Skip to main content

Advertisement

Log in

Nitrogen and Silicon Application Can Increase Nutrient Uptake and Fruit Quality of Cucurbita pepo L.

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Silicon has been regarded as a promising technology to improve nutrient supply to plants. This study aimed to evaluate the influence of different nitrogen doses on mineral nutrition and fruit quality of zucchini cv. Caserta SH-202 with and without foliar silicon application. An experiment was conducted under field conditions to evaluate the effects of five levels of nitrogen (30, 60, 90, 120, and 150 kg ha−1 N) and silicon application (without and with foliar application). The N levels were split into smaller aliquots and applied at three different times, while Si was equally split into two applications, with the first at 14 days after planting (DAS) and the second at 28 (DAS) via foliar application. Using the leaves during the flowering period, individual leaf samples were collected at 28 (DAS) from the intermediate branches of plants in each plot to evaluate the contents of N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, Zn, and Na. The following quality parameters were obtained at 55 (DAS): potential of hydrogen (pH), soluble solids (Brix), titratable acidity, and ascorbic acid (vitamin C). Nitrogen fertilization promoted adequate nutrition for zucchini of N, P, K, Ca, Mg, B, Cu, Mn and Zn, related to the application of silicon, which is also suitable for fruit quality in the pH, Brix, titratable acidity, and vitamin C. Considering the adequate nutritional value of zucchini, the level of nitrogen fertilization recommended with silicon ranges from 20 to 40 g plant−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its Supplementary Material. Raw data that support the finding of this study are available from the corresponding author, upon reasonable request.

References

  • Al-Ghamdi, S., Hong, Y. K., Qu, Z., & Shyam, S. S. (2020). State diagram, water sorption isotherms and color stability of pumpkin (Cucurbita pepo L.). Journal of Food Engineering, 273, e10982. https://doi.org/10.1016/j.jfoodeng.2019.109820

    Article  CAS  Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22, 711–728.

    Article  Google Scholar 

  • Barker, A. V., & Pilbeam, D. J. (2015). Handbook of plant nutrition. APS Press. https://doi.org/10.1201/b18458

  • Bertino, A. M. P., Mesquita, E. F., Sá, F. V. S., Cavalcante, L. F., Ferreira, N. M., Paiva, E. P., & Brito, M. E. B. (2015). Growth and gas exchange of okra under irrigation, organic fertilization and cover of soil. African Journal of Agricultural Research, 10, 3832–3839. https://doi.org/10.5897/AJAR2015.9844

    Article  CAS  Google Scholar 

  • Bhat, J. A., Shivaraj, S. M., Singh, P., Navadagi, D. B., Tripathi, D. K., Dash, P. K., Solanke, A. U., Sonah, H., & Deshmukh, R. (2019). Role of silicon in mitigation of heavy metal stresses in crop plants. Plants, 8, 1–20. https://doi.org/10.3390/plants8030071

    Article  CAS  Google Scholar 

  • Blasco, B., Navarro-León, E., & Ruiz, J. M. (2018). Chapter 10 - Oxidative stress in relation with micronutrient deficiency or toxicity. In Hossain, Anwar M (ed) Plant Micronutrient Use Efficiency (1ª ed., pp. 181–194). Elsevier. https://doi.org/10.1016/B978-0-12-812104-7.00011-3

    Chapter  Google Scholar 

  • Bohrer, A. S., & Takahashi, H. (2016). Compartmentalization and regulation of sulfate assimilation pathways in plants. International Review of Cell and Molecular Biology, 326, 1–31. https://doi.org/10.1016/bs.ircmb.2016.03.001

    Article  CAS  Google Scholar 

  • Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry & molecular biology of plants. Rockville, MD. John Wiley & Sons, American Society of Plant Pathologists.

    Google Scholar 

  • Core Team (2020). R: A language and environment for statistical computing R. In: Foundation for Statistical Computing. Vienna, Austria. Disponível in http://www.r-project.org/index.html.

  • Doorenbos, J., Pruitt, W. O. (1977). Guidelines for predicting crop water requirements: FAO Irrigation and Drainage Paper. Rome

  • El-Azeim, M. M. A., Sherif, M. A., Hussien, M. S., & Haddad, S. A. (2020). Temporal impacts of different fertilization systems on soil health under arid conditions of potato monocropping. Journal of Soil Science and Plant Nutrition, 20, 322–334. https://doi.org/10.1007/s42729-019-00110-2

    Article  CAS  Google Scholar 

  • Embrapa (2011). Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. Rio de Janeiro: Embrapa, 225 p.

  • Embrapa (2017) Empresa Brasileira de Pesquisa Agropecuária. Manual de Métodos de Análise de Solo. Teixeira, PC et al. (Ed). Embrapa Solos.

  • Emparn (2018). Rio Grande do Norte Research Company. Disponivel in < http://www.emparn.rn.gov.br.

  • Farouk, S., Elhindi, K. M., & Alotaibi, M. A. (2020). Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicology and Environmental Safety, 206, e111396. https://doi.org/10.1016/j.ecoenv.2020.111396

    Article  CAS  Google Scholar 

  • Feldsine, P., Abeyta, C., & Andrews, W. H. (2002). Association of Official Analytical Chemistry (AOAC) international methods committee guidelines for validation of qualitative and Quantitative Food Microbiological Official Methods of Analysis. Journal of AOAC International, 85, 1187–1200. https://doi.org/10.1093/jaoac/85.5.1187

    Article  CAS  Google Scholar 

  • Fernandes, C. N. V., Azevedo, B. M., Camargo, D. C., Dias, C. N., Rebouças Neto, M. O., & Costa, F. R. B. (2016). Potassium fertilizer applied by different methods in the zucchini crop. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 643–648. https://doi.org/10.1590/1807-1929/agriambi.v20n7p643-648

    Article  Google Scholar 

  • Fernandes, M. S., Souza, S. R., & Santos, L. A. (2018). Nutrição mineral de plantas. Sociedade Brasileira de Ciência do Solo.

    Google Scholar 

  • Gheyi, H. R., Dias, N. S., Lacerda, C. F., & Gomes Filho, E. (2016). Manejo da salinidade na agricultura: Estudos básicos e aplicados. INCTSal.

    Google Scholar 

  • Guerra, A. M. N. M., Rodrigues, F. A., Lima, T. C., Berger, P. G., Barros, A. F., & Silva, Y. C. R. (2014). Capacidade fotossintética de plantas de algodoeiro infectadas por ramulose e supridas com silício. Bragantia, 73, 50–64. https://doi.org/10.1590/brag.2014.010

    Article  Google Scholar 

  • Han, S., Chen, L. S., Jiang, H. X., Smith, B. R., Yang, L. T., & Xie, C. Y. (2008). Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. Journal of Plant Physiology, 165, 1331–1341. https://doi.org/10.1016/j.jplph.2007.11.002

    Article  CAS  Google Scholar 

  • Hoffmann, J., Berni, R., Hausman, J. F., & Guerriero, G. (2020). A review on the beneficial role of silicon against salinity in non-accumulator crops: tomato as a model. Biomolecules, 10, e1284. https://doi.org/10.3390/biom10091284

    Article  CAS  Google Scholar 

  • IAL - Instituto Adolfo Lutz (2008) Normas analíticas do Instituto Adolfo Lutz: métodos químicos e físicos para análise de alimentos. São Paulo, disponivel in http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/5939

  • Iqbal, M., Khan, R., Ashfaque, F., Chhillar, H., Irfan, M., & Khan, N. A. (2021). The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. Plant Physiology and Biochemistry, 162, 36–47. https://doi.org/10.1016/j.plaphy.2021.02.024

    Article  CAS  Google Scholar 

  • Jones, J. R., Wolf, J. B., & Mills, H. A. (1991). Plant analysis handbook: a practical sampling, preparation, analysis and interpretation guide. Micro Macro Intl.

    Google Scholar 

  • Kaya, C., Tuna, L., & Higgs, D. (2006). Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. Journal of plant nutrition, 29, 1469–1480. https://doi.org/10.1080/01904160600837238

    Article  CAS  Google Scholar 

  • Knezek BD, Ellis BG (1980) Essential micronutrients IV: Copper, iron, manganese, and zinc. In: Davies BE. (ed.). Agris, Chichester

  • Liang, Y., Nikolic, M., Bélanger, R., Cong, H., & Song, A. (2015). Silicon in agriculture: From theory to practice. Springer. https://doi.org/10.1007/978-94-017-9978-2

  • Liu, J., Wang, B., Li, Y., Huang, L., Zhang, Q., Zhu, H., & Wen, Q. (2020). RNA sequencing analysis of low temperature and low light intensity responsive transcriptomes of zucchini (Cucurbita pepo L.). Scientia Horticulturae, 265, 1–11. https://doi.org/10.1016/j.scienta.2020.109263

    Article  CAS  Google Scholar 

  • Lozano, C. S., Rezende, R., Hachmann, T. L., Santos, F. A. Z., Lorenzoni, M. Z., & Souza, Á. H. C. (2018). Yield and quality of melon under silicon doses and irrigation management in a greenhouse. Pesquisa Agropecuária Troprical, 48, 140–146. https://doi.org/10.1590/1983-40632018v4851265

    Article  Google Scholar 

  • Luyckx, M., Hausman, J. F., Lutts, S., & Guerriero, G. (2017). Silicon and plants: Current knowledge and technological perspectives. Frontiers in Plant Science, 8, e411. https://doi.org/10.3389/fpls.2017.00411

    Article  Google Scholar 

  • Mahmoud, L. M., Dutt, M., Shalan, A. M., El-Kady, M. E., El-Boray, M. S., Shabana, Y. M., & Grosser, J. W. (2020). Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata “Grand Nain”) under simulated water deficit or salinity stress. South African Journal of Botany, 132, 155–163. https://doi.org/10.1016/j.sajb.2020.04.027

    Article  CAS  Google Scholar 

  • Majumdar, S., & Prakash, N. B. (2020). An overview on the potential of silicon in promoting defence against biotic and abiotic stresses in sugarcane. Journal of Soil Science and Plant Nutrition, 20, 1969–1998. https://doi.org/10.1007/s42729-020-00269-z

    Article  CAS  Google Scholar 

  • Malavolta, E. (2006). Manual de nutrição mineral de plantas. Agronômica Ceres.

    Google Scholar 

  • Malavolta, E., Vitti, G. C., & Oliveira, A. S. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações. Potafos.

    Google Scholar 

  • Marek, J., Azevedo, D., Ono, E. O., Rodrigues, J. D., & Faria, C. M. D. R. (2018). Photoynthetic and productive increase in tomato plants treated with strobilurins and carboxamides for the control of Alternaria solani. Scientia Horticulturae, 242, 76–89. https://doi.org/10.1016/j.scienta.2018.07.028

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plant. Academic Press.

    Google Scholar 

  • Marschner, H. (2012). Mineral nutrition of higher plants. Academic Press.

    Google Scholar 

  • Mills, H. A., & Benton Jones, J. J. (1996). Plant Analysis Handbook II. MicroMacro Publishing, Inc.

    Google Scholar 

  • Mitani, N., Yamaji, N., Ago, Y., Iwasaki, K., & Ma, J. F. (2011). Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. The Plant Journal, 66, 231–240. https://doi.org/10.1111/j.1365-313X.2011.04483.x

    Article  CAS  Google Scholar 

  • Moraghan, J. T., & Mascagni, H. J. J. R. (1991). Environmental and soils factors affecting micronutrient deficiencias and toxicities. In J. J. Mortvedt (Ed.), Micronutrients in Agriculture, 2ª ed (pp. 371–426). Soil Science Society. https://doi.org/10.2136/sssabookser4.2ed.c11

    Chapter  Google Scholar 

  • Pôrto, M. L. A., Puiatti, M., Fontes, P. C. R., Cecon, P. R., Alves, J. C., & Arruda, J. A. (2014). Produtividade e acúmulo de nitrato nos frutos de abobrinha em função da adubação nitrogenada. Bragantia, 71, 190–195 https://www.scielo.br/pdf/brag/v71n2/aop_1114_12.pdf

    Article  Google Scholar 

  • Raij, B. V. (2017). Fertilidade do solo e manejo de nutrientes. International Plant Nutrition Institute.

    Google Scholar 

  • Ranjan, A., Sinha, R., Bala, M., Pareek, A., Singla-Pareek, S. L., & Singh, A. K. (2021). Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture. Plant Physiology and Biochemistry, 163, 15–25. https://doi.org/10.1016/j.plaphy.2021.03.044

    Article  CAS  Google Scholar 

  • Reid, R. (2014). Understanding the boron transport network in plants. Plant Soil, 385, 1–13. https://doi.org/10.1007/s1104-014-2149-y

    Article  CAS  Google Scholar 

  • Sarto, M. V. M., Lana, M. C., Rampim, L., Rosset, J. S., Inagaki, A. M., & Bassegio, D. (2016). Effects of silicon (Si) fertilization on gas exchange and production in Brachiaria. Australian Journal of Crop Science, 10, 307–313. https://doi.org/10.21475/ajcs.2016.10.03.p6864

    Article  CAS  Google Scholar 

  • Souza, F. I., Grangeiro, L. C., Souza, V. F. L., Gonçalvez, F. C., Oliveira, F. H. T., & Jesus, P. M. (2018). Agronomic performance of Italian zucchini as a function of phosphate fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 22, 206–211. https://doi.org/10.1590/1807-1929/agriambi.v22n3p206-211

    Article  Google Scholar 

  • Stamatakis, A., Savvas, D., Papadantonakis, N., Lydakis-Simantiris, N., & Kefalas, P. (2003). Effects of silicon and salinity on fruit yield and quality of tomato grown hydroponically. Acta Horticulturae, 609, 141–149. https://doi.org/10.17660/ActaHortic.2003.609.18

    Article  Google Scholar 

  • Strohecker, R., & Henining, H. M. (1967). Análises de vitaminas: métodos comprovados. Paz Montolvo.

    Google Scholar 

  • Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Artmed.

    Google Scholar 

  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–527. https://doi.org/10.1093/aob/mcg058.PMid:12646496

    Article  CAS  Google Scholar 

  • Trani, P. E., & Raij, B. V. (1997). Hortaliças. In B. V. Raij, H. Cantarella, J. Á. Quaggio, & A. M. C. Furlani (Eds.), Recomendações de adubação e calagem para o estado de São Paulo (2ª ed., p. 285). Instituto Agronômico/Fundação IAC.

    Google Scholar 

  • Trani, P. E., Passos, F. A., Araujo, H. S. (2014). Calagem e adubação da abobrinha italiana (de moita) (Cucurbita pepo), abóbora brasileira (Cucurbita moschata), moranga (Cucurbita maxima) e abóbora japonesa (híbrida). Disponivel in http://www.iac.sp.gov.br/imagem_informacoestecnologicas/96.pdf

  • Valencia, J., Bieche, B., & Branthome, X. (2003). Effect of fertilizers on fruit quality of processing tomatoes. Acta Horticulturae, 613, 89–93. https://doi.org/10.17660/ActaHortic.2003.613.9

    Article  Google Scholar 

  • Verma, K. K., Singh, P., Song, X. P., Malviya, M. K., Singh, R. K., Chen, G. L., Solomon, S., & Li, Y. R. (2020). Mitigating climate change for sugarcane improvement: Role of silicon in alleviating abiotic stresses. Sugar Tech, 22, 741–749. https://doi.org/10.1007/s12355-020-00831-0

    Article  CAS  Google Scholar 

  • Wei, T., Simko, V. R. (2017). package “corrplot”: In: visualization of a correlation matrix (Version 0.84). disponivel in https://peerj.com/articles/9945/Supplemental_Data_S10.pdf

  • Yoshida, K. (2002). Plant biotechnology genetic engineering to enhance plant salt tolerance. Journal Bioscience Bioengineering, 94, 585–590. https://doi.org/10.1016/S1389-1723(02)80199-2

    Article  CAS  Google Scholar 

  • Zenebon, O., & Pascuet, N. S. (2005). Métodos físico-químicos para análise de alimentos. Ministério da Saúde.

    Google Scholar 

Download references

Dedication

We dedicate this study to professor Lourival Ferreira Cavalcante (in memoriam), the greatest example of an upright and ethical human being whose commitment to research and teaching were always came first. Here are the results of his efforts. With much gratitude.

Funding

This study was partially funded by the National Council for Scientific and Technological Development of Brazil (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco de Oliveira Mesquita.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Mesquita Alves, J., de Lima, A.S., de Figueredo, L.F. et al. Nitrogen and Silicon Application Can Increase Nutrient Uptake and Fruit Quality of Cucurbita pepo L.. Water Air Soil Pollut 233, 40 (2022). https://doi.org/10.1007/s11270-021-05376-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05376-w

Keywords

Navigation