018(2), 412–421. https://doi.org/10.2166/wst.2018.171

    Article  CAS  Google Scholar 

  • Goula, A. M., Kostoglou, M., Karapantsios, T. D., & Zouboulis, A. I. (2008). A CFD methodology for the design of sedimentation tanks in potable water treatment. Case study: The influence of a feed flow control baffle. Chemical Engineering Journal, 140(1–3), 110–121. https://doi.org/10.1016/j.cej.2007.09.022

    Article  CAS  Google Scholar 

  • Goula, A. M., Kostoglou, M., Karapantsios, T. D., & Zouboulis, A. I. (2008b). The effect of influent temperature variations in a sedimentation tank for potable water treatment — A computational fluid dynamics study. Water Research, 42(13), 3405–3414. https://doi.org/10.1016/j.watres.2008.05.002

    Article  CAS  Google Scholar 

  • Griborio, A. (2004). Secondary clarifier modeling: A multi-process approach. In University of New Orleans Theses and Dissertations. https://scholarworks.uno.edu/td/173

  • Hadi, G. A., & Kriš, J. (2009). A CFD methodology for the design of rectangular sedimentation tanks in potable water treatment plants. Journal of Water Supply: Research and Technology - AQUA, 58(3), 212–220. https://doi.org/10.2166/aqua.2009.027

    Article  Google Scholar 

  • Hazen, A. (1904). On sedimentation. Transactions of the American Society of Civil Engineers, 53(53), 45–71. https://doi.org/10.1061/TACEAT.0001655

    Article  Google Scholar 

  • Heydari, M. M., Bajestan, M. S., Kashkuli, H. A., & Sedghi, H. (2013). The effect angle of baffle on the performance of settling basin. World Applied Sciences Journal, 21(6), 829–837. https://doi.org/10.5829/idosi.wasj.2013.21.6.30

    Article  Google Scholar 

  • Hirom, K., & Devi, T. T. (2021). CFD simulation for optimum gap between the plates in sedimentation tank retrofitted with inclined plates. Innovative Trends in Hydrological and Environmental Systems (ITHES), 136–137.

  • Imam, E., McCorquodale, J. A., & Bewtra, J. K. (1983). Numerical modeling of sedimentation tanks. Journal of Hydraulic Engineering, 109(12), 1740–1754. https://doi.org/10.1061/(asce)0733-9429(1983)109:12(1740)

    Article  Google Scholar 

  • Jayanti, S., & Narayanan, S. (2004). Computational study of particle-eddy interaction in sedimentation tanks. Journal of Environmental Engineering, 130(1), 37–49. https://doi.org/10.1061/(asce)0733-9372(2004)130:1(37)

    Article  CAS  Google Scholar 

  • Kanamori, Y., Yoo, S.-M., Pan, W. D., & Sheldon, F. T. (2006). A short survey on quantum computers. International Journal of Computers and Applications, 28(3), 227–233.

    Article  Google Scholar 

  • Kawamura, S. (1981). Hydraulic scale-model simulation of the sedimentation process. Journal / American Water Works Association, 73(7), 372–379. https://doi.org/10.1002/j.1551-8833.1981.tb04735.x

    Article  Google Scholar 

  • Kawamura, S., & Lang, J. (1986). Re-evaluation of launders in rectangular sedimentation basins. Journal (Water Pollution Control Federation), 1124–1128.

  • Kenney, B. C. (1985). Sediment resuspension and currents in Lake Manitoba. Journal of Great Lakes Research, 11(2), 85–96.

    Article  CAS  Google Scholar 

  • Khademi, M., Omid, M. H., & Hourfar, A. (2007). Experimental and numerical investigation of the effect of submerged baffle on the trap efficiency of settling basin. Journal of Hydraulics, 2(1), 11–24.

    Google Scholar 

  • Khezri, S. M. (2003). Water treatment plant optimization conventional dynamic programming method. In Environmental engineering Ph. D Thesis, Tarbiat Modarres University.

  • Khezri, S. M., Biati, A., & Erfani, Z. (2012). Determination of the effect of wind velocity and direction changes on turbidity removal in rectangular sedimentation tanks. Water Science and Technology, 66(12), 2814–2820. https://doi.org/10.2166/wst.2012.533

    Article  Google Scholar 

  • Kim, H. S., Shin, M. S., Jang, D. S., Jung, S. H., & Jin, J. H. (2005). Study of flow characteristics in a secondary clarifier by numerical simulation and radioisotope tracer technique. Applied Radiation and Isotopes, 63(4), 519–526.

    Article  CAS  Google Scholar 

  • King, B. M. (2018). The viability of quantum computing. Missouri S&t’s Peer to Peer, 2(1), 5.

    Google Scholar 

  • Kleine, D., & Reddy, B. D. (2005). Finite element analysis of flows in secondary settling tanks. International Journal for Numerical Methods in Engineering, 64(7), 849–876.

    Article  Google Scholar 

  • Kowalski, W. P. (2004). The method of calculations of the sedimentation efficiency in tanks with lamella packets. Archives of Hydroengineering and Environmental Mechanics, 51(4), 371–385.

    Google Scholar 

  • Krebs, P. (1991). The hydraulics of final settling tanks. Water Science and Technology, 23(4–6), 1037–1046. https://doi.org/10.2166/wst.1991.0555

    Article  Google Scholar 

  • Krebs, P. (1995). Success and shortcomings of clarifier modelling. Water Science and Technology, 31(2), 181–191. https://doi.org/10.1016/0273-1223(95)00191-O

    Article  Google Scholar 

  • Kriš, J., & Hadi, G. A. (2007). Design and optimization of sedimentation tank in slovakia with CFD modeling. International Symposium on Water Management and Hydraulic Engineering, 9(January2017), 1–13.

    Google Scholar 

  • Kriš, J., & Hadi, G. A. (2010). Zlepšenie činnosti sedimentačnej nádrže al-wathba pomocou cfd modelu - počítačovej simulácie prudenia kvapalín. Journal of Hydrology and Hydromechanics, 58(3), 201–210. https://doi.org/10.2478/v10098-010-0019-8

    Article  Google Scholar 

  • Larsen, P. (1977). On the hydraulics of rectangular settling basins: experimental and theoretical studies. Department of Water Resources Engineering, Lund Institute of Technology ….

  • Laskovski, D., Duncan, P., Stevenson, P., Zhou, J., & Galvin, K. P. (2006). Segregation of hydraulically suspended particles in inclined channels. Chemical Engineering Science, 61(22), 7269–7278.

    Article  CAS  Google Scholar 

  • Lau, Y. L. (1994). Temperature effect on settling velocity and deposition of cohesive sediments: Influence de la témperature sur la vitesse de chute et le dépôt de sédiments cohesifs. Journal of Hydraulic Research, 32(1), 41–51. https://doi.org/10.1080/00221689409498788

    Article  Google Scholar 

  • Lekang, O. I., Marie Bomo, A., & Svendsen, I. (2001). Biological lamella sedimentation used for wastewater treatment. Aquacultural Engineering, 24(2), 115–127. https://doi.org/10.1016/S0144-8609(00)00068-6

    Article  Google Scholar 

  • Lengricht, J., Graw, K.-U., & Schulz, A. (2000). A new concept for circular sedimentation basins. Seoul: Proceedings of the 4th Int Conf Hydroscience Eng-ICHE 2000.

  • Leung, W. F., & Probstein, R. F. (1983). Lamella and tube settlers. 1. Model and operation. Industrial & Engineering Chemistry Process Design and Development, 22(1), 58–67.

    Article  CAS  Google Scholar 

  • Lopez, P. R., Lavín, A. G., López, M. M. M., & de las Heras, J. L. B. (2008). Flow models for rectangular sedimentation tanks. Chemical Engineering and Processing: Process Intensification, 47(9–10), 1705–1716.

    Article  Google Scholar 

  • van Marle, C., & Kranenburg, C. (1994). Effects of gravity currents in circular secondary clarifiers. Journal of Environmental Engineering, 120(4), 943–960. https://doi.org/10.1061/(asce)0733-9372(1994)120:4(943)

    Article  Google Scholar 

  • Matko, T., Fawcett, N., Sharp, A., & Stephenson, T. (1996). Recent progress in the numerical modelling of wastewater sedimentation tanks. Process Safety and Environmental Protection, 74(4), 245–258. https://doi.org/10.1205/095758296528590

    Article  CAS  Google Scholar 

  • McCorquodale, J. A., La Motta, E. J., Griborio, A., Homes, J., & Georgiou, I. (2004). Development of software for modeling activated sludge clarifier systems. In A Technology Transfer Report, Department of Civil and Environmental Engineering, University of New Orleans, LA (Vol. 70148).

  • McCorquodale, J. A., & Zhou, S. (1993). Effects of hydraulic and solids loading on clarifier performance. Journal of Hydraulic Research, 31(4), 461–478. https://doi.org/10.1080/00221689309498870

    Article  Google Scholar 

  • Merrill, M. S., Tetreault, M., Parker, D. S., Vitasovic, Z., McCorquodale, J. A., & Ji, Z. (1992). Mathematical simulation of secondary clarifiers coupled with activated sludge reactors. Proc. 65th Annual WEF Conference and Exposition on Water Quality and Wastewater Treatment, 20–24.

  • Metcalf, L., Eddy, H. P., & Tchobanoglous, G. (1991). Wastewater engineering: treatment, disposal, and reuse (Vol. 4). McGraw-Hill New York.

  • Mostafa, H., Emad, S. E., & Usama, F. M. (2005). Modeling the effect of inlet baffle longitudinal and vertical positions on the settling tank performance with computational fluid dynamics. Al-Azhar Unversity Civil Engineering Research Magazine (CERM), 40(2), 113–140.

    Google Scholar 

  • Murphy, K. L. (1964). Tracer studies in circular sedimentation basins. Proc. 18th Ind. Waste Conf., Purdue Univ., Ext. Ser, 115, 374.

  • Nakamura, H. (1937). La cause de l’acceleration de la vitesse de sedimentation des suspensions dans les recipients inclines. Keijo Journal of Medicine, 8, 256–296.

    Google Scholar 

  • Nemerow, N. L. (1978). Industrial water pollution. Origins characteristics and treatment. Addison-Wesley Publishing Co. Reading, Mass.,(4 NEM), 738.

  • Nguyen, T. A., Dao, N. T. M., Liu, B., Terashima, M., & Yasui, H. (2019a). Computational fluid dynamics study on attainable flow rate in a lamella settler by increasing inclined plates. Journal of Water and Environment Technology, 17(2), 76–88. https://doi.org/10.2965/jwet.18-044

    Article  Google Scholar 

  • Nguyen, T. A., Dao, N. T. M., Terashima, M., & Yasui, H. (2019b). Improvement of suspended solids removal efficiency in sedimentation tanks by increasing settling area using computational fluid dynamics. Journal of Water and Environment Technology, 17(6), 420–431. https://doi.org/10.2965/JWET.19-052

    Article  Google Scholar 

  • Nitsa, M., Gkesouli, A., Stamou, A. I., Rutschmann, P., & Bui, M. D. (2015). Modeling the effect of wind in rectangular settling tanks for water supply. Desalination and Water Treatment, 57(54), 26345–26354. https://doi.org/10.1080/19443994.2016.1195290

    Article  CAS  Google Scholar 

  • Okoth, G., Centikaya, S., Brüggemann, J., & Thöming, J. (2008). On hydrodynamic optimisation of multi-channel counter-flow lamella settlers and separation efficiency of cohesive particles. Chemical Engineering and Processing: Process Intensification, 47(1), 90–100. https://doi.org/10.1016/j.cep.2007.08.003

    Article  CAS  Google Scholar 

  • Park, N. S., Kim, S.-S., & Jung, N.-C. (2008). Remodeling a sedimentation basin outlet structure for improving performance. Environmental Engineering Science, 25(6), 887–894. https://doi.org/10.1089/ees.2007.0157

    Article  CAS  Google Scholar 

  • Park, N. S., Kim, S. S., Lee, Y. J., & Wang, C. K. (2014). Effects of longitudinal baffles on particles settling in a sedimentation basin. Water Science and Technology, 69(6), 1212–1218. https://doi.org/10.2166/wst.2013.818

    Article  CAS  Google Scholar 

  • Park, N. S., Lim, J. L., Lee, S. J., Lee, K. H., & Kwon, S. B. (2006a). Examining the effect of transverse troughs on hydrodynamic behavior in a sedimentation basin with CFD simulation and ADV technique. Journal of Water Supply: Research and Technology - AQUA, 55(4), 247–256. https://doi.org/10.2166/aqua.2006.010

    Article  Google Scholar 

  • Park, N. S., Lim, J. L., Lee, S. J., Lee, K. H., & Kwon, S. B. (2006b). Identification and prioritization of performancelimiting factors for water treatment plantoptimization in Korea. Water Science and Technology: Water Supply, 6(2), 71–76.

    CAS  Google Scholar 

  • Parker, D., Butler, R., Finger, R., Fisher, R., Fox, W., Kido, W., Merrill, S., Newman, G., Pope, R., Slapper, J., & Wahlberg, E. (1996). Design and operations experience with flocculator-clarifiers in large plants. Water Science and Technology, 33(12), 163–170. https://doi.org/10.1016/0273-1223(96)00470-2

    Article  CAS  Google Scholar 

  • Parker, D., & Stenquist, R. (1986). Flocculator-clarifier performance. Water Pollution Control Federation, 214–219.

  • Patankar, S. (2018). Numerical heat transfer and fluid flow. Taylor & Francis.

    Book  Google Scholar 

  • Patziger, M., Kainz, H., Hunze, M., & Józsa, J. (2012). Influence of secondary settling tank performance on suspended solids mass balance in activated sludge systems. Water Research, 46(7), 2415–2424. https://doi.org/10.1016/j.watres.2012.02.007

    Article  CAS  Google Scholar 

  • Phiri, Z., Saito, Y., Ishak, B. B., Harada, H., & Nakajima, S. (1996). Optimization of the performance of hoppered peripheral-feed clarifiers. Water Science and Technology, 33(8), 125–133. https://doi.org/10.1016/0273-1223(96)00268-5

    Article  CAS  Google Scholar 

  • Ponder, E. (1925). On sedimentation and rouleaux formation—I. Quarterly Journal of Experimental Physiology: Translation and Integration, 15(3), 235–252.

    Article  CAS  Google Scholar 

  • Quarini, G., Innés, H., Smith, M., & Wise, D. (1996). Hydrodynamic modelling of sedimentation tanks. Proceedings of the Institution of Mechanical Engineers, Part e: Journal of Process Mechanical Engineering, 210(2), 83–91. https://doi.org/10.1243/PIME_PROC_1996_210_300_02

    Article  Google Scholar 

  • Razmi, A. M., Bakhtyar, R., Firoozabadi, B., & Barry, D. A. (2013). Experiments and numerical modeling of baffle configuration effects on the performance of sedimentation tanks. Canadian Journal of Civil Engineering, 40(2), 140–150. https://doi.org/10.1139/cjce-2012-0176

    Article  CAS  Google Scholar 

  • Razmi, A. M., Firoozabadi, B., & Ahmadi, G. (2009). Experimental and numerical approach to enlargement of performance of primary settling tanks. Journal of Applied Fluid Mechanics, 2(1), 1–12.

    Google Scholar 

  • Roache, P. J. (1967). Computational fluid dynamics, Hermosa Publishers, Albuquerque, NM, 1972. Zienkiewicz, 0. C., The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, London.

  • Robescu, D., Mandiş, C., & Robescu, D. (2010). Design lamellar secondary settling tank using numerical modeling. UPB Scientific Bulletin, Series d: Mechanical Engineering, 72(4), 211–216.

    Google Scholar 

  • Robinson, J. H. (1974). A study of density currents in final sedimentation basins. University of Kansas, Civil Engineering.

  • Rodi, W. (1993). Turbulence models and their application in hydraulics. CRC Press.

    Google Scholar 

  • Sajjadi, S. M., Bejestan, M. S., & Bina, M. (2005). Effect of baffle in irrigation settling basin with CFD. 3th national water resources water of Iran. Tabriz (In Persian).

  • Saleh, A. M., & Hamoda, M. F. (1999). Upgrading of secondary clarifiers by inclined plate settlers. Water Science and Technology, 40(7), 141–149.

    Article  Google Scholar 

  • Samstag, R. W., Dittmar, D. F., Vitasovic, Z., Mccorquodale, J. A., Randal, W., Dittmar, F., & Mccorquodale, J. A. (1992). Underflow Secondary Geometry Sedimentation in., 64(3), 204–212. https://doi.org/10.2175/WER.64.3.3

    Article  CAS  Google Scholar 

  • Samstag, R. W., Ducoste, J. J., Griborio, A., Nopens, I., Batstone, D. J., Wicks, J. D., Saunders, S., Wicklein, E. A., Kenny, G., & Laurent, J. (2016). CFD for wastewater treatment: An overview. Water Science and Technology, 74(3), 549–563. https://doi.org/10.2166/wst.2016.249

    Article  CAS  Google Scholar 

  • Sanford, L. P. (1994). Wave-forced resuspension of upper Chesapeake Bay muds. Estuaries, 17(1), 148–165.

    Article  Google Scholar 

  • Sanford, L. P., Panageotou, W., & Halka, J. P. (1991). Tidal resuspension of sediments in northern Chesapeake Bay. Marine Geology, 97(1–2), 87–103.

    Article  Google Scholar 

  • Sarkar, S., Kamilya, D., & Mal, B. C. (2007). Effect of geometric and process variables on the performance of inclined plate settlers in treating aquacultural waste. Water Research, 41(5), 993–1000. https://doi.org/10.1016/j.watres.2006.12.015

    Article  CAS  Google Scholar 

  • Schamber, D. R., & Larock, B. E. (1981). Numerical analysis of flow in sedimentation basins. ASCE J Hydraul Div, 107(5), 575–591. https://doi.org/10.1061/JYCEAJ.0005665

    Article  Google Scholar 

  • Shahrokhi, M., & Rostami, F. (2011). The computational modeling of baffle configuration in the primary sedimentation tanks. 2nd International Conference on Environmental Science and Technology (IPCBEE), 6, 392–396.

    Google Scholar 

  • Shamim, A., & Wais, M. T. (1980). Potential of tube settlers in removing raw water turbidity prior to coagulant. Aqua, 8, 166–169.

    Google Scholar 

  • Shelestina, O., & Ratnaweera, H. (2014). Optimization of the sedimentation tank with CFD simulation. Norwegian University of Life Sciences,PO Box 5003-IMT, 1432 Aas, Norway. http://www.waterh.net/wp-content/uploads/2015/10/Article_25.pdf

  • Sivakumar, M., & Lowe, S. A. (1990). Simulation of the effect of wind on rectangular sedimentation tanks. In Conference on Hydraulics in Civil Engineering, 74–78.

  • Stamou, A. I., & Gkesouli, A. (2015). Modeling settling tanks for water treatment using computational fluid dynamics. Journal of Hydroinformatics, 17(5), 745–762. https://doi.org/10.2166/hydro.2015.069

    Article  Google Scholar 

  • Stamou, A. I., Theodoridis, G., & Xanthopoulos, K. (2009). Design of secondary settling tanks using a CFD model. Journal of Environmental Engineering, 135(7), 551–561. https://doi.org/10.1061/(asce)0733-9372(2009)135:7(551)

    Article  CAS  Google Scholar 

  • Swamee, P. K. (1996). Design of flocculating baffled channel. Journal of Environmental Engineering, 122(11), 1046–1048.

    Article  CAS  Google Scholar 

  • Taebi-Harandy, A., & Schroeder, E. D. (2000). Formation of density currents in secondary clarifier. Water Research, 34(4), 1225–1232. https://doi.org/10.1016/S0043-1354(99)00261-4

    Article  CAS  Google Scholar 

  • Takata, K., & Kurose, R. (2017). Influence of density flow on treated water turbidity in a sedimentation basin with inclined plate settler. Water Science and Technology: Water Supply, 17(4), 1140–1148. https://doi.org/10.2166/ws.2017.012

    Article  Google Scholar 

  • Talmage, W. P., & Fitch, E. B. (1955). Determining thickener unit areas. Industrial & Engineering Chemistry, 47(1), 38–41. https://doi.org/10.1021/ie50541a022

    Article  CAS  Google Scholar 

  • Tamayol, A., Firoozabadi, B., & Ahmadi, G. (2008a). Determination of settling tanks performance using an Eulerian-Lagrangian method. Journal of Applied Fluid Mechanics, 1(1), 43–54.

    CAS  Google Scholar 

  • Tamayol, A., Firoozabadi, B., & Ahmadi, G. (2008b). Effects of inlet position and baffle configuration on hydraulic performance of primary settling tanks. Journal of Hydraulic Engineering, 134(7), 1004–1009. https://doi.org/10.1061/(asce)0733-9429(2008)134:7(1004)

    Article  Google Scholar 

  • Tamayol, A., Firoozabadi, B., & Ashjari, M. A. (2010). Hydrodynamics of secondary settling tanks and increasing their performance using baffles. Journal of Environmental Engineering, 136(1), 32–39. https://doi.org/10.1061/(asce)ee.1943-7870.0000126

    Article  CAS  Google Scholar 

  • Tamayol, A., FIROUZABADI, B., & Ahmadi, G. (2006). Increasing performance of final settling tanks by using baffles. Conference on Hydroinformatics.

  • Tamayol, A., Nazari, M., Firoozabadi, B., & Nabovati, A. (2005). Numerical modeling and study of effects of inlet position and height of inlet baffle on the performance of settling tanks. Fluid Dynamics Conf., Iran (In Farsi).

  • Tarpagkou, R., & Pantokratoras, A. (2013). CFD methodology for sedimentation tanks: The effect of secondary phase on fluid phase using DPM coupled calculations. Applied Mathematical Modelling, 37(5), 3478–3494. https://doi.org/10.1016/j.apm.2012.08.011

    Article  Google Scholar 

  • Tarpagkou, R., & Pantokratoras, A. (2014). The influence of lamellar settler in sedimentation tanks for potable water treatment — A computational fluid dynamic study. Powder Technology, 268, 139–149. https://doi.org/10.1016/j.powtec.2014.08.030

    Article  CAS  Google Scholar 

  • Tay, A. J., Heinke, G. W., Tay, J., & Heinke, G. W. (1983). Velocity distribution suspended in settling solids tanks. 55(3), 261–269

  • Tikhe, M. L. (1974). Some theoretical aspects of tube settlers. Indian Journal Environmental Health, 16(2), 26–33.

    Google Scholar 

  • Tsahalis, D. T. (1979). Theoretical and experimental study of wind-and wave-induced drift. Journal of Physical Oceanography, 9(6), 1243–1257.

    Article  Google Scholar 

  • Vazquez, J., Morin, A., Dufresne, M., & Wertel, J. (2010). Optimisation de la forme des décanteurs lamellaires par la modélisation hydrodynamique 3D. NOVATECH 2010.

  • Vitasovic, Z. C., Zhou, S., McCorquodale, J. A., & Lingren, K. (1997). Secondary clarifier analysis using data from the Clarifier Research Technical Committee protocol. Water Environment Research, 69(5), 999–1007.

    Article  CAS  Google Scholar 

  • Voutchkov, N. (2005). Settling Tank Design. In Water Encyclopedia (Issue December, pp. 20–22). https://doi.org/10.1002/047147844x.mw506

  • Weiss, G. (2014). Innovative use of lamella clarifiers for central stormwater treatment in separate sewer systems. Water Science and Technology, 69(8), 1606–1611. https://doi.org/10.2166/wst.2013.791

    Article  Google Scholar 

  • Xanthos, S., Gong, M., Ramalingam, K., Fillos, J., Beckmann, K., Deur, A., & McCorquodale, J. A. (2008). Investigating the Effect of Baffles on the Performance of Rectangular (Gould II Type) Settling tanks using a 3-D CFD model. Proceedings of the Water Environment Federation, 2008(13), 3297–3307.

    Article  Google Scholar 

  • Xanthos, S., Gong, M., Ramalingam, K., Fillos, J., Deur, A., Beckmann, K., & McCorquodale, J. A. (2011). Performance assessment of secondary settling tanks using CFD modeling. Water Resources Management, 25(4), 1169–1182. https://doi.org/10.1007/s11269-010-9620-1

    Article  Google Scholar 

  • Xanthos, S., Gong, M., Ramalingam, K., Fillos, J., Deur, A., Beckmann, K., & McCorquodale, J. A. (2012). Investigating the effect of baffles on the performance of rectangular (Gould II Type) settling tanks using a 3-D CFD Model. Proceedings of the Water Environment Federation, 2008(13), 3297–3307. https://doi.org/10.2175/193864708788733549

    Article  Google Scholar 

  • Yang, N., & Wen, Y. (2019). Numerical simulation of secondary sedimentation tank based on population balance model. IOP Conference Series: Earth and Environmental Science, 358(3). https://doi.org/10.1088/1755-1315/358/3/032052

  • Yao, K. M. (1973). Design of high-rate settlers. Journal of the Environmental Engineering Division, 99(5), 621–637.

    Article  Google Scholar 

  • Younes, M. F., Younes, Y. K., El-Madah, M., Ibrahim, I. M., & El-Dannanh, E. H. (2007). An experimental investigation of hydrodynamic damping due to vertical baffle arrangements in a rectangular tank. Proceedings of the Institution of Mechanical Engineers Part m: Journal of Engineering for the Maritime Environment, 221(3), 115–123. https://doi.org/10.1243/14750902JEME59

    Article  Google Scholar 

  • Zhiyin, Y. (2015). Large-eddy simulation: Past, present and the future. Chinese Journal of Aeronautics, 28(1), 11–24. https://doi.org/10.1016/j.cja.2014.12.007

    Article  Google Scholar 

  • Zhou, S., McCorquodale, J. A., & Vitasovic, Z. (1992). Influences of density on circular clarifiers with baffles. Journal of Environmental Engineering, 118(6), 829–847. https://doi.org/10.1061/(asce)0733-9372(1992)118:6(829)

    Article  CAS  Google Scholar 

Download references

Funding

This research work is partly funded by Department of Science and Technology, New Delhi, Government of India (Grant no. CRG/2020/001341). A fellowship to the first author from Ministry of Human Resource Development, Government of India, is also received.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed to the study. Thiyam Tamphasana Devi had the idea for the article and performed the preliminary literature survey. Kirpa Hirom continued with the extensive literature survey and later drafted the paper. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Kirpa Hirom.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Sedimentation tanks of both potable water treatment plant and waste water treatment plant are covered.

• The only review paper that includes the lamella clarifiers (also known as inclined plate settlers).

• This review paper focuses on the main factors affecting the hydrodynamics of sedimentation tanks and future research needs for each topic are pointed out.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirom, K., Devi, T.T. Application of Computational Fluid Dynamics in Sedimentation Tank Design and Its Recent Developments: a Review. Water Air Soil Pollut 233, 22 (2022). https://doi.org/10.1007/s11270-021-05458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05458-9

Keywords

Navigation