Skip to main content

Advertisement

Log in

Use of Natural Zeolite and Its Mixtures to Refine High-Concentrated Heavy Metal-Contaminated Wastewater: an Investigation of Simultaneous Removal of Cd (II) and Pb (II) by Batch Adsorption Method

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigated the simultaneous removal of Cd2+ and Pb2+ from wastewater using commercially available Japanese zeolite (JPZ) and its mixtures. A series of batch adsorption experiments were carried out to examine the simultaneous removal of Cd2+ and Pb2+ in binary and multi-metal solutions. Results revealed that JPZ (0.105–2.0 mm) exhibited a higher affinity for Pb2+ (>250 mg/g) over Cd2+ (<50 mg/g) in single metal solutions. However, in binary and multi-metal solutions, dominant adsorption of Pb2+ ions and hampering of Cd2+ ion adsorption were observed like in other types of low-cost adsorbents. Thus, steel slag (SS) grain, which is an industrial by-product and has a high affinity for Cd2+, was mixed with JPZ in different proportions to evaluate the potential use for simultaneous removal of Cd2+ and Pb2+. The JPZ+SS mixtures (JPZ+SS [4:1], JPZ+SS [1:1], and JPZ+SS [1:4]) were performed better than JPZ alone on simultaneous removal of Cd2+ and Pb2+. The JPZ+SS [1:1] mixture was identified as the most effective one for the simultaneous removal of Cd2+ and Pb2+ from binary and multi-metal solutions. The selectivity sequence in multi-metal solution was observed as Cd2+≈Pb2+≈Cu2+≈Zn2+≈Ni2+ and 100% removal of heavy metals were observed. The Cd2+ and Pb2+ removal by JPZ+SS mixtures mainly occurred due to the Ca2+ ion-exchange reaction along with the precipitation and surface complexation. Especially, the amount of SS grain in the mixtures played a vital role in the removal process of Cd2+ and Pb2+ from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agnieszka, G. K., Baran, P., Wdowin, M., & Franus, W. (2017). Waste dolomite powder as an adsorbent of Cd, Pb(II), and Zn from aqueous solutions. Environ Earth Science, 76, 521.

    Article  Google Scholar 

  • Ahmad, Z., Gao, B., Mosa, A., Yu, H., Yin, X., Bashir, A., Ghoveisi, H., & Wang, S. (2018). Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. Journal of Cleaner Production, 180, 437–449.

    Article  CAS  Google Scholar 

  • Aklil, A., Mouflihb, M., & Sebti, S. (2004). Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent. Jouranl of Hazardus Materials, A112, 183–190.

    Article  Google Scholar 

  • Alexander, D., Ellerby, R., Hernandez, A., Wu, F., & Amarasiriwardena, D. (2017). Investigation of simultaneous adsorption properties of Cd, Cu, Pb and Zn by pristine rice husks using ICP-AES and LA-ICP-MS analysis. Microchemical Journal, 135, 129–139.

    Article  CAS  Google Scholar 

  • Bailey, S. E., Trudy, J. O., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469–2479.

    Article  CAS  Google Scholar 

  • Baker, H. M., Massadeh, A. M., & Younes, H. A. (2009). Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods. Environmental Monitoring and Assessment, 157, 319–330.

    Article  CAS  Google Scholar 

  • Bandara, A. B. P., Kumara, G. M. P., Matsuno, A., Saito, T., Nga, T. T. V., & Kawamoto, K. (2020). Examination of crushed laterite brick for removal of chromium and arsenic from wastewater. International Journal of GEOMATE, 19(74), 22–30.

    Article  Google Scholar 

  • Barer, R. M. (1987). Zeolites and clay minerals as sorbent and molecular sieves. Academic Press.

    Google Scholar 

  • Bertrand, P. S. J., Silvestre, J., & Pinell, E. (2011). Lead-induced DNA damage in Vicia faba root cells: Potential involvement of oxidative stress. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 726(2), 123–128.

    Article  Google Scholar 

  • Bosso, S. T., & Enzweiler, J. (2002). Evaluation of heavy metal removal from aqueous solution onto scolecite. Water Research, 36, 4795–4800.

    Article  CAS  Google Scholar 

  • Bourliva, A., Michailidis, K., Sikalidis, C., Filippidis, A., & Betsiou, M. (2015). Adsorption of Cd (II), Cu (II), Ni (II) and Pb (II) onto natural bentonite: study in mono- and multimetal systems. Environmental Earth Sciences, 73, 5435–5445.

    Article  CAS  Google Scholar 

  • Bozic, D., Stankovic, V., Gorgievski, M., Bogdanovic, G., & Kovacevic, R. (2009). Adsorption of heavy metal ions by sawdust of deciduous trees. Jouranl of Hazardus Materials, 171, 684–692.

    Article  CAS  Google Scholar 

  • Bulgariu, D., & Bulgariu, L. (2012). Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresource Technology, 103(1), 489–493.

    Article  CAS  Google Scholar 

  • Chen, X., Hou, W. H., Song, G. L., & Wang, Q. H. (2011). Adsorption of Cu, Cd, Zn and Pb ions from aqueous solutions by electric arc furnace slag and the effects of pH and grain size. Chemical and Biochemical Engineering Quarterly Journal, 25(1), 105–114.

    CAS  Google Scholar 

  • Cincotti, A., Mameli, A., Locci, A. M., Orru, R., & Cao, G. (2006). Heavy metals uptake by Sardinian natural zeolites: Experiment and modeling. Industrial & Engineering Chemistry Research, 45, 1074–1084.

    Article  CAS  Google Scholar 

  • Coelho, G. F., Concalves, A. C., Novoa-Munoz, J. C., Nunez-Delgado, A., & Fernández-Calviño, D. (2016). Competitive and non-competitive cadmium, copper and lead sorption/desorption on wheat straw affecting sustainability in vineyards. Journal of Cleaner Production, 139, 1496–1503.

    Article  CAS  Google Scholar 

  • Demey, H., Vincent, T., & Guibal, E. (2018). A novel algal-based sorbent for heavy metal removal. Chemical Engineering Journal, 332, 582–595.

    Article  CAS  Google Scholar 

  • Dionisiou, N. S., Matsi, T. (2016). Chapter 23 - Natural and surfactant-modified zeolite for the removal of pollutants (mainly inorganic) from natural waters and wastewaters. Environmental Materials and Waste. Academic Press 591-606.

  • Dong, L., Zhu, Z., Qiu, Y., & Zhao, J. (2010). Simultaneous adsorption of lead and cadmium on MnO2-loaded resin. Journal of Environmental Sciences, 22(2), 225–229.

    Article  CAS  Google Scholar 

  • Du, H., Chen, W., Cai, P., Rong, X., Feng, X., & Huang, Q. (2016). Competitive adsorption of Pb and Cd on bacteria-montmorillonite composite. Environmental Pollution, 218, 168–175.

    Article  CAS  Google Scholar 

  • Duan, J., & Su, B. (2014). Removal characteristics of Cd(II) from acidic aqueous solution by modified steel-making slag. Chemical Engineering Journal, 246, 160–167.

    Article  CAS  Google Scholar 

  • Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280, 309–314.

    Article  CAS  Google Scholar 

  • Farinella, N. V., Matos, G. D., & Arruda, M. A. Z. (2007). Grape bagasse as a potential biosorbent of metals in effluent treatments. Bioresource Technology, 98(10), 1940–1946.

    Article  CAS  Google Scholar 

  • Gui, C. Y., Neng, Z. K., Sheng, Z. Y., & Yue, D. F. (2006). Removal of Pb2+ and Cd2+ by adsorption on clay-solidified grouting curtain for waste landfills. Journal of Central South University of Technology, 13(2), 166–170.

    Article  Google Scholar 

  • He, J., Li, Y., Wang, C., Zhang, K., Lin, D., Kong, L., & Liu, J. (2017). Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Applied Surface Science, 426, 29–39.

    Article  CAS  Google Scholar 

  • He, S., Li, Y., Weng, L., Wang, J., He, J., Liu, Y., Zhang, K., Wu, Q., Zhang, Y., & Zhang, Z. (2018). Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone: Influence of pH, ionic strength and natural organic matters. Science of the Total Environment, 637–638, 69–78.

    Article  Google Scholar 

  • Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681–689.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76(4), 332–340.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    Article  CAS  Google Scholar 

  • Hur, J., Shin, J., Yoo, J., & Seo, Y.S. (2015). Competitive adsorption of metals onto magnetic graphene oxide: Comparison with other carbonaceous adsorbents. The Scientific World Journal, Article ID 836287, 1–11.

  • Jha, V. K., Kameshima, Y., Nakajima, A., & Okada, K. (2004). Hazardous ions uptake behavior of thermally activated steel-making slag. Journal of Hazardous Materials, B114, 139–144.

    Article  Google Scholar 

  • Jiang, M. Q., Jin, X. Y., Lu, X. Q., & Chen, Z. L. (2010). Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination, 252, 33–39.

    Article  CAS  Google Scholar 

  • Karnib, M., Kabbanib, A., Holail, H., & Olama, Z. (2014). Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia, 50, 113–120.

    Article  CAS  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692.

    Article  CAS  Google Scholar 

  • Krishan, K. A., & Anirudhan, T. S. (2002). Uptake of heavy metals in batch systems by sulfurized steam activated carbon prepared from sugarcane bagasse pith. Industrial & Engineering Chemistry Research, 41(20), 5085–5093.

    Article  Google Scholar 

  • Krol, M. (2019). Hydrothermal synthesis of zeolite aggregate with potential use as a sorbent of heavy metal cations. Journal of Molecular Structure, 1183, 353–359.

    Article  CAS  Google Scholar 

  • Kumara, G. M. P., & Kawamoto, K. (2019). Applicability of crushed clay brick and municipal solid waste slag as low-cost adsorbents to refine high concentrate Cd (II) and Pb (II) contaminated wastewater. International Journal of GEOMATE, 17(63), 133–142.

    Article  Google Scholar 

  • Kumara, G. M. P., & Kawamoto, K. (2021). Steel slag and autoclaved aerated concrete grains as low-cost adsorbents to remove Cd2+ and Pb2+ in wastewater: Effects of mixing proportions of grains and liquid-to-solid ratio. Sustainability, 13, 10321.

    Article  Google Scholar 

  • Kumara, G. M. P., Kawamoto, K., Saito, T., Hamamoto, S., & Asamoto, S. (2019). Evaluation of autoclaved aerated concrete (AAC) fines for removal of Cd(II) and Pb(II) from wastewater. Journal of Environmental Engineering, 145 (11).

  • Kumara, G. M. P., Saito, T., Asamoto, S., & Kawamoto, K. (2018). Reviews on the applicability of construction and demolition waste as low-cost adsorbents to remove-heavy metals in wastewater. International Journal of GEOMATE, 14, 44–51.

    Article  Google Scholar 

  • Kumarasinghe, U., Kawamoto, K., Saito, T., Sakamoto, Y., & Mowjood, M. I. M. (2018). Evaluation of applicability of filling materials in permeable reactive barrier (PRB) system to remediate groundwater contaminated with Cd and Pb at open solid waste dump sites. Process Safety and Environmental Protection, 120, 118–127.

    Article  CAS  Google Scholar 

  • Li, Z., Wang, L., Meng, J., Liu, X., Xu, J., Wang, F., & Brookes, P. (2018). Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. Journal of Hazardous Materials, 344, 1–11.

    Article  CAS  Google Scholar 

  • Lopez, F. A., Martin, M. I., Perez, C., Lopez-Delgado, A., & Alguacil, F. J. (2003). Removal of copper ions from aqueous solutions by a steel-making by-product. Water Resrearch, 37, 3883–3890.

    Article  CAS  Google Scholar 

  • Lv, L., Hor, M. P., Su, F., & Zhao, X. S. (2005). Competitive adsorption of Pb2+, Cu2+, and Cd2+ ions on microporous titanosilicate ETS-10. Journal of Colloid and Interface Science, 287, 178–184.

    Article  CAS  Google Scholar 

  • Ma, L., Southwick, L. M., Willis, G. H., & Selim, H. M. (1993). Hysteretic characteristics of atrazine adsorption-desorption by a Sharkey soil. Weed Science, 41, 627–633.

    Article  CAS  Google Scholar 

  • Ma, X., Yang, S. T., Tang, H., Liu, Y., & Wang, H. (2015). Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids. Journal of Colloid and Interface Science, 448, 347–355.

    Article  CAS  Google Scholar 

  • Martemianov, D., Xie, B. B., Yurmazova, T., Khaskelberg, M., Wang, F., Wei, C. H., & Preis, S. (2017). Cellular concrete-supported cost-effective adsorbents for aqueous arsenic and heavy metals abatement. Journal of Environmental Chemical Engineering, 5(4), 3930–3941.

    Article  CAS  Google Scholar 

  • Marzouk, I., Hannachi, C., Dammak, L., & Hamrouni, B. (2011). Removal of chromium by adsorption on activated alumina. Desalination and Water Treatment, 51, 279–286.

    Article  Google Scholar 

  • Mon, E. E., Hirata, T., Kawamoto, K., Hiradate, S., Komatsu, T., & Moldrup, P. (2012). Adsorption of 2,4-dichlorophenoxyacetic acid onto volcanic ash soils: Effects of pH and soil organic matter. Environment Asia, 1, 1–9.

    Google Scholar 

  • Mondal, M. K. (2009). Removal of Pb(II) ions from aqueous solution using activated tea waste: adsorption on a fixed-bed column. Journal of Environmental Management, 90, 3266–3271.

    Article  CAS  Google Scholar 

  • Naiya, T. K., Bhattacharya, A. K., & Das, S. K. (2009a). Adsorption of Cd (II) and Pb (II) from aqueous solutions on activated alumina. Journal of Colloid and Interface Science, 333, 14–26.

    Article  CAS  Google Scholar 

  • Naiya, T. K., Bhattacharya, A. K., & Das, S. K. (2009b). Clarified sludge (basic oxygen furnace sludge)–an adsorbent for removal of Pb(II) from aqueous solutions–kinetics, thermodynamics and desorption studies. Journal of Hazardous Materials, 170(1), 252–262.

    Article  CAS  Google Scholar 

  • Nguyen, T. C., Loganathan, P., Nguyen, T. V., Kandasamy, J., Naidu, R., & Vigneswaran, S. (2018). Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash. Environmental Science and Pollution Research, 25, 20430–20438.

    Article  CAS  Google Scholar 

  • Nguyen, T. C., Loganathan, P., Nguyen, T. V., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2015). Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chemical Engineering Journal, 270, 393–404.

    Article  CAS  Google Scholar 

  • Ni, B. J., Huang, Q. S., Wang, C., Ni, T. Y., Sun, J., & Wei, W. (2019). Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere, 219, 351–357.

    Article  CAS  Google Scholar 

  • Organization for Economic Co-operation and Development Publications (OECD). Guidelines for the Testing of Chemicals. (2000). Available online: https://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm (accessed on 15 September 2021).

  • Paranavithana, G. N., Kawamoto, K., Inoue, Y., Saito, T., Vithanage, M., Kalpage, C. S., & Herath, G. B. B. (2015). Adsorption of Cd2+ and Pb2+ onto coconut shell biochar and biochar-mixed soil. Environmental Earth Sciences, 75, 484–494.

    Article  Google Scholar 

  • Park, J. H., Ju, S. C., Yong, S. O., Seong, H. K., Jong, S. H., Ronald, D. D., & Dong, C. S. (2016a). Comparison of single and competitive metal adsorption by pepper stem biochar. Archives of Agronomy and Soil Science, 62(5), 617–632.

    Article  CAS  Google Scholar 

  • Park, J. H., Yong, S. O., Kim, S. H., Cho, J. S., Heo, J. S., Delaune, R. D., & Seo, D. C. (2016b). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 142, 77–83.

    Article  CAS  Google Scholar 

  • Park, M. B., Ahn, S. H., Nicholas, C. P., Lewis, G. J., & Hong, S. B. (2017). Charge density mismatch synthesis of zeolite beta in the presence of tetraethylammonium, tetramethylammonium, and sodium ions: Influence of tetraethylammonium decomposition. Microporous and Mesoporous Materials, 240, 159–168.

    Article  CAS  Google Scholar 

  • Pehlivan, E., Yank, B. H., Ahmetli, G., & Pehlivan, M. (2008). Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp. Bioresource Technology, 99, 3520–3527.

    Article  CAS  Google Scholar 

  • Petrella, A., Spasiano, D., Acquafredda, P., De Vietro, N., Ranieri, E., Cosma, P., Rizzi, V., Petruzzelli, V., & Petruzzelli, D. (2018). Heavy metals retention (Pb(II), Cd(II), Ni(II)) from single and multi-metal solutions by natural bio-sorbents from the olive oil milling operations. Process Safety and Environmental Protection, 114, 79–90.

    Article  CAS  Google Scholar 

  • Qiu, Q., Jiang, X., Lv, G., Chen, Z., Lu, S., Ni, M., Yan, J., & Deng, X. (2018). Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technology, 335, 156–163.

    Article  CAS  Google Scholar 

  • Rad, L. R., Momeni, A., Ghazani, B. F., Irani, M., Mahmoudi, M., & Noghreh, B. (2014). Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nano-fibrous adsorbent. Chemical Engineering Journal, 256, 119–127.

    Article  CAS  Google Scholar 

  • Reeve, P. J., & Fallowfield, H. J. (2018). Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. Journal of Environmental Management, 205, 253–261.

    Article  CAS  Google Scholar 

  • Sellaoui, L., Dotto, G. L., Lamine, A. B., & Erto, A. (2017). Interpretation of single and competitive adsorption of cadmium and zinc on activated carbon using monolayer and exclusive extended monolayer models. Environmental Science and Pollution Research, 24, 19902–19908.

    Article  CAS  Google Scholar 

  • Serri, C., de Gennaro, B., Catalanotti, L., Cappelletti, P., Langella, A., Mercurio, M., Mayol, L., & Biondi, M. (2016). Surfactant-modified phillipsite and chabazite as novel excipients for pharmaceutical applications. Microporous and Mesoporous Materials, 224, 143–148.

    Article  CAS  Google Scholar 

  • Sewwandi, B. G. N., Vithanage, M., Wijesekara, S. S. R. M. D. H. R., Mowjood, M. I. M., Hamamoto, S., & Kawamoto, K. (2014). Adsorption of Cd(II) and Pb(II) onto humic acidtreated coconut (Cocos nucifera) husk. Journal of Hazardous, Toxic, and Radioactive Waste, 18 (2).

  • Seyedeh, S. H. G., Landi, A., Khademi, H., & Hojati, S. (2014). Removal of Cd2+ and Pb2+ ions from aqueous solutions using Iranian natural zeolite and sepiolite. Journal of Environmental Studies, 40(1), 43–45.

    Google Scholar 

  • Sheng, P. X., Ting, Y. P., & Chen, J. P. (2007). Biosorption of heavy metal ions (Pb, Cu, and Cd) from aqueous solutions by the marine alga Sargassum sp. in single- and multiple-metal systems. Industrial & Engineering Chemistry Research, 46, 2438–2444.

    Article  CAS  Google Scholar 

  • Singh, O. V., Labana, S., Pandey, G., Budhiraja, R., & Jain, R. K. (2003). Phytoremediation: an overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology, 61, 405–412.

    Article  CAS  Google Scholar 

  • Sprynskyy, M., Buszewski, B., Terzyk, A. P., & Namiesnik, J. (2006). Study of the selection mechanism of heavy metal-(Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 304, 21–28.

    Article  CAS  Google Scholar 

  • Srivastava, P., Singh, B., & Angove, M. (2005). Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 290(1), 28–38.

    Article  CAS  Google Scholar 

  • Taha, A. A., Yn, W., Wang, H., & Li, F. (2012). Preparation and application of functionalized cellulose acetate/silica composite nano-fibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. Journal of Environmental Management, 112, 10–16.

    Article  CAS  Google Scholar 

  • Takeno, N. (2005). Atlas of Eh-pH diagrams; intercomparison of thermodynamic database. geological survey of Japan, open file report no. 419.

  • Tan, X., Liu, Y., Gu, Y., Zeng, G., Wang, X., Hu, X., Sun, Z., & Yang, Z. (2015). Immobilization of Cd(II) in acid soil amended with different biochars with a long term of incubation. Environmental Science and Pollution Research, 22, 597–604.

    Article  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metals toxicity and the environment, NIH-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217, USA.

  • Visa, M., Bogatu, C., & Duta, A. (2010). Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash. Applied Surface Science, 256, 5486–5491.

    Article  CAS  Google Scholar 

  • Visa, M., Isac, L., & Duta, A. (2012). Fly ash adsorbents for multi-cation wastewater treatment. Applied Surface Science, 258, 6345–6352.

    Article  CAS  Google Scholar 

  • Wang, T., Liu, W., Xiong, L., Xu, N., & Ni, J. (2013). Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanate nanotubes. Chemical Engineering Journal, 215–216, 366–374.

    Article  Google Scholar 

  • Wang, Z., Tan, K., Cai, J., Hou, S., Wang, Y., Jiang, P., & Liang, M. (2019). Silica oxide encapsulated natural zeolite for high efficiency removal of low concentration heavy metals in water. Colloids and Surfaces A, 561, 388–394.

    Article  CAS  Google Scholar 

  • Wingenfelder, U., Nowack, B., Furrer, G., & Schulin, R. (2005). Adsorption of Pb and Cd by amine-modified zeolite. Water Research, 39, 3287–3297.

    Article  CAS  Google Scholar 

  • Wu, D., Wang, Y., Li, Y., Wei, Q., Hu, L., Yan, T., Feng, R., Yan, L., & Du, B. (2019). Phosphorylated chitosan/CoFe2O4 composite for the efficient removal of Pb(II) and Cd(II) from aqueous solution: Adsorption performance and mechanism studies. Journal of Molecular Liquids, 277, 181–188.

    Article  CAS  Google Scholar 

  • Xiao, B., & Thomas, K. M. (2004). Competitive adsorption of aqueous metal ions on an oxidized nanoporous activated carbon. Langmuir, 20, 4566–4578.

    Article  CAS  Google Scholar 

  • Xin, M., Yang, S. T., Tang, H., Liu, Y., & Wang, H. (2015). Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids. Journal of Colloid and Interface Science, 448, 347–355.

    Article  Google Scholar 

  • Xue, Y., Hou, H., & Zhu, S. (2009). Competitive adsorption of copper (II), cadmium (II), lead (II) and zinc (II) onto basic oxygen furnace slag. Journal of Hazardous Materials, 162, 391–401.

    Article  CAS  Google Scholar 

  • Yang, D., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, Y., Zheng, B., & Cai, X. (2016). Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: performance and mechanism. Royal Society of Chemistry Advances, 6, 5223–5232.

    Google Scholar 

  • Youness, A., Olguín, M. T., Abatal, M., Ali, B., Mendez, S. E. D., & Santiago, A. A. (2017). Comparison of the divalent heavy metals (Pb, Cu and Cd) adsorption behavior by montmorillonite-KSF and their calcium- and sodium-forms. Superlattices and Microstructures, 127, 165–175.

    Google Scholar 

  • Zeng, L., Chen, Y., Zhang, Q., Guo, X., Peng, Y., Xiao, H., Chen, X., & Luo, J. (2015). Adsorption of Cd(II), Cu(II) and Ni(II) ions by cross-linking chitosan/rectorite nano-hybrid composite microspheres. Carbohydrate Polymers, 130, 333–343.

    Article  CAS  Google Scholar 

  • Zhang, Y., Xie, Z., Wang, Z., Feng, X., Wang, Y., & Wu, A. (2016). Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions. Dalton Transactions, 45, 12653–12660.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhu, C., Liu, F., Yuan, Y., Wu, H., & Li, A. (2019). Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review. Science of the Total Environment, 646, 265–279.

    Article  CAS  Google Scholar 

  • Zhao, Y. N. (2016). Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environmental engineering science, 33(7), 443–454.

    Article  CAS  Google Scholar 

  • Zhi-liang, C., Jian-qiang, Z., Ling, H., Zhi-hui, Y., Zhao-jun, L., & Min-chao, L. (2019). Removal of Cd and Pb with biochar made from dairy manure at low temperature. Journal of Integrative Agriculture, 18(1), 201–210.

    Article  Google Scholar 

  • Zhi-rong, L., Li-min, Z., Peng, W., Kai, Z., Chuan-xi, W., & Hui-hua, L. (2008). Competitive adsorption of heavy metal ions on peat. Journal of China University of Mining and Technology, 18, 255–260.

    Article  Google Scholar 

Download references

Funding

This research was supported by JST-JICA Science and Technology Research Partnership for Sustainable Development (SATREPS) project (No. JPMJSA1701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. P. Kumara.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumara, G.M.P., Kawamoto, K. Use of Natural Zeolite and Its Mixtures to Refine High-Concentrated Heavy Metal-Contaminated Wastewater: an Investigation of Simultaneous Removal of Cd (II) and Pb (II) by Batch Adsorption Method. Water Air Soil Pollut 232, 463 (2021). https://doi.org/10.1007/s11270-021-05420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05420-9

Keywords