Skip to main content

Shape Memory Adsorbents for Water Remediation: Recent Progress, Associated Hydrodynamics, and Research Needs

Abstract

Shape memory materials comprising aerogels, hydrogels, sponges, and ionogels have come on the scene as novel adsorbents for water purification. These materials demonstrate high adsorption capacities, enhanced mechanical strength, and shape resilience at the laboratory scale in unary, binary, and multicomponent adsorbate synthetic solutions. However, their reliable use in real-world water purification applications is significantly limited by hurdles. Based on the available literature, these hurdles are discussed in this review article. The hurdles include the following: (1) the need for extensive testing of the shape memory adsorbents in real and complex wastewaters under the extreme hydrodynamic conditions that can be expected in both pilot-scale column-type studies and real water treatment systems, (2) the redesigning of their synthetic routes to tune their specific physicochemical and mechanical properties so they can withstand harsh environmental conditions over repeated cycles of use, and (3) significant research efforts are required to simulate and optimize large-scale adsorption-based water purification systems for commercial use.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

adapted from Laptev et al. (2015) and Das et al. (2018). Created with BioRender.com

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abioye, O. P., Oyewole, O. A., Oyeleke, S. B., Adeyemi, M. O., & Orukotan, A. A. (2018). Biosorption of lead, chromium and cadmium in tannery effluent using indigenous microorganisms. Brazilian Journal of Biological Sciences, 5(9), 25–32. https://doi.org/10.21472/bjbs.050903

  2. Ahfir, N.-D., Hammadi, A., Alem, A., Wang, H., Le Bras, G., & Ouahbi, T. (2017). Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles. Journal of Environmental Sciences, 53, 161–172. https://doi.org/10.1016/j.jes.2016.01.032

    Article  Google Scholar 

  3. Ahmed, Y. M., Al-Mamun, A., Al Khatib, M. F. R., Jameel, A. T., & AlSaadi, M. A. H. A. R. (2015). Efficient lead sorption from wastewater by carbon nanofibers. Environmental Chemistry Letters, 13(3), 341–346. https://doi.org/10.1007/s10311-015-0509-3

    CAS  Article  Google Scholar 

  4. Altmann, J., Zietzschmann, F., Geiling, E.-L., Ruhl, A. S., Sperlich, A., & Jekel, M. (2015). Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater. Chemosphere, 125, 198–204. https://doi.org/10.1016/j.chemosphere.2014.12.061

    CAS  Article  Google Scholar 

  5. Alvarino, T., Suarez, S., Lema, J., & Omil, F. (2018). Understanding the sorption and biotransformation of organic micropollutants in innovative biological wastewater treatment technologies. Science of the Total Environment, 615, 297–306. https://doi.org/10.1016/j.scitotenv.2017.09.278

    CAS  Article  Google Scholar 

  6. Augier, F., Laroche, C., & Brehon, E. (2008). Application of computational fluid dynamics to fixed bed adsorption calculations: Effect of hydrodynamics at laboratory and industrial scale. Separation and Purification Technology, 63(2), 466–474. https://doi.org/10.1016/j.seppur.2008.06.007

    CAS  Article  Google Scholar 

  7. Badia-Fabregat, M., Lucas, D., Tuomivirta, T., Fritze, H., Pennanen, T., Rodríguez-Mozaz, S., et al. (2017). Study of the effect of the bacterial and fungal communities present in real wastewater effluents on the performance of fungal treatments. Science of the Total Environment, 579, 366–377. https://doi.org/10.1016/j.scitotenv.2016.11.088

    CAS  Article  Google Scholar 

  8. Baek, M.-H., Yoon, J.-W., Hong, J.-S., & Suh, J.-K. (2013). Application of TiO2-containing mesoporous spherical activated carbon in a fluidized bed photoreactor—Adsorption and photocatalytic activity. Applied Catalysis a: General, 450, 222–229. https://doi.org/10.1016/j.apcata.2012.10.018

    CAS  Article  Google Scholar 

  9. Bala, J. D., Lalung, J., Al-Gheethi, A. A. S., Hossain, K., & Ismail, N. (2018). Microbiota of palm oil mill wastewater in Malaysia. Tropical Life Sciences Research, 29(2), 131–163. https://doi.org/10.21315/tlsr2018.29.2.10

  10. Bansal, P., Verma, A., & Talwar, S. (2018). Detoxification of real pharmaceutical wastewater by integrating photocatalysis and photo-Fenton in fixed-mode. Chemical Engineering Journal, 349, 838–848. https://doi.org/10.1016/j.cej.2018.05.140

    CAS  Article  Google Scholar 

  11. Beattie, R. E., Skwor, T., & Hristova, K. R. (2020). Survivor microbial populations in post-chlorinated wastewater are strongly associated with untreated hospital sewage and include ceftazidime and meropenem resistant populations. Science of the Total Environment, 740, 140186. https://doi.org/10.1016/j.scitotenv.2020.140186

    CAS  Article  Google Scholar 

  12. Bethi, B., Sonawane, S. H., Potoroko, I., Bhanvase, B. A., & Sonawane, S. S. (2017). Novel hybrid system based on hydrodynamic cavitation for treatment of dye waste water: A first report on bench scale study. Journal of Environmental Chemical Engineering, 5(2), 1874–1884. https://doi.org/10.1016/j.jece.2017.03.026

    CAS  Article  Google Scholar 

  13. Brion-Roby, R., Gagnon, J., Deschênes, J.-S., & Chabot, B. (2018). Investigation of fixed bed adsorption column operation parameters using a chitosan material for treatment of arsenate contaminated water. Journal of Environmental Chemical Engineering, 6(1), 505–511. https://doi.org/10.1016/j.jece.2017.12.032

    CAS  Article  Google Scholar 

  14. Budnyak, T. M., Błachnio, M., Slabon, A., Jaworski, A., Tertykh, V. A., Deryło-Marczewska, A., & Marczewski, A. W. (2020). Chitosan deposited onto fumed silica surface as sustainable hybrid biosorbent for acid orange 8 dye capture: Effect of temperature in adsorption equilibrium and kinetics. The Journal of Physical Chemistry C, 124(28), 15312–15323. https://doi.org/10.1021/acs.jpcc.0c04205

    CAS  Article  Google Scholar 

  15. Cai, Z., Dwivedi, A. D., Lee, W.-N., Zhao, X., Liu, W., Sillanpää, M., et al. (2018). Application of nanotechnologies for removing pharmaceutically active compounds from water: Development and future trends. Environmental Science: Nano, 5(1), 27–47. https://doi.org/10.1039/C7EN00644F

    CAS  Article  Google Scholar 

  16. Chen, Y., Liu, Y., Li, Y., Zhao, L., Chen, Y., Li, H., et al. (2020). Functional wastepaper-montmorillonite composite aerogel for Cd2+ adsorption. Environmental Science and Pollution Research, 27(31), 38644–38653. https://doi.org/10.1007/s11356-020-09907-6

    CAS  Article  Google Scholar 

  17. Cui, W., Ji, J., Cai, Y.-F., Li, H., & Ran, R. (2015). Robust, anti-fatigue, and self-healing graphene oxide/hydrophobically associated composite hydrogels and their use as recyclable adsorbents for dye wastewater treatment. Journal of Materials Chemistry A, 3(33), 17445–17458. https://doi.org/10.1039/C5TA04470G

    CAS  Article  Google Scholar 

  18. Das, S., Deen, N. G., & Kuipers, J. A. M. (2018). Multiscale modeling of fixed-bed reactors with porous (open-cell foam) non-spherical particles: Hydrodynamics. Chemical Engineering Journal, 334, 741–759. https://doi.org/10.1016/j.cej.2017.10.047

    CAS  Article  Google Scholar 

  19. Delkash, M., Ebrazi Bakhshayesh, B., & Kazemian, H. (2015). Using zeolitic adsorbents to cleanup special wastewater streams: A review. Microporous and Mesoporous Materials, 214, 224–241. https://doi.org/10.1016/j.micromeso.2015.04.039

    CAS  Article  Google Scholar 

  20. Depci, T., Kul, A. R., & Önal, Y. (2012). Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: Study in single- and multi-solute systems. Chemical Engineering Journal, 200–202, 224–236. https://doi.org/10.1016/j.cej.2012.06.077

    CAS  Article  Google Scholar 

  21. Dorn, M., Eschbach, F., Hekmat, D., & Weuster-Botz, D. (2017). Influence of different packing methods on the hydrodynamic stability of chromatography columns. Journal of Chromatography A, 1516, 89–101. https://doi.org/10.1016/j.chroma.2017.08.019

    CAS  Article  Google Scholar 

  22. Dotto, G. L., & McKay, G. (2020). Current scenario and challenges in adsorption for water treatment. Journal of Environmental Chemical Engineering, 8(4), 103988. https://doi.org/10.1016/j.jece.2020.103988

    CAS  Article  Google Scholar 

  23. Du, Z., Cao, H., Zheng, T., Wang, P., & Quan, J. (2020). Modelling and development of a modular oscillating-bed adsorption reactor system for copper ion removal from water in emergency. Separation and Purification Technology, 233, 115933. https://doi.org/10.1016/j.seppur.2019.115933

    CAS  Article  Google Scholar 

  24. Dwivedi, C. P., Sahu, J. N., Mohanty, C. R., Mohan, B. R., & Meikap, B. C. (2008). Column performance of granular activated carbon packed bed for Pb(II) removal. Journal of Hazardous Materials, 156(1–3), 596–603. https://doi.org/10.1016/j.jhazmat.2007.12.097

    CAS  Article  Google Scholar 

  25. Ensano, B. M. B., Borea, L., Naddeo, V., Belgiorno, V., de Luna, M. D. G., Balakrishnan, M., & Ballesteros, F. C. (2019). Applicability of the electrocoagulation process in treating real municipal wastewater containing pharmaceutical active compounds. Journal of Hazardous Materials, 361, 367–373. https://doi.org/10.1016/j.jhazmat.2018.07.093

    CAS  Article  Google Scholar 

  26. Erlandsson, J., Pettersson, T., Ingverud, T., Granberg, H., Larsson, P. A., Malkoch, M., & Wågberg, L. (2018). On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels. Journal of Materials Chemistry A, 6(40), 19371–19380. https://doi.org/10.1039/C8TA06319B

    CAS  Article  Google Scholar 

  27. Faghihian, H., Iravani, M., Moayed, M., & Ghannadi-Maragheh, M. (2013). A novel polyacrylonitrile–zeolite nanocomposite to clean Cs and Sr from radioactive waste. Environmental Chemistry Letters, 11(3), 277–282. https://doi.org/10.1007/s10311-013-0399-1

    CAS  Article  Google Scholar 

  28. Fangueiro Gomes, L., Augier, F., Leinekugel-le-Cocq, D., Vinkovic, I., & Simoëns, S. (2015). Hydrodynamic modelling of complex fixed bed geometries in simulated moving bed adsorption processes. Chemical Engineering Science, 132, 46–58. https://doi.org/10.1016/j.ces.2015.04.019

    CAS  Article  Google Scholar 

  29. Fröhlich, A. C., Ocampo-Pérez, R., Diaz-Blancas, V., Salau, N. P. G., & Dotto, G. L. (2018). Three-dimensional mass transfer modeling of ibuprofen adsorption on activated carbon prepared by sonication. Chemical Engineering Journal, 341, 65–74. https://doi.org/10.1016/j.cej.2018.02.020

    CAS  Article  Google Scholar 

  30. García-Hernández, E., Aguilar-Madera, C. G., Herrera-Hernández, E. C., Ocampo-Pérez, R., Bailón-García, E., & Cortés, F. B. (2021). Hydrodynamic effects on the overall adsorption rate of phenol on activated carbon cloth through the advection-diffusion model application. Journal of Industrial and Engineering Chemistry, 93, 267–278. https://doi.org/10.1016/j.jiec.2020.10.003

    CAS  Article  Google Scholar 

  31. Gérente, C., Andrès, Y., McKay, G., & Le Cloirec, P. (2010). Removal of arsenic(V) onto chitosan: From sorption mechanism explanation to dynamic water treatment process. Chemical Engineering Journal, 158(3), 593–598. https://doi.org/10.1016/j.cej.2010.02.005

    CAS  Article  Google Scholar 

  32. Gu, J., Hu, C., Zhang, W., & Dichiara, A. B. (2018). Reagentless preparation of shape memory cellulose nanofibril aerogels decorated with Pd nanoparticles and their application in dye discoloration. Applied Catalysis b: Environmental, 237, 482–490. https://doi.org/10.1016/j.apcatb.2018.06.002

    CAS  Article  Google Scholar 

  33. Guo, Y., Yang, X., Li, G., Yang, J., Liu, L., Chen, L., & Li, B. (2021). Shear turbulence controllable synthesis of aggregated nano-particles using a swirling vortex flow reactor assisted by ultrasound irradiation. Chemical Engineering Journal, 405, 126914. https://doi.org/10.1016/j.cej.2020.126914

    CAS  Article  Google Scholar 

  34. Heiderscheidt, E., Postila, H., & Leiviskä, T. (2020). Removal of metals from wastewaters by mineral and biomass-based sorbents applied in continuous-flow continuous stirred tank reactors followed by sedimentation. Science of the Total Environment, 700, 135079. https://doi.org/10.1016/j.scitotenv.2019.135079

    CAS  Article  Google Scholar 

  35. Hong, H.-J., Ban, G., Kim, H. S., Jeong, H. S., & Park, M. S. (2021). Fabrication of cylindrical 3D cellulose nanofibril(CNF) aerogel for continuous removal of copper(Cu2+) from wastewater. Chemosphere, 278, 130288. https://doi.org/10.1016/j.chemosphere.2021.130288

    CAS  Article  Google Scholar 

  36. Huang, W. M., Zhao, Y., Wang, C. C., Ding, Z., Purnawali, H., Tang, C., & Zhang, J. L. (2012). Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization. Journal of Polymer Research, 19(9), 9952. https://doi.org/10.1007/s10965-012-9952-z

    CAS  Article  Google Scholar 

  37. Huang, X., Hu, J., Huang, J., Zhou, G., Tun, T., Tang, J., & Liu, S. (2021). Preparation of ultrahigh-water-content nanofiber composite hydrogel for Cd2+ removal. Journal of Chemical Technology & Biotechnology, 96(5), 1237–1245. https://doi.org/10.1002/jctb.6636

    CAS  Article  Google Scholar 

  38. Jun, B.-M., Hwang, H. S., Heo, J., Han, J., Jang, M., Sohn, J., et al. (2019). Removal of selected endocrine-disrupting compounds using Al-based metal organic framework: Performance and mechanism of competitive adsorption. Journal of Industrial and Engineering Chemistry, 79, 345–352. https://doi.org/10.1016/j.jiec.2019.07.009

    CAS  Article  Google Scholar 

  39. Kalaruban, M., Loganathan, P., Shim, W. G., Kandasamy, J., Naidu, G., Nguyen, T. V., & Vigneswaran, S. (2016). Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: Batch and fluidised-bed adsorption studies. Separation and Purification Technology, 158, 62–70. https://doi.org/10.1016/j.seppur.2015.12.022

    CAS  Article  Google Scholar 

  40. Karimi, F., Ayati, A., Tanhaei, B., Sanati, A. L., Afshar, S., Kardan, A., et al. (2022). Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent: A powerful approach in water treatment. Environmental Research, 203, 111753. https://doi.org/10.1016/j.envres.2021.111753

    CAS  Article  Google Scholar 

  41. Kuddushi, M., Mata, J., & Malek, N. (2020). Self-sustainable, self-healable, load bearable and moldable stimuli responsive ionogel for the selective removal of anionic dyes from aqueous medium. Journal of Molecular Liquids, 298, 112048. https://doi.org/10.1016/j.molliq.2019.112048

    CAS  Article  Google Scholar 

  42. Kulkarni, S. J., Tapre, R. W., Patil, S. V., & Sawarkar, M. B. (2013). Adsorption of phenol from wastewater in fluidized bed using coconut shell activated carbon. Procedia Engineering, 51, 300–307. https://doi.org/10.1016/j.proeng.2013.01.040

    CAS  Article  Google Scholar 

  43. Kyzas, G. Z., Siafaka, P. I., Pavlidou, E. G., Chrissafis, K. J., & Bikiaris, D. N. (2015). Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chemical Engineering Journal, 259, 438–448. https://doi.org/10.1016/j.cej.2014.08.019

    CAS  Article  Google Scholar 

  44. Lanin, S. N., Rychkova, S. A., Vinogradov, A. E., Lanina, K. S., Obrezkov, O. N., & Nesterenko, P. N. (2017). Modification of the surface chemistry of microdispersed sintered detonation nanodiamonds and its effect on the adsorption properties. Adsorption, 23(5), 639–650. https://doi.org/10.1007/s10450-017-9883-4

    CAS  Article  Google Scholar 

  45. Laptev, A. G., Farakhov, T. M., & Lapteva, E. A. (2015). Models of transport phenomena in random packed and granular beds. Theoretical Foundations of Chemical Engineering, 49(4), 388–395. https://doi.org/10.1134/S0040579515040296

    CAS  Article  Google Scholar 

  46. Leudjo Taka, A., Klink, M. J., Yangkou Mbianda, X., & Naidoo, E. B. (2020). Chitosan nanocomposites for water treatment by fixed-bed continuous flow column adsorption: A review. Carbohydrate Polymers, 117398.https://doi.org/10.1016/j.carbpol.2020.117398

  47. Li, J., Zuo, K., Wu, W., Xu, Z., Yi, Y., Jing, Y., et al. (2018). Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II). Carbohydrate Polymers, 196, 376–384. https://doi.org/10.1016/j.carbpol.2018.05.015

    CAS  Article  Google Scholar 

  48. Li, Y., Sim, L. N., Ho, J. S., Chong, T. H., Wu, B., & Liu, Y. (2020). Integration of an anaerobic fluidized-bed membrane bioreactor (MBR) with zeolite adsorption and reverse osmosis (RO) for municipal wastewater reclamation: Comparison with an anoxic-aerobic MBR coupled with RO. Chemosphere, 245, 125569. https://doi.org/10.1016/j.chemosphere.2019.125569

    CAS  Article  Google Scholar 

  49. Lipatova, I. M., Losev, N. V., & Makarova, L. I. (2019). The influence of the combined impact of shear stress and cavitation on the structure and sorption properties of chitin. Carbohydrate Polymers, 209, 320–327. https://doi.org/10.1016/j.carbpol.2019.01.038

    CAS  Article  Google Scholar 

  50. Liu, S., Pan, J., Cao, J., Dai, X., Meng, M., Wu, R., et al. (2016). Simultaneous removal of Pb(II) and 2,4,6-trichlorophenol by a hierarchical porous PU@PDA@MSNs sponge with reversible “shape memory” effect. Chemical Engineering Journal, 284, 10–20. https://doi.org/10.1016/j.cej.2015.08.133

    CAS  Article  Google Scholar 

  51. Liu, X., Chang, M., He, B., Meng, L., Wang, X., Sun, R., et al. (2019). A one-pot strategy for preparation of high-strength carboxymethyl xylan-g-poly(acrylic acid) hydrogels with shape memory property. Journal of Colloid and Interface Science, 538, 507–518. https://doi.org/10.1016/j.jcis.2018.12.023

    CAS  Article  Google Scholar 

  52. Liu, Y., Gao, Q., Li, C., Liu, S., Xia, K., Han, B., & Zhou, C. (2020). Effective coating of crosslinked polyethyleneimine on elastic spongy monolith for highly efficient batch and continuous flow adsorption of Pb(II) and acidic red 18. Chemical Engineering Journal, 391, 123610. https://doi.org/10.1016/j.cej.2019.123610

    CAS  Article  Google Scholar 

  53. Lone, S., Yoon, D. H., Lee, H., & Cheong, I. W. (2019). Gelatin–chitosan hydrogel particles for efficient removal of Hg(II) from wastewater. Environmental Science: Water Research & Technology, 5(1), 83–90. https://doi.org/10.1039/C8EW00678D

    CAS  Article  Google Scholar 

  54. Mailler, R., Gasperi, J., Coquet, Y., Buleté, A., Vulliet, E., Deshayes, S., et al. (2016). Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale. Science of the Total Environment, 542, 983–996. https://doi.org/10.1016/j.scitotenv.2015.10.153

    CAS  Article  Google Scholar 

  55. Makhado, E., Pandey, S., Nomngongo, P. N., & Ramontja, J. (2018). Preparation and characterization of xanthan gum-cl-poly(acrylic acid)/o-MWCNTs hydrogel nanocomposite as highly effective re-usable adsorbent for removal of methylene blue from aqueous solutions. Journal of Colloid and Interface Science, 513, 700–714. https://doi.org/10.1016/j.jcis.2017.11.060

    CAS  Article  Google Scholar 

  56. Makvandi, P., Iftekhar, S., Pizzetti, F., Zarepour, A., Zare, E. N., Ashrafizadeh, M., et al. (2021). Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: A review. Environmental Chemistry Letters, 19(1), 583–611. https://doi.org/10.1007/s10311-020-01089-4

    CAS  Article  Google Scholar 

  57. Manyangadze, M., Chikuruwo, N. H. M., Narsaiah, T. B., Chakra, C. S., Radhakumari, M., & Danha, G. (2020). Enhancing adsorption capacity of nano-adsorbents via surface modification: A review. South African Journal of Chemical Engineering, 31, 25–32. https://doi.org/10.1016/j.sajce.2019.11.003

    Article  Google Scholar 

  58. Mao, X., Wang, L., Gu, S., Duan, Y., Zhu, Y., Wang, C., & Lichtfouse, E. (2018). Synthesis of a three-dimensional network sodium alginate–poly(acrylic acid)/attapulgite hydrogel with good mechanic property and reusability for efficient adsorption of Cu2+ and Pb2+. Environmental Chemistry Letters, 16(2), 653–658. https://doi.org/10.1007/s10311-018-0708-9

    CAS  Article  Google Scholar 

  59. Marx, C., Günther, N., Schubert, S., Oertel, R., Ahnert, M., Krebs, P., & Kuehn, V. (2015). Mass flow of antibiotics in a wastewater treatment plant focusing on removal variations due to operational parameters. Science of the Total Environment, 538, 779–788. https://doi.org/10.1016/j.scitotenv.2015.08.112

    CAS  Article  Google Scholar 

  60. Mary Ealias, A., & Saravanakumar, M. P. (2019). A critical review on ultrasonic-assisted dye adsorption: Mass transfer, half-life and half-capacity concentration approach with future industrial perspectives. Critical Reviews in Environmental Science and Technology, 49(21), 1959–2015. https://doi.org/10.1080/10643389.2019.1601488

    CAS  Article  Google Scholar 

  61. Mittal, H., Ray, S. S., & Okamoto, M. (2016). Recent progress on the design and applications of polysaccharide-based graft copolymer hydrogels as adsorbents for wastewater purification. Macromolecular Materials and Engineering, 301(5), 496–522. https://doi.org/10.1002/mame.201500399

    CAS  Article  Google Scholar 

  62. Mittal, H., Kumar, V., Alhassan, S. M., & Ray, S. S. (2018). Modification of gum ghatti via grafting with acrylamide and analysis of its flocculation, adsorption, and biodegradation properties. International Journal of Biological Macromolecules, 114, 283–294. https://doi.org/10.1016/j.ijbiomac.2018.03.131

    CAS  Article  Google Scholar 

  63. Mo, L., Pang, H., Tan, Y., Zhang, S., & Li, J. (2019). 3D multi-wall perforated nanocellulose-based polyethylenimine aerogels for ultrahigh efficient and reversible removal of Cu(II) ions from water. Chemical Engineering Journal, 378, 122157. https://doi.org/10.1016/j.cej.2019.122157

    CAS  Article  Google Scholar 

  64. Moghaddam, E. M., Foumeny, E. A., Stankiewicz, A. I., & Padding, J. T. (2019). Fixed bed reactors of non-spherical pellets: Importance of heterogeneities and inadequacy of azimuthal averaging. Chemical Engineering Science: X, 1, 100006. https://doi.org/10.1016/j.cesx.2019.100006

    CAS  Article  Google Scholar 

  65. Moghaddam, E. M., Foumeny, E. A., Stankiewicz, A. I., & Padding, J. T. (2020). Hydrodynamics of narrow-tube fixed bed reactors filled with Raschig rings. Chemical Engineering Science: X, 5, 100057. https://doi.org/10.1016/j.cesx.2020.100057

    CAS  Article  Google Scholar 

  66. Mondal, S., & Majumder, S. K. (2020). Copper adsorption based on hydrodynamics and mixing characteristics on the amine-functionalized reduced graphene oxide coated glass beads in a multichannel packed bed device. Industrial & Engineering Chemistry Research, 59(25), 11864–11879. https://doi.org/10.1021/acs.iecr.0c00681

    CAS  Article  Google Scholar 

  67. Mudhoo, A., Mohan, D., Pittman Jr., C. U., Sharma, G., & Sillanpää, M. (2021). Adsorbents for real-scale water remediation: Gaps and the road forward. Journal of Environmental Chemical Engineering, 9(4), 105380. https://doi.org/10.1016/j.jece.2021.105380

    CAS  Article  Google Scholar 

  68. Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Shuaib, D. T., Ajala, A. O., & Mohammed, A. K. (2020). Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: A review. Applied Water Science, 10(1), 49. https://doi.org/10.1007/s13201-019-1138-y

    CAS  Article  Google Scholar 

  69. Nainamalai, M., Palani, M., Soundarajan, B., & Allwin Ebinesar, J. S. S. (2018). Decolorization of synthetic dye wastewater using packed bed electro-adsorption column. Chemical Engineering and Processing - Process Intensification, 130, 160–168. https://doi.org/10.1016/j.cep.2018.06.013

    CAS  Article  Google Scholar 

  70. Nath, J., Chowdhury, A., & Dolui, S. K. (2018). Chitosan/graphene oxide-based multifunctional pH-responsive hydrogel with significant mechanical strength, self-healing property, and shape memory effect. Advances in Polymer Technology, 37(8), 3665–3679. https://doi.org/10.1002/adv.22151

    CAS  Article  Google Scholar 

  71. Oatley-Radcliffe, D. L., Williams, S. R., Ainscough, T. J., Lee, C., Johnson, D. J., & Williams, P. M. (2015). Experimental determination of the hydrodynamic forces within nanofiltration membranes and evaluation of the current theoretical descriptions. Separation and Purification Technology, 149, 339–348. https://doi.org/10.1016/j.seppur.2015.05.041

    CAS  Article  Google Scholar 

  72. Ouyang, E., Liu, Y., Ouyang, J., & Wang, X. (2019). Effects of different wastewater characteristics and treatment techniques on the bacterial community structure in three pharmaceutical wastewater treatment systems. Environmental Technology, 40(3), 329–341. https://doi.org/10.1080/09593330.2017.1393010

    CAS  Article  Google Scholar 

  73. Pereira, A. G. B., Rodrigues, F. H. A., Paulino, A. T., Martins, A. F., & Fajardo, A. R. (2021). Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review. Journal of Cleaner Production, 284, 124703. https://doi.org/10.1016/j.jclepro.2020.124703

    CAS  Article  Google Scholar 

  74. Pilate, F., Toncheva, A., Dubois, P., & Raquez, J.-M. (2016). Shape-memory polymers for multiple applications in the materials world. European Polymer Journal, 80, 268–294. https://doi.org/10.1016/j.eurpolymj.2016.05.004

    CAS  Article  Google Scholar 

  75. Prashantha Kumar, T. K. M., Mandlimath, T. R., Sangeetha, P., Revathi, S. K., & Ashok Kumar, S. K. (2018). Nanoscale materials as sorbents for nitrate and phosphate removal from water. Environmental Chemistry Letters, 16(2), 389–400. https://doi.org/10.1007/s10311-017-0682-7

    CAS  Article  Google Scholar 

  76. Rajput, S., Singh, L. P., Pittman Jr., C. U., & Mohan, D. (2017). Lead (Pb2+) and copper (Cu2+) remediation from water using superparamagnetic maghemite (γ-Fe2O3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP). Journal of Colloid and Interface Science, 492, 176–190. https://doi.org/10.1016/j.jcis.2016.11.095

    CAS  Article  Google Scholar 

  77. Ren, J., Li, J., Li, J., Chen, Z., & Cheng, F. (2019). Tracking multiple aromatic compounds in a full-scale coking wastewater reclamation plant: Interaction with biological and advanced treatments. Chemosphere, 222, 431–439. https://doi.org/10.1016/j.chemosphere.2019.01.179

    CAS  Article  Google Scholar 

  78. Rossier, M., Schaetz, A., Athanassiou, E. K., Grass, R. N., & Stark, W. J. (2011). Reversible As(V) adsorption on magnetic nanoparticles and pH dependent desorption concentrates dilute solutions and realizes true moving bed reactor systems. Chemical Engineering Journal, 175, 244–250. https://doi.org/10.1016/j.cej.2011.09.101

    CAS  Article  Google Scholar 

  79. Saad, A., Mills, R., Wan, H., Mottaleb, M. A., Ormsbee, L., & Bhattacharyya, D. (2020). Thermo-responsive adsorption-desorption of perfluoroorganics from water using PNIPAm hydrogels and pore functionalized membranes. Journal of Membrane Science, 599, 117821. https://doi.org/10.1016/j.memsci.2020.117821

    CAS  Article  Google Scholar 

  80. Sadegh, H., Ali, G. A. M., Gupta, V. K., Makhlouf, A. S. H., Shahryari-ghoshekandi, R., Nadagouda, M. N., et al. (2017). The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. Journal of Nanostructure in Chemistry, 7(1), 1–14. https://doi.org/10.1007/s40097-017-0219-4

    CAS  Article  Google Scholar 

  81. Sağ, Y., Tatar, B., & Kutsal, T. (2003). Biosorption of Pb(II) and Cu(II) by activated sludge in batch and continuous-flow stirred reactors. Bioresource Technology, 87(1), 27–33. https://doi.org/10.1016/S0960-8524(02)00210-9

    Article  Google Scholar 

  82. Sellaoui, L., Mechi, N., Lima, É. C., Dotto, G. L., & Ben Lamine, A. (2017). Adsorption of diclofenac and nimesulide on activated carbon: Statistical physics modeling and effect of adsorbate size. Journal of Physics and Chemistry of Solids, 109, 117–123. https://doi.org/10.1016/j.jpcs.2017.05.019

    CAS  Article  Google Scholar 

  83. Sepehr, M. N., Kazemian, H., Ghahramani, E., Amrane, A., Sivasankar, V., & Zarrabi, M. (2014). Defluoridation of water via light weight expanded clay aggregate (LECA): Adsorbent characterization, competing ions, chemical regeneration, equilibrium and kinetic modeling. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1821–1834. https://doi.org/10.1016/j.jtice.2014.02.009

    CAS  Article  Google Scholar 

  84. Sharma, G., Thakur, B., Naushad, M., Kumar, A., Stadler, F. J., Alfadul, S. M., & Mola, G. T. (2018). Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environmental Chemistry Letters, 16(1), 113–146. https://doi.org/10.1007/s10311-017-0671-x

    CAS  Article  Google Scholar 

  85. Shi, K., Liu, Z., Yang, C., Li, X.-Y., Sun, Y.-M., Deng, Y., et al. (2017). Novel biocompatible thermoresponsive poly(N -vinyl caprolactam)/clay nanocomposite hydrogels with macroporous structure and improved mechanical characteristics. ACS Applied Materials & Interfaces, 9(26), 21979–21990. https://doi.org/10.1021/acsami.7b04552

    CAS  Article  Google Scholar 

  86. Singh, R. P., Sharma, K., & Mausam, K. (2020). Dispersion and stability of metal oxide nanoparticles in aqueous suspension: A review. Materials Today: Proceedings, 26, 2021–2025. https://doi.org/10.1016/j.matpr.2020.02.439

    CAS  Article  Google Scholar 

  87. Song, K., Zhu, W., Li, X., & Yu, Z. (2020). A novel mechanical robust, self-healing and shape memory hydrogel based on PVA reinforced by cellulose nanocrystal. Materials Letters, 260, 126884. https://doi.org/10.1016/j.matlet.2019.126884

    CAS  Article  Google Scholar 

  88. Tang, C., Brodie, P., Li, Y., Grishkewich, N. J., Brunsting, M., & Tam, K. C. (2020). Shape recoverable and mechanically robust cellulose aerogel beads for efficient removal of copper ions. Chemical Engineering Journal, 392, 124821. https://doi.org/10.1016/j.cej.2020.124821

    CAS  Article  Google Scholar 

  89. Torkzaban, S., Bradford, S. A., & Walker, S. L. (2007). Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Langmuir, 23(19), 9652–9660. https://doi.org/10.1021/la700995e

    CAS  Article  Google Scholar 

  90. Uribe Santos, D. L., Delgado Dobladez, J. A., Águeda Maté, V. I., Álvarez Torrellas, S., & Larriba Martínez, M. (2020). Recovery and purification of acetic acid from aqueous mixtures by simulated moving bed adsorption with methanol and water as desorbents. Separation and Purification Technology, 237, 116368. https://doi.org/10.1016/j.seppur.2019.116368

    CAS  Article  Google Scholar 

  91. Vinayagam, R., Pai, S., Murugesan, G., Varadavenkatesan, T., Narayanasamy, S., & Selvaraj, R. (2022). Magnetic activated charcoal/Fe2O3 nanocomposite for the adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solutions: Synthesis, characterization, optimization, kinetic and isotherm studies. Chemosphere, 286, 131938. https://doi.org/10.1016/j.chemosphere.2021.131938

    CAS  Article  Google Scholar 

  92. Wang, S.-J., Bu, H., Chen, H.-J., Hu, T., Chen, W.-Z., Wu, J.-H., et al. (2020). Floatable magnetic aerogel based on alkaline residue used for the convenient removal of heavy metals from wastewater. Chemical Engineering Journal, 399, 125760. https://doi.org/10.1016/j.cej.2020.125760

    CAS  Article  Google Scholar 

  93. Westerhoff, P., Highfield, D., Badruzzaman, M., & Yoon, Y. (2005). Rapid small-scale column tests for arsenate removal in iron oxide packed bed columns. Journal of Environmental Engineering, 131(2), 262–271. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:2(262)

    CAS  Article  Google Scholar 

  94. Worch, E. (2008). Fixed-bed adsorption in drinking water treatment: A critical review on models and parameter estimation. Journal of Water Supply: Research and Technology-Aqua, 57(3), 171–183. https://doi.org/10.2166/aqua.2008.100

    CAS  Article  Google Scholar 

  95. Xue, X., Cheng, R., Shi, L., Ma, Z., & Zheng, X. (2017). Nanomaterials for water pollution monitoring and remediation. Environmental Chemistry Letters, 15(1), 23–27. https://doi.org/10.1007/s10311-016-0595-x

    CAS  Article  Google Scholar 

  96. Yang, G., Tang, L., Zeng, G., Cai, Y., Tang, J., Pang, Y., et al. (2015). Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chemical Engineering Journal, 259, 854–864. https://doi.org/10.1016/j.cej.2014.08.081

    CAS  Article  Google Scholar 

  97. Yang, K., Chen, B., Zhu, X., & Xing, B. (2016). Aggregation, adsorption, and morphological transformation of graphene oxide in aqueous solutions containing different metal cations. Environmental Science & Technology, 50(20), 11066–11075. https://doi.org/10.1021/acs.est.6b04235

    CAS  Article  Google Scholar 

  98. Yin, X., Zhang, Z., Ma, H., Venkateswaran, S., & Hsiao, B. S. (2020). Ultra-fine electrospun nanofibrous membranes for multicomponent wastewater treatment: Filtration and adsorption. Separation and Purification Technology, 242, 116794. https://doi.org/10.1016/j.seppur.2020.116794

    CAS  Article  Google Scholar 

  99. Yu, K., Ritchie, A., Mao, Y., Dunn, M. L., & Qi, H. J. (2015). Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials. Procedia IUTAM, 12, 193–203. https://doi.org/10.1016/j.piutam.2014.12.021

    Article  Google Scholar 

  100. Zaib, Q., & Ahmad, F. (2020). Experimental modeling to optimize the sonication energy in water. Measurement, 163, 108039. https://doi.org/10.1016/j.measurement.2020.108039

    Article  Google Scholar 

  101. Zhang, C., Geng, X., Wang, H., Zhou, L., & Wang, B. (2017). Emission factor for atmospheric ammonia from a typical municipal wastewater treatment plant in South China. Environmental Pollution, 220, 963–970. https://doi.org/10.1016/j.envpol.2016.10.082

    CAS  Article  Google Scholar 

  102. Zhang, D., Li, N., Cao, S., Liu, X., Qiao, M., Zhang, P., et al. (2019). A layered chitosan/graphene oxide sponge as reusable adsorbent for removal of heavy metal ions. Chemical Research in Chinese Universities, 35(3), 463–470. https://doi.org/10.1007/s40242-019-8369-1

    CAS  Article  Google Scholar 

  103. Zhang, W., Wang, X., Zhang, Y., van Bochove, B., Mäkilä, E., Seppälä, J., et al. (2020). Robust shape-retaining nanocellulose-based aerogels decorated with silver nanoparticles for fast continuous catalytic discoloration of organic dyes. Separation and Purification Technology, 242, 116523. https://doi.org/10.1016/j.seppur.2020.116523

    CAS  Article  Google Scholar 

  104. Zheng, Y., & Wang, A. (2015). Superadsorbent with three-dimensional networks: From bulk hydrogel to granular hydrogel. European Polymer Journal, 72, 661–686. https://doi.org/10.1016/j.eurpolymj.2015.02.031

    CAS  Article  Google Scholar 

  105. Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution, 227, 98–115. https://doi.org/10.1016/j.envpol.2017.04.032

    CAS  Article  Google Scholar 

  106. Zietzschmann, F., Worch, E., Altmann, J., Ruhl, A. S., Sperlich, A., Meinel, F., & Jekel, M. (2014). Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater. Water Research, 65, 297–306. https://doi.org/10.1016/j.watres.2014.07.043

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Author M.S. acknowledges the support received through the Distinguished Scientist Fellowship Program (DSFP) at King Saud University, Riyadh, Saudi Arabia. The contents of this article have been crosschecked for similarity in the Turnitin software. The figures have been entirely created with BioRender.com, and they were exported under paid plans having Receipt #2991-3014 (for Figure 1) and Receipt #2991-3014 (for Figures 2 and 3).

Author information

Affiliations

Authors

Contributions

Ackmez Mudhoo: conceptualization; data curation; writing—original draft; review and editing; revision.

Manvendra Patel: data curation; writing—original draft; review and editing; revision.

Dinesh Mohan, Charles U. Pittman Jr., and Mika Sillanpää: writing—review of original draft and editing; revision.

Corresponding author

Correspondence to Ackmez Mudhoo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights/Learning Points

• Shape memory materials can become practical adsorbents for water purification.

• However, shape memory adsorbents will be exposed to realistic hydrodynamic forces.

• Examining shape memory adsorbents’ behavior in real-world environments is crucial.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mudhoo, A., Patel, M., Mohan, D. et al. Shape Memory Adsorbents for Water Remediation: Recent Progress, Associated Hydrodynamics, and Research Needs. Water Air Soil Pollut 232, 447 (2021). https://doi.org/10.1007/s11270-021-05404-9

Download citation

Keywords

  • Hydrogel
  • Aerogel
  • Sponge
  • Shape memory
  • Mechanical strength
  • Water purification