Skip to main content

Uranium and Thorium Retention onto Sorbents from Raw and Modified Pomegranate Peel

Abstract

Pomegranate peel was investigated as biosorbent to remove uranium as well as thorium from aqueous solutions under different experimental conditions (concentration, counter ions, temperature). The material was used in raw and modified form after treatment with acidic and alkaline solutions to increase its sorption capacity. Isotherms were obtained at pH 4 and Cinitial: 5–300 mg L−1 for uranium and at pH 3 and Cinitial: 5–100 mg L−1 for thorium, respectively. The equilibrium data of the sorption study, which were adapted to the Langmuir and Freundlich models, indicated enhanced sorption efficiency (115 and 80 mg g−1 for uranium and thorium). Furthermore, kinetic and thermodynamic data as well as investigation by FTIR, XRD, and SEM revealed the complex sorption mechanism that can be explained by a combination of physical sorption accompanied by surface precipitation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data Availability

All data generated or analyzed during this study are included in this article [and its supplementary file].

References

  1. Ai, L., Luo, X., Lin, X., & Zhang, S. (2013). Biosorption behaviors of uranium (VI) from aqueous solution by sunflower straw and insights of binding mechanism. Journal of Radioanalytical and Nuclear Chemistry, 298, 1823–1834. https://doi.org/10.1007/s10967-013-2613-9

    CAS  Article  Google Scholar 

  2. Alam, M., Nadeem, R., & Jilani, M. I. (2012). Pb (II) removal from wastewater using pomegranate waste biomass. Int. J. Chem. Biochem. Sci., 1, 24–29.

    Google Scholar 

  3. Albayari, M., Nazal, M. K., Khalili, F. I., Nordin, N., Adnan, R. (2021). Biochar derived from Salvadora persica branches biomass as low-cost adsorbent for removal of uranium(VI) and thorium(IV) from water. Journal of Radioanalytical and Nuclear Chemistry, 1–10.https://doi.org/10.1007/s10967-021-07667-2

  4. Ashtoukhy, E. S. Z. E., Amin, N. K., & Abdelwahab, O. (2008). Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination, 223(1–3), 162–173. https://doi.org/10.1016/j.desal.2007.01.206

    CAS  Article  Google Scholar 

  5. Attia, L. A., Youssef, M. A., & Abdel Moamen, O. A. (2021). Feasibility of radioactive cesium and europium sorption using valorized punica granatum peel: Kinetic and equilibrium aspects. Separation Science and Technology, 56, 217–232. https://doi.org/10.1080/01496395.2019.1708111

    CAS  Article  Google Scholar 

  6. Aziman, E. S., Mohd Salehuddin, A. H.J., Ismail, A. F. (2019). Remediation of thorium (IV) from wastewater: Current status and way forward. Separation & Purification Reviews. 1-26.https://doi.org/10.1080/15422119.2019.1639519

  7. Bağda, E., Tuzen, M., & Sarı, A. (2017). Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae). Journal of Environmental Radioactivity, 175, 7–14. https://doi.org/10.1016/j.jenvrad.2017.04.004

    CAS  Article  Google Scholar 

  8. Bağda, E., Sarı, A., & Tuzen, M. (2018). Effective uranium biosorption by macrofungus (Russulasanguinea) from aqueous solution: Equilibrium, thermodynamic and kinetic studies. Journal of Radioanalytical and Nuclear Chemistry, 317(3), 1387–1397. https://doi.org/10.1007/s10967-018-6039-2

    CAS  Article  Google Scholar 

  9. Bai, J., Fan, F., Wu, X., Tian, W., Zhao, L., Yin, X., Fan, F., Li, Z., Tian, L., Wang, Y., & Qin, Z. (2013). Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads. Journal of Environmental Radioactivity, 26, 226–231. https://doi.org/10.1016/j.jenvrad.2013.08.010

    CAS  Article  Google Scholar 

  10. Bampaiti, A., Misaelides, P., & Noli, F. (2015). Uranium removal from aqueous solutions using a raw and HDTMA-modified phillipsite-bearing tuff. Journal of Radioanalytical and Nuclear Chemistry, 303, 2233–2241. https://doi.org/10.1007/s10967-014-3796-4

    CAS  Article  Google Scholar 

  11. Ben-Ali, S., Jaouali, I., Souissi-Najar, S., & Ouederni, A. (2017). Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. Journal of Cleaner Production, 142, 3809–3821. https://doi.org/10.1016/j.jclepro.2016.10.081

    CAS  Article  Google Scholar 

  12. Bhatnagar, A., & Minocha, A. K. (2010). Biosorption optimization of nickel removal from water using Punica granatum peel waste. Colloids Surfaces B Biointerfaces, 76, 544–548. https://doi.org/10.1016/j.colsurfb.2009.12.016

    CAS  Article  Google Scholar 

  13. Bozkurt, S. S., Molu, Z. B., Cavas, L., & Merdivan, M. (2011). Biosorption of uranium (VI) and thorium (IV) onto Ulva gigantean (Kützing) bliding: Discussion of adsorption isotherms, kinetics and thermodynamic. Journal of Radioanalytical and Nuclear Chemistry, 288, 867–874. https://doi.org/10.1007/s10967-011-1010-5

    CAS  Article  Google Scholar 

  14. Brugge, D., De Lemos, J. L., & Oldmixon, B. (2005). Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: A review. Reviews on Environmental Health, 20, 177–194. https://doi.org/10.1515/REVEH.2005.20.3.177

    CAS  Article  Google Scholar 

  15. Bursali, E., Merdivan, M., & Yurdakoc, M. (2010). Preconcentration of uranium (VI) and thorium (IV) from aqueous solutions using low-cost abundantly available sorbent: Sorption behaviour of uranium (VI) and thorium (IV) on low-cost abundantly available sorbent. Journal of Radioanalytical and Nuclear Chemistry, 283, 471–476. https://doi.org/10.1007/s10967-009-0365-3

    CAS  Article  Google Scholar 

  16. Chen, X. E., Cheng, Y. E., & Rong, Z. (2005). Recent results from a study of thorium lung burdens and health effects among miners in China. Journal of Radiological Protection, 25, 451–460. https://doi.org/10.1088/0952-4746/25/4/007

    CAS  Article  Google Scholar 

  17. Ding, C., Feng, S., Li, X., Liao, J., Yang, Y., An, Z., Wu, Q., Zhang, D., Yang, J., Tang, J., Zhang, J., & Liu, N. (2014). Mechanism of thorium biosorption by the cells of the soil fungal isolate Geotrichum sp. dwc-1. Radiochimica Acta 102(1–2):175–184. https://doi.org/10.1515/ract-2014-2125

  18. Elsayed, A. E., Osman, D. I., Attia, S. K., Ahmed, H. M., Shoukry, E. M., Mostafa, Y. M., & Taman, A. R. (2020). A study on the removal characteristics of organic and inorganic pollutants from wastewater by low cost biosorbent. Egyptian Journal of Chemistry, 63(4), 16–17. https://doi.org/10.21608/ejchem.2019.15710.1950

    Article  Google Scholar 

  19. Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y. H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162, 616–645. https://doi.org/10.1016/j.jhazmat.2008.06.042

    CAS  Article  Google Scholar 

  20. Freundlich, H. M. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 1906(57), 1100–1107.

    Google Scholar 

  21. Goldberg, S., Criscenti, L. J., Turner, D., & J.A., Cantrell, K.J. . (2007). Adsorption–desorption processes in subsurface reactive transport modelling. Vadose Zone J., 6(3), 407–435. https://doi.org/10.2136/vzj2006.0085

    CAS  Article  Google Scholar 

  22. Gündüz, F., & Bayrak, B. (2017). Biosorption of malachite green from an aqueous solution using pomegranate peel: Equilibrium modelling, kinetic and thermodynamic studies. Journal of Molecular Liquids, 243, 790–798. https://doi.org/10.1016/j.molliq.2017.08.095

    CAS  Article  Google Scholar 

  23. Güzel, F., Aksoy, Ö., & Akkaya, G. (2014). Evaluation of pomegranate (Punica Granatum L.) pulps for the removal of copper(II) ions: Kinetic, equilibrium, and desorption studies. Journal of Dispersion Science and Technology, 35, 482–493. https://doi.org/10.1080/01932691.2013.796481

    CAS  Article  Google Scholar 

  24. Ho, Y. S., Ng, J. C., & McKay, G. (2000). Kinetics of pollutant sorption by biosorbents. Sep. Purif. Meth., 29(2), 189–232. https://doi.org/10.1081/SPM-100100009

    CAS  Article  Google Scholar 

  25. Huang, Y., Hu, Y., Chen, L., Yang, T., Huang, H., Shi, R., Lu, P., & Zhong, C. (2018). Selective biosorption of thorium (IV) from aqueous solutions by ginkgo leaf. PLoS ONE, 13(3), e0193659-e193683. https://doi.org/10.1371/journal.pone.0193659

    CAS  Article  Google Scholar 

  26. Jiménez-Reyes, M., De La Cruz, F. M. R., & Solache-Ríos, Μ. (2020). Physicochemical behavior of uranium and lanthanum in the presence of Abies religiosa leaf biomass. Water, Air, and Soil Pollution, 231, 469. https://doi.org/10.1007/s11270-020-04822-5

    CAS  Article  Google Scholar 

  27. Kapashi, E., Kapnisti, M., Dafnomili, A., & Noli, F. (2019). Aloe vera as an effective biosorbent for the removal of thorium and barium from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 321, 217–226. https://doi.org/10.1007/s10967-019-06558-x

    CAS  Article  Google Scholar 

  28. Khamseh, AGh., & Ghorbanian, S. A. (2018). Experimental and modeling investigation of thorium biosorption by orange peel in a continuous fixed-bed column, J. Radioanal. Nucl. Chem, Cilt., 317, 871–879. https://doi.org/10.1007/s10967-018-5954-6

    CAS  Article  Google Scholar 

  29. Kütahyali, C., & Eral, M. (2010). Sorption studies of uranium and thorium on activated carbon prepared from olive stones: Kinetic and thermodynamic aspects. Journal of Nuclear Materials, 396(2–3), 251–256. https://doi.org/10.1016/j.jnucmat.2009.11.018

    CAS  Article  Google Scholar 

  30. Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl., 24, 1–39.

    Google Scholar 

  31. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38(11):2221–2295.

  32. Liu, Y., & Liu, Y. J. (2008). Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 61, 229–242. https://doi.org/10.1016/j.seppur.2007.10.002

    CAS  Article  Google Scholar 

  33. Mahmood-Ul-Hassan, M., Suthar, V., Ahmad, R., & Yousra, M. (2018). Biosorption of metal ions on lignocellulosic materials: Batch and continuous-flow process studies. Environmental Monitoring and Assessment, 190, 287. https://doi.org/10.1007/s10661-018-6674-7

    CAS  Article  Google Scholar 

  34. Moghadam, M. R., Nasirizadeh, N., Dashti, Z., & Babanezhad, E. (2013). Removal of Fe (II) from aqueous solution using pomegranate peel carbon: Equilibrium and kinetic studies. Int. J. Ind. Chem., 4(1), 19. https://doi.org/10.1186/2228-5547-4-19

    Article  Google Scholar 

  35. Najim TS, Yassin SA (2009) Removal of chromium from aqueous solution using modified pomegranate peel: Mechanistic and thermodynamic studies. E-Journal Chem. 6.https://doi.org/10.1155/2009/804256

  36. Nemr, A. E. (2009). Potential of pomegranate husk carbon for Cr (VI) removal from wastewater: Kinetic and isotherm studies. Journal of Hazardous Materials, 161(1), 132–141. https://doi.org/10.1016/j.jhazmat.2008.03.093

    CAS  Article  Google Scholar 

  37. Nharingo, T., & Moyo, M. (2016). Application of Opuntia ficus-indica in bioremediation of wastewaters. A Critical Review. Journal of Environmental Manage., 166, 55–72. https://doi.org/10.1016/j.jenvman.2015.10.005

    CAS  Article  Google Scholar 

  38. Noli, F., Kapashi, E., & Kapnisti, M. (2019). Biosorption of uranium and cadmium using sorbents based on Aloe vera wastes. Journal of Environmental Chemical Engineering, 7, 102985. https://doi.org/10.1016/j.jece.2019.102985

    CAS  Article  Google Scholar 

  39. Nuhanović, M., Smječanin, N., Curić, N., & VinkovićAn, . (2021). Efficient removal of U(VI) from aqueous solution using the biocomposite based on sugar beet pulp and pomelo peel. Journal of Radioanalytical and Nuclear Chemistry, 328, 347–358.

    Article  Google Scholar 

  40. Pang, C., Liu, Y. H., Cao, X. H., Hua, R., Wang, C., & Li, C. (2010). Adsorptive removal of uranium from aqueous solution using chitosan-coated attapulgite. Journal of Radioanalytical and Nuclear Chemistry, 286(1), 185–193. https://doi.org/10.1007/s10967-010-0635-0

    CAS  Article  Google Scholar 

  41. Pang, C., Liu, Y. H., Cao, X. H., Li, M., Huang, G. L., Hua, R., Wang, C. X., Liu, Y. T., & An, X. F. (2011). Biosorption of uranium (VI) from aqueous solution by dead fungal biomass of Penicillium citrinum. Chemical Engineering Journal, 170(1), 1–6. https://doi.org/10.1016/j.cej.2010.10.068

    CAS  Article  Google Scholar 

  42. Picardo, M. C., Ferreira, A. C. M., & Da Costa, A. C. A. (2009). Continuous thorium biosorption—Dynamic study for critical bed depth determination in a fixed-bed reactor. Bioresource Technology, 100, 208–221. https://doi.org/10.1016/j.biortech.2008.05.047

    CAS  Article  Google Scholar 

  43. Prakash, C. V., & Prakash, I. (2011). Bioactive chemical constituents from pomegranate (Punicagranatum) juice, seed and peel-a review. Int. J. Res. Chem. Environ., 1(1), 1–18.

    Google Scholar 

  44. Šabanović, E., Muhić-Šarac, T., Nuhanović, M., & Memić, M. (2019). Biosorption of uranium (VI) from aqueous solution by Citrus limon peels: Kinetics, equlibrium and batch studies. Journal of Radioanalytical and Nuclear Chemistry, 319(1), 425–435. https://doi.org/10.1007/s10967-018-6358-3

    CAS  Article  Google Scholar 

  45. Salam, F. A., & Narayanan, A. (2019). Biosorption—A case study of hexavalent chromium removal with raw pomegranate peel. Desalination and Water Treatment, 156, 278–291. https://doi.org/10.5004/dwt.2019.23554

    CAS  Article  Google Scholar 

  46. Sar, P., Kazy, S. K., & D’Souza, S. F. (2004). Radionuclide remediation using a bacterial biosorbent. International Biodeterioration and Biodegradation, 54, 193–202. https://doi.org/10.1016/j.ibiod.2004.05.004

    CAS  Article  Google Scholar 

  47. Savvin, S. B. (1964). Analytical applications of arsenazo III—II: Determination of thorium, uranium, protactinium, neptunium, hafnium and scandium. Talanta, 11(1), 1–6. https://doi.org/10.1016/0039-9140(64)80003-5

    CAS  Article  Google Scholar 

  48. Semerjian, L. (2018). Removal of heavy metals (Cu, Pb) from aqueous solutions using pine (Pinus halepensis) sawdust: Equilibrium, kinetic, and thermodynamic studies. Environmental Technology and Innovation, 12, 91–103. https://doi.org/10.1016/j.eti.2018.08.005

    Article  Google Scholar 

  49. Staroń, P., Płecka, A., & Chwastowski, J. (2021). Lead sorption by Chrysanthemum indicum: Equilibrium, kinetic, and desorption studies. Water, Air, and Soil Pollution, 232, 22. https://doi.org/10.1007/s11270-020-04956-6

    CAS  Article  Google Scholar 

  50. Toxic Substances Portal - Uranium. Toxicological profile for uranium (2013). Agency for Toxic Substances and Disease Registry, US Department of Health and Human, https://www.atsdr.cdc.gov/toxprofiles

  51. Toxicological profile for thorium, Agency for Toxic Substances and Disease Registry, US Department of Health and Human (2019). https://www.atsdr.cdc.gov/toxprofiles

  52. Xia, L., Tan, K., Wang, X., Zheng, W., Liu, W., & Deng, C. (2013). Uranium removal from aqueous solution by banyan leaves: Equilibrium, thermodynamic, kinetic, and mechanism studies. Journal of Environmental Engineering, 139(6), 887–895. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000695

    CAS  Article  Google Scholar 

  53. Xie, Y., Chen, C., Ren, X., Wang, X., Wang, H., & Wang, X. (2019). Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Progress in Materials Science, 103, 180–234. https://doi.org/10.1016/j.pmatsci.2019.01.005

    CAS  Article  Google Scholar 

  54. Xu, H., Li, G., Li, J., Chen, C., & Ren, X. (2016). Interaction of Th(IV) with graphene oxides: Batch experiments, XPS investigation, and modeling. Journal of Molecular Liquids, 213, 58–68. https://doi.org/10.1016/j.molliq.2015.11.022

    CAS  Article  Google Scholar 

  55. Yu, J., Wang, J., & Jiang, Y. (2017). Removal of uranium from aqueous solution by alginate beads. Nuclear Engineering and Technology, 49(3), 534–540. https://doi.org/10.1016/j.net.2016.09.004

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Eleni Pavlidou (Physics Department, AUTh) for the SEM/EDS study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fotini Noli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 392 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noli, F., Avgerinou, A., Kapashi, E. et al. Uranium and Thorium Retention onto Sorbents from Raw and Modified Pomegranate Peel. Water Air Soil Pollut 232, 437 (2021). https://doi.org/10.1007/s11270-021-05384-w

Download citation

Keywords

  • Pomegranate
  • Biosorption
  • Sorption isotherms
  • Thorium
  • Uranium
  • Kinetic data