Skip to main content

Eisenia andrei Behavioral and Antioxidative Responses to Excess of Copper in the Soil

Abstract

Intense copper-based (Cu) fungicide using in agriculture has led to soil contamination in different places worldwide. Excess of Cu in the soil can have negative effect on the entire ecosystem. The aim of the current study is to determine the toxicological effects of different Cu doses on the biomass, reproduction, and biochemical responses of earthworm species Eisenia andrei. Soil samples were divided into 6 treatments, namely 0, 35, 70, 105, 140, and 175 mg Cu kg−1. Biomass assessment was based on earthworms’ exposure to different Cu doses for 21 days, whereas reproduction test was applied for 56 days. Biochemical analyses were carried out after earthworms were exposed to different Cu doses for 3 days and at the end of the experiment (28-day exposure). There was significant biomass decrease in earthworms exposed to the highest Cu dose after 14 days. Increasing Cu doses have decreased the number of E. andrei cocoons. The activity of enzymes such as acetylcholinesterase (AChE) and glutathione S-transferase (GST) was higher in earthworms exposed to the highest Cu dose at the end of the exposure period. Lipid peroxidation (MDA) levels have changed in all treatments after 28 days, except for 175 g kg−1 of Cu. Excess of Cu in the soil has caused damage to E. andrei earthworms in all parameters evaluated in the current study; neurotoxic effects were evidenced by AChE activity, even at the lowest Cu doses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Not applicable.

Code Availability

Not applicable.

References

  1. Aguilar, R., Hormazábal, C., Gaete, H., & Neaman, A. (2011). Spatial distribution of copper, organic matter and pH in agricultural soils affected by mining activities. Journal of Soil Science and Plant Nutrition, 11, 125–144. https://doi.org/10.4067/S0718-95162011000300010

    Article  Google Scholar 

  2. Ballabio, C., Panagos, P., Lugato, E., Huang, J. H., Orgiazzi, A., Jones, A., Ugalde, O. F., Borrelli, P., & Montanarella, L. (2018). Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Science of the Total Environment, 636, 282–298. https://doi.org/10.1016/j.scitotenv.2018.04.268

    CAS  Article  Google Scholar 

  3. Bani, A., Pioli, S., Ventura, M., Panzacchi, P., Borruso, L., Tognetti, R., Tonon, G., & Brusetti, L. (2018). The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology, 126, 75–84. https://doi.org/10.1016/j.apsoil.2018.02.017

    Article  Google Scholar 

  4. Banni, M., Bouraoui, Z., Clerandeau, C., Narbonne, J. F., & Boussetta, H. (2009). Mixture toxicity assessment of cadmium and benzo[a]pyrene in the sea worm Hediste diversicolor. Chemosphere, 77, 902–906. https://doi.org/10.1016/j.chemosphere.2009.08.041

    CAS  Article  Google Scholar 

  5. Banni, M., Negri, A., Dagnini, A., Jebali, J., Ameur, S., & Boussetta, H. (2010). Acute effects of benzo[a]pyrene on digestive gland enzymatic biomarkers and DNA damage on mussel Mytilus gallo provincialis. Ecotoxicology and Environmental Safety, 73, 842–848. https://doi.org/10.1016/j.ecoenv.2009.12.032

    CAS  Article  Google Scholar 

  6. Bottinelli, N., Jouquet, P., Capowiez, Y., Podwojewski, P., Grimaldi, M., & Peng, X. (2015). Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil & Tillage Research, 146, 118–124. https://doi.org/10.1016/j.still.2014.01.007

    Article  Google Scholar 

  7. Boughattas, I., Hattab, S., Boussetta, H., Banni, M., & Navarro, E. (2017). Impact of heavy metal contamination on oxidative stress of Eisenia andrei and bacterial community structure in Tunisian mine soil. Environmental Science and Pollution Research, 24, 18083–18095. https://doi.org/10.1007/s11356-017-9449-8

    CAS  Article  Google Scholar 

  8. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    CAS  Article  Google Scholar 

  9. Brunetto, G., Miotto, A., Ceretta, C. A., Schmitt, D. E., Heinzen, J., Moraes, M. P., Canton, L., Tiecher, T. L., Comin, J. J., & Girotto, E. (2014). Mobility of copper and zinc fractions in fungicide-amended vineyard sandy soils. Archives of Agronomy and Soil Science, 60, 609–624. https://doi.org/10.1590/1678-4499.2016391

    CAS  Article  Google Scholar 

  10. Brunetto, G., Souza, R. O. S., Piccin, R., Bellinaso, R. J. S., Kaminski, J., Ceretta, C. A., Stefanello, L., Krammes, R., Hindersmann, J., & Gatiboni, L. C. (2019). Effectiveness of a rapid soil incubation method for determining potential acidity of soils in Rio Grande do Sul. Brazil. Ciência Rural, 49, 20180350. https://doi.org/10.1590/0103-8478cr20180350

    CAS  Article  Google Scholar 

  11. Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310. https://doi.org/10.1016/S0076-6879(78)52032-6

    CAS  Article  Google Scholar 

  12. Bundy, J. G., Sidhu, J. K., Rana, F., Spurgeon, D. J., Svendsen, C., Wren, J. F., Stürzenbaum, S. R., Morgan, A. J., & Kille, P. (2008). Systems toxicology’ approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus. BMC Biology, 6, 25. https://doi.org/10.1186/1741-7007-6-25

    CAS  Article  Google Scholar 

  13. Castaño-Sánchez, A., Hose, G. C., & Reboleira, A. S. P. S. (2019). Ecotoxicological effects of anthropogenic stressors in subterranean organisms: A review. Chemosphere, 244, 125244. https://doi.org/10.1016/j.chemosphere.2019.125422

    CAS  Article  Google Scholar 

  14. Cataldo, J. R., Hidalgo, M. E. L., Neaman, A., & Gaete, H. O. (2011). Use of molecular biomarkers in Eisenia foetida to assess copper toxicity in agricultural soils affected by mining activities. Journal of Soil Science and Plant Nutrition, 11, 57–70. https://doi.org/10.4067/S0718-95162011000300005

    Article  Google Scholar 

  15. Chopin, E. I. B., Marin, B., Mkoungafoko, R., Rigaux, A., Hopgood, M. J., Delannoy, E., Cancès, B., & Lauraina, M. (2008). Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France. Environmental Pollution, 156, 1092–1098. https://doi.org/10.1016/j.envpol.2008.04.015

    CAS  Article  Google Scholar 

  16. Domínguez, A., Brown, G. G., Sautter, K. D., Ribas de Oliveira, C. M., Vasconcelos, E. C., Niva, C. C., Bartz, M. L. C., & Bedano, J. C. (2016). Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil. Scientific Reports, 6, 1–8. https://doi.org/10.1038/srep19731

    CAS  Article  Google Scholar 

  17. Duan, X., Xu, M., Zhou, Y., Yan, Z., Du, Y., Zhang, L., Zhang, C., Bai, L., Nie, J., Chen, G., & Li, F. (2016). Effects of soil properties on copper toxicity to earthworm Eisenia fetida in 15 Chinese soils. Chemosphere, 145, 185–192. https://doi.org/10.1016/j.chemosphere.2015.11.099

    CAS  Article  Google Scholar 

  18. Ellman, G. L., Courtnet, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    CAS  Article  Google Scholar 

  19. Gao, Y., Li, H., Li, X., & Sun, Z. (2016). Combined subacute toxicity of copper and antiparasitic albendazole to the earthworm (Eisenia fetida). Environmental Science and Pollution Research, 23, 4387–4396. https://doi.org/10.1007/s11356-015-5979-0

    CAS  Article  Google Scholar 

  20. Gao, Y., Sun, X., Zhang, Z., & Li, X. (2019). Combined effect of growth promoter roxarsone and copper on the earthworm Eisenia fetida. Environmental Science and Pollution Research, 27, 23411–23419. https://doi.org/10.1007/s11356-019-05484-5

    CAS  Article  Google Scholar 

  21. Gautam, A., Ray, A., Mukherjee, S., Das, S., Pal, K., Das, S., Karmakar, P., Ray, M., & Ray, S. (2018). Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm. Ecotoxicology and Environmental Safety, 148, 620–631. https://doi.org/10.1016/j.ecoenv.2017.11.008

    CAS  Article  Google Scholar 

  22. Hackenberger, B. K., Velki, M., Stepic, S., & Hackenberger, D. K. (2012). The effect of formalin on acetylcholinesterase and catalase activities, and on the concentration of oximes, in the earthworm species Eisenia andrei. European Journal of Soil Biology, 50, 137–143. https://doi.org/10.1016/j.ejsobi.2012.02.002

    CAS  Article  Google Scholar 

  23. Krüger, I., Chartin, C., Van Wesemael, B., & Carnol, M. (2018). Defining a reference system for biological indicators of agricultural soil quality in Wallonia, Belgium. Ecological Indicators, 95, 568–578. https://doi.org/10.1016/j.ecolind.2018.08.010

    CAS  Article  Google Scholar 

  24. Li, X., Zhang, J., Gong, Y., Liu, Q., Yang, S., Ma, J., Zhao, L., & Hou, H. (2020). Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere, 244, 125516. https://doi.org/10.1016/j.chemosphere.2019.125516

    CAS  Article  Google Scholar 

  25. Luo, W., Verweij, R. A., & Van Gestel, C. A. M. (2014). Determining the bioavailability and toxicity of lead contamination to earthworms requires using a combination of physicochemical and biological methods. Environmental Pollution, 185, 1–9. https://doi.org/10.1016/j.envpol.2013.10.017

    CAS  Article  Google Scholar 

  26. Maity, S., Roy, S., Chaudhury, S., & Bhattacharya, S. (2008). Antioxidant responses of the earthworm Lampito mauritii exposed to Pb and Zn contaminated soil. Environmental Pollution, 151, 1–7. https://doi.org/10.1016/j.envpol.2007.03.005

    CAS  Article  Google Scholar 

  27. Mincarelli, L., Tiano, L., Craft, J., Marcheggiani, F., & Vischetti, C. (2019). Evaluation of gene expression of different molecular biomarkers of stress response as an effect of copper exposure on the earthworm Elsenia Andrei. Ecotoxicology, 28, 938–948. https://doi.org/10.1007/s10646-019-02093-3

    CAS  Article  Google Scholar 

  28. Mirmonsef, H., Hornum, H. D., Jensen, J., & Holmstrup, M. (2017). Effects of an aged copper contamination on distribution of earthworms, reproduction and cocoon hatchability. Ecotoxicology and Environmental Safety, 135, 267–275. https://doi.org/10.1016/j.ecoenv.2016.10.012

    CAS  Article  Google Scholar 

  29. Mostafaii, G. R., Aseman, E., Asgharnia, H., Akbari, H., Iranshahi, L., & Sayyaf, H. (2016). Efficiency of the earthworm Eisenia fetida under the effect of organic matter for bioremediation of soils contaminated with cadmium and chromium. Brazilian Journal of Chemical Engineering, 33, 827–834. https://doi.org/10.1590/0104-6632.20160334s20150230

    CAS  Article  Google Scholar 

  30. Nirola, R., Megharaj, M., Venkateswarlu, K., Aryal, R., Correll, R., & Naidu, R. (2016). Assessment of metal toxicity and bioavailability in metallophyte leaf litters and metalliferous soils using Eisenia fetida in a microcosm study. Ecotoxicology and Environmental Safety, 129, 264–272. https://doi.org/10.1016/j.ecoenv.2016.03.034

    CAS  Article  Google Scholar 

  31. Organization for Economic Cooperation and Development (OECD). Guia para testes Químicos, OECD 207. Acute oral toxicity-Acute toxic class method. Organization for Economic Cooperation and Development, Paris, 1984.

  32. Otmani, H., Tadjine, A., Moumeni, O., Zeriri, I, Amamra, R., Samira D.bB., Djebar, M.bR., Berrebbah, H. (2018). Biochemical responses of the earthworm Allolobophora caliginosa exposed to cadmium contaminated soil in the Northeast of Algeria. Bulletin de la Société Royale des Sciences de Liège, 87, 1–12. https://doi.org/10.25518/0037-9565.7331

  33. Owojori, O. J., Reinecke, A. J., & Rozanov, A. B. (2010). Influence of clay content on bioavailability of copper in the earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 73(3), 407–414. https://doi.org/10.1016/j.ecoenv.2009.03.017

    CAS  Article  Google Scholar 

  34. Patinha, C., Durães, N., Dias, A. C., Pato, P., Fonseca, R., Janeiro, A., Barriga, F., Reis, A. P., Duarte, A., Silva, E. F., Sousa, A. J., & Cachada, A. (2018). Long-term application of the organic and inorganic pesticides in vineyards: Environmental record of past use. Applied Geochemistry, 88, 226–238. https://doi.org/10.1016/j.apgeochem.2017.05.014

    CAS  Article  Google Scholar 

  35. Pietrzak, U., & Mcphail, D. C. (2004). Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma, 122, 151–166. https://doi.org/10.1016/j.geoderma.2004.01.005

    CAS  Article  Google Scholar 

  36. Qiu, H., Vijver, M. G., He, E., & Peijnenburg, W. J. G. M. (2013). Predicting copper toxicity to different earthworm species using a multicomponent Freundlich model. Environmental Science & Technology, 47, 1–8. https://doi.org/10.1021/es305240n

    CAS  Article  Google Scholar 

  37. Sanchez-Hernandez, J. C., Ro, K. S., & Díaz, F. J. (2019). Biochar and earthworms working in tandem: Research opportunities for soil bioremediation. Science of The Total Environment, 688, 574–583. https://doi.org/10.1016/j.scitotenv.2019.06.212

    CAS  Article  Google Scholar 

  38. Santana, N. A., Ferreira, P. A. A., Tarouco, C. P., Schardong, I. S., Antoniolli, Z. I., Nicoloso, F. T., & Jacques, R. J. S. (2019). Earthworms and mycorrhization increase copper phytoextraction by Canavalia ensiformis in sandy soil. Ecotoxicology and Environmental Safety, 182, 109383. https://doi.org/10.1016/j.ecoenv.2019.109383

    CAS  Article  Google Scholar 

  39. Silva, I. C. B., Marques, A. C. R., Quadros, F. F., Sans, G. A., Soares, V. M., Conti, L. D., Ceretta, C. A., Ferreira, P. A. A., Toselli, M., & Brunetto, G. (2020). Spatial variation of herbaceous cover species community in Cu-contaminated vineyards in Pampa biome. Environmental Science and Pollution Research, 27, 13348–13359. https://doi.org/10.1007/s11356-020-07851-z

    CAS  Article  Google Scholar 

  40. Simões, B. F., Mazur, N., Correia, M. E. F., Niemeyer, J. C., de Matos, T., & S. . (2020). Ecotoxicity test as an aid in the determination of copper guideline values in soils. Ciência Rural, 50(6), 20180961. https://doi.org/10.1590/0103-8478cr20180961

    CAS  Article  Google Scholar 

  41. Tang, J., Zhang, J., Ren, L., Zhou, Y., Gao, J., Luo, L., Yang, Y., Peng, Q., Huang, H., & Chen, A. (2019). Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. Journal of Environmental Management, 242, 121–130. https://doi.org/10.1016/j.jenvman.2019.04.061

    CAS  Article  Google Scholar 

  42. Tatsi, K., Shaw, B. J., Hutchinson, T. H., & Handy, R. D. (2018). Copper accumulation and toxicity in earthworms exposed to CuO nanomaterials: Effects of particle coating and soil ageing. Ecotoxicology and Environmental Safety, 166(30), 462–473. https://doi.org/10.1016/j.ecoenv.2018.09.054

    CAS  Article  Google Scholar 

  43. Tiecher, T. L., Ceretta, C. A., Comin, J. J., Girotto, E., Miotto, A., Moraes, M. P., Benedet, L., Ferreira, P. A. A., Lourenzi, C. R., Couto, R. R., & Brunetto, G. (2013). Forms and accumulation of copper and zinc in a sandy Typic Hapludalf soil after long-term application of pig slurry and deep litter. Revista Brasileira De Ciência Do Solo, 37, 812–824. https://doi.org/10.1590/S0100-06832013000300028

    CAS  Article  Google Scholar 

  44. Tiecher, T. L., Tiecher, T., Ceretta, C. A., Ferreira, P. A. A., Nicoloso, F. T., Soriani, H. H., Tassinari, A., Paranhos, J. T., De Conti, L., & Brunetto, G. (2016). Physiological and nutritional status of black oat (Avena strigosa Schreb.) grown in soil with interaction of high doses of copper and zinc. Plant Physiology and Biochemistry, 106, 253–263. https://doi.org/10.1016/j.plaphy.2016.05.015

    CAS  Article  Google Scholar 

  45. Viti, C., Quaranta, D., Philippis, R., De Corti, G., Agnelli, A., Cuniglio, R., & Giovannetti, L. (2008). Characterizing cultivable soil microbial communities from copper fungicide-amended olive orchard and vineyard soils. World Journal of Microbiology & Biotechnology, 24, 309–318. https://doi.org/10.1007/s11274-007-9472-x

    CAS  Article  Google Scholar 

  46. Wang, K., Qiao, Y., Li, H., & Huang, C. (2020). Use of integrated biomarker response for studying the resistance strategy of the earthworm Metaphire californica in Cd-contaminated field soils in Hunan Province. South China. Environmental Pollution, 260, 114056. https://doi.org/10.1016/j.envpol.2020.114056

    CAS  Article  Google Scholar 

  47. Xing, Y., Meng, X., Wang, L., Zhang, J., Wu, Z., Gong, X., Wang, C., & Sun, H. (2018). Effects of benzotriazole on copper accumulation and toxicity in earthworm (Eisenia fetida). Journal of Hazardous Materials, 351, 330–336. https://doi.org/10.1016/j.jhazmat.2018.03.019

    CAS  Article  Google Scholar 

  48. Xiong, W., Ding, X., Zhang, Y., & Sun, Y. (2014). Ecotoxicological effects of a veterinary food additive, copper sulphate, on antioxidant enzymes and mRNA expression in earthworms. Environmental Toxicology and Pharmacology, 37, 134–140. https://doi.org/10.1016/j.etap.2013.11.014

    CAS  Article  Google Scholar 

  49. Yang, G., Chen, C., Yu, Y., Zhao, H., Wang, W., Wang, Y., Cai, L., He, Y., & Wang, X. (2018). Combined effects of four pesticides and heavy metal chromium (VI on the earthworm using avoidance behavior as an endpoint. Ecotoxicology and Environmental Safety, 157, 191–200. https://doi.org/10.1016/j.ecoenv.2018.03.067

    CAS  Article  Google Scholar 

  50. Yang, X., Song, Y., Ackland, M. L., Liu, Y., & Cao, X. (2012). Biochemical responses of earthworm Eisenia fetida exposed to cadmium-contaminated soil with long duration. Bulletin of Environmental Contamination and Toxicology, 89, 1148–1153. https://doi.org/10.1007/s00128-012-0837-y

    CAS  Article  Google Scholar 

  51. Zhang, X. J., Yang, L., Zhao, Q., Caen, J. P., He, H. Y., Jin, Q. H., Guo, L. H., Alemany, M., Zhang, L. Y., & Shi, Y. F. (2002). Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death and Differentiation, 9, 790–800. https://doi.org/10.1038/sj.cdd.4401034.l

    CAS  Article  Google Scholar 

  52. Zheng, K., Liu, Z., Li, Y., Cui, Y., & Li, M. (2013). Toxicological responses of earthworm (Eisenia fetida) exposed to metal-contaminated soils. Environmental Science and Pollution Research, 20, 8382–8390. https://doi.org/10.1007/s11356-013-1689-7

    CAS  Article  Google Scholar 

  53. Zhou, C. F., Wang, Y. J., Li, C. C., Sun, R. J., Yu, Y. C., & Zhou, D. M. (2013a). Subacute toxicity of copper and glyphosate and their interaction to earthworm (Eisenia fetida). Environmental Pollution, 180, 71–77. https://doi.org/10.1016/j.envpol.2013.05.016

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Barbara Clasen.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clasen, B., Ferreira, T., Santana, N.A. et al. Eisenia andrei Behavioral and Antioxidative Responses to Excess of Copper in the Soil. Water Air Soil Pollut 232, 443 (2021). https://doi.org/10.1007/s11270-021-05395-7

Download citation

Keywords

  • Soil contamination
  • Metals
  • Earthworms
  • Bioindicators