Skip to main content

Assessment of Microbial and Ecotoxicological Qualities of Industrial Wastewater Treated with Membrane Bioreactor (MBR) Process for Agricultural Irrigation

Abstract

The issue tending toward alternative water resources tremendously becomes important for supplying the increasing water demand all over the world. It may be a good option to evaluate industrial effluents for agricultural irrigation. However, industrial effluent must be cleansed from the factors such as salt, toxic compounds, and microbial load that possibly cause negative effects on soil during agricultural irrigation. In this study, microbiological qualities and toxicity conditions of water sources such as membrane bioreactor (MBR) influent, MBR effluent, and mixture of MBR effluent and reverse osmosis (RO) permeate (MBR:RO = 2:1) were analyzed and evaluated according to irrigation standards. Total aerobic heterotrophic bacteria (TAHB), total coliforms (TC), fecal coliforms (FC), fecal streptococci (FS), and Clostridium spp. were screened and enumerated as indicator microbial groups for the microbial quality of water samples. Analyses of indicator microorganisms showed that loads of different bacterial groups decreased by 5.2 and 6.66 log units at maximum levels in MBR and MBR + RO system at the end of treatment. Also, evaluation of the toxicity effects of MBR effluent and MBR + RO permeate waters on Vibrio fischeri and Daphnia magna was investigated. None of the samples showed any acute toxic effect on D. magna after 48 h and V. fischeri in 5 min and 15 min. From the outputs of this study, it can be said that industrial effluents treated by advanced filtration technologies may provide a significant source of water for agricultural irrigation. This option can have positive impacts on both environmental and economic factors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

Data will be made available on reasonable request.

Abbreviations

TAHB:

Total aerobic heterotrophic bacteria

TC:

Total coliforms

FC:

Fecal coliforms

FS:

Fecal streptococci

MBR:

Membrane bioreactor

RO:

Reverse osmosis

LC50:

Lethal concentrations

EC50:

Effective concentration

References

  1. Antony, A., How, J., Gray, S., Childress, A. E., & Le-clech, P. (2011). Leslie G, Scale formation and control in high pressure membrane water treatment systems: A review. J Membr Sci, 383(1–2), 1–16.

    CAS  Article  Google Scholar 

  2. Azis, K., Vardalachakis, C., Ntougias, S., & Melidis, P. (2017). Microbiological and physicochemical evaluation of the effluent quality in a membrane bioreactor system to meet the legislative limits for wastewater reuse. Water Sci Technol, 76(7-8), 1796–1804.

    CAS  Article  Google Scholar 

  3. Bottino, A., Capannelli, G., Comite, A., Ferrari, F., Firpo, R., & Venzano, S. (2009). Membrane technologies for water treatment and agroindustrial sectors. CR Chim, 12(8), 882–888.

    CAS  Article  Google Scholar 

  4. Celebi, H., & Sponza, D. T. (2012). Comparison of the sensitivities of fish, microtox and Daphnia magna bioassays to amoxycillin in anaerobic/aerobic sequential reactor systems. Water Sci Technol, 66(5), 1117–1131.

    CAS  Article  Google Scholar 

  5. Daniel, M., Sharpe, A., Driver, J., Knight, A. W., Keenan, P. O., Walmsley, R. M., Robinson, A., Zhang, T., & Rawson, D. (2004). Results of a technology demonstration project to compare rapid aquatic toxicity screening tests in the analysis of industrial effluents. J Environ Monit, 6(11), 855–865.

    CAS  Article  Google Scholar 

  6. De Nicola, E., Oral, R., Gallo, M., Tünay, O., Meric, S., Vuttariello, E., Pagano, G., Russo, T., Warnau, M., Sorrentino, T., & Iaccarino, M. (2004). Hormetic versus toxic effects of vegetable tannin in a multitest study. Arch Environ Con Tox, 46(3), 336–344.

    Article  Google Scholar 

  7. Falizi, N. J., Hacıfazlıoğlu, M. C., Parlar, İ., Kabay, N., Pek, T., & Yüksel, M. (2018). Evaluation of MBR treated industrial wastewater quality before and after desalination by NF and RO processes for agricultural reuse. J Water Process Eng, 22, 103–108.

    Article  Google Scholar 

  8. Falizi, N. J., Madenoğlu, T. G., Kurttaş, Y. K., Meriç, K., Özçakal, E., Üremek, N. C., Ballice, L., Yüksel, M., Sağlam, M., & Kabay, N. (2020). Production of biodiesel from safflower plant cultivated using membrane bioreactor (MBR) effluent discharged from wastewater treatment plant. J Chem Technol Biotechnol, 95(3), 527–534.

    Article  Google Scholar 

  9. Fujioka, T., Makabeb, R., Moric, N., Snyderd, S. A., & Leddy, M. (2019a). Assessment of online bacterial particle counts for monitoring the performance of reverse osmosis membrane process in potable reuse. Sci Total Environ, 667, 540–544.

    CAS  Article  Google Scholar 

  10. Fujioka, T., Hoang, A. T., Ueyama, T., & Nghiem, L. D. (2019b). Integrity of reverse osmosis membrane for removing bacteria: New insight into bacterial passage. Environ Sci: Water Res Technol, 5, 239–245.

    CAS  Google Scholar 

  11. Gander, M. A., Jefferson, B., & Judd, S. J. (2000). Membrane bioreactors for use in small wastewater treatment plants: Membrane materials and effluent quality. Water Sci Technol, 41(1), 205–211.

    CAS  Article  Google Scholar 

  12. Griffith, J. F., Schiff, K. C., Lyon, G. S., & Fuhrman, J. A. (2010). Microbiological water quality at non-human influenced reference beaches in southern California during wet weather. Mar Pollut Bull, 60, 500–508.

    CAS  Article  Google Scholar 

  13. Hai, F. I., Riley, T., Shawkat, S., Magram, S. F., & Yamamoto, K. (2014). Removal of pathogens by membrane bioreactors: A review of the mechanisms, influencing factors and reduction in chemical disinfectant dosing. Water-SUI, 6(12), 3603–3630.

    Google Scholar 

  14. Hirani, Z. M., Bukhari, Z., Oppenheimer, J., Jjemba, P., LeChevallier, M. W., & Jacangelo, J. G. (2013). Characterization of effluent water qualities from satellite membrane bioreactor facilities. Water Res, 47(14), 5065–5075.

    CAS  Article  Google Scholar 

  15. Hirani, Z. M., Decarolis, J. F., Lehman, G., Adham, S. S., & Jacangelo, J. G. (2012). Occurrence and removal of microbial indicators from municipal wastewaters by nine different MBR systems. Water Sci Technol, 66(4), 865–871.

    CAS  Article  Google Scholar 

  16. Huang Y, Campana O and Wlodkowic D, A (2017). Millifluidic system for analysis of daphnia magna locomotory responses to water-born toxicants. Sci Rep 7(1) : 17603 .

  17. Huang, X., Zhao, Z., Hernandez, D., & Jiang, S. C. (2016). Near real-time flow cytometry monitoring of bacterial and viral removal efficiencies during water reclamation processes. Water, 8(10), 464. https://doi.org/10.3390/w8100464

    Article  Google Scholar 

  18. Jarma, Y. A., Parlar, İ., Pek, T. Ö., Kayral, K., Kabay, N., Yiğit, N., Kitiş, M., & Yüksel, M. (2018). Study on operational conditions to minimize membrane fouling in membrane bioreactor (MBR) system for wastewater treatment-preliminary pilot tests. Journal of Membrane Science and Research, 4, 212–217.

    CAS  Google Scholar 

  19. Kaiser, K. L. (1998). Correlations of Vibrio fischeri bacteria test data with bioassay data for other organisms. Environ Health Perspect, 106(Suppl 2), 583–591.

    CAS  Article  Google Scholar 

  20. Koçbaş, F., & Oral, R. (2015). Daphnia magna as a test species for toxicity evaluation of municipal wastewater treatment plant effluents on freshwater cladoceran in Turkey. Turk J Fish Aquat Sc, 15(3), 619–624.

    Google Scholar 

  21. Le, N. L., & Nunes, S. P. (2016). Materials and membrane technologies for water and energy sustainability. SUSMAT, 7, 1–28.

    CAS  Google Scholar 

  22. Liu, M. C., Chen, C. M., Cheng, H. Y., Chen, H. Y., Su, Y. C., & Hung, T. Y. (2002). Toxicity of different industrial effluents in Taiwan: A comparison of the sensitivity of Daphnia similis and Microtox®. Environ Toxicol, 17(2), 93–97.

    CAS  Article  Google Scholar 

  23. Lonigro A., Montemorru N., Rubino P., Vergine P., Pollice A., (2015). Reuse of treated municipal wastewater for irrigation in Apulia region: The “In.Te.R.R.A.” project. Environ Eng Manag J 14(7) : 1665-1674.

  24. Ma, J., Wang, Z., Zang, L., Huang, J., & Wu, Z. (2015). Occurrence and fate of potential pathogenic bacteria as revealed by pyrosequencing in a fullscale membrane bioreactor treating restaurant wastewater. RSC Adv, 5, 24469–24478.

    CAS  Article  Google Scholar 

  25. Miura, T., Okabe, S., Nakahara, Y., & Sano, D. (2015). Removal properties of human enteric viruses in a pilot-scale membrane bioreactor (MBR) process. Water Res, 75, 282–291.

    CAS  Article  Google Scholar 

  26. Nicolaisen, B. (2003). Developments in membrane technology for water treatment. Desalination, 153(1–3), 355–360.

    CAS  Article  Google Scholar 

  27. Official Journal, 2009. https://www.resmigazete.gov.tr/eskiler/2009/10/20091010-6.htm. Accessed Sept 2015

  28. Official Journal, 2010. https://www.resmigazete.gov.tr/eskiler/2010/03/20100320-7.htm. Accessed Sept 2015

  29. Ottoson, J., Hansen, A., Björleneus, B., Norder, H., & Stenström, T. A. (2006). Removal of viruses, parasitic protozoa and microbial indicators in conventional and membrane processes in a wastewater pilot plant. Water Res, 40, 1449–1457.

    CAS  Article  Google Scholar 

  30. Oral, R., Meriç, S., De Nicola, E., Petruzzelli, D., Rocca, C. D., & Pagano, G. (2007). Multi species toxicity evaluation of a chromium-based leather tannery wastewater. Desalination, 211(1–3), 48–57.

    CAS  Article  Google Scholar 

  31. Özcan E (2010) Wastewater management in Turkey 24–25 September 2014. https://webdosya.csb.gov.tr/db/tay/webmenu/webmenu13378.pdf. Accessed: 19 Apr 2020

  32. Parvez, S., Venkataraman, C., & Mukherji, S. (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Int, 32(2), 265–268.

    CAS  Article  Google Scholar 

  33. Persoone, G., Baudo, R., Cotman, M., Blaise, C., KCL, T., Moreira-Santos, M., Vollat, T. A., & Han, T. (2009). Review on the acute daphnia magna toxicity test – Evaluation of the sensitivity and the precision of assays performed with organisms from laboratory cultures or hatched from dormant eggs. Knowl Managt Aquatic Ecosyst, 393, 01. https://doi.org/10.1051/kmae/2009012

    Article  Google Scholar 

  34. Pintar, A., Besson, M., Gallezot, P., Gibert, J., & Martin, D. (2004). Toxicity to Daphnia magna and Vibrio fischeri of kraft bleach plant effluents treated by catalytic wet-air oxidation. Water Res, 38(2), 289–300.

    CAS  Article  Google Scholar 

  35. Persoone, G., Marsalek, B., Blinova, I., Törökne, A., Zarina, D., Manusadzianas, L., Nalecz-Jawecki, G., Tofan, L., Stepanova, N., Tothova, L., & Kolar, B. (2003). A practical and user friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environmental Toxicology, 18(6), 395–402.

    Article  Google Scholar 

  36. Purnell, S., Ebdon, J., Buck, A., Tupper, M., & Taylor, H. (2015). Bacteriophage removal in a full-scale membrane bioreactor (MBR)—Implications for wastewater reuse. Water Res, 73, 109–117.

    CAS  Article  Google Scholar 

  37. Quist-Jensen, C. A., Macedonio, F., & Drioli, E. (2015). Membrane technology for water production in agriculture: Desalination and wastewater reuse. Desalination, 364, 17–32.

    CAS  Article  Google Scholar 

  38. Schoen, M. E., Jahne, M. A., & Garland, J. (2018). Human health impact of non-potable reuse of distributed wastewater and greywater treated by membrane bioreactors. Microb Risk Anal, 9, 72–81.

    Article  Google Scholar 

  39. Ueda, T., & Horan, N. J. (2000). Fate of indigenous bacteriophage in a membrane bioreactor. Water Res, 34(7), 2151–2159.

    CAS  Article  Google Scholar 

  40. USEPA. 2002. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. https://www.epa.gov/sites/production/files/2015-08/documents/acute-freshwater-andmarine-wet-manual_2002.pdf. Accessed Mar 2019

  41. van den Akker, B., Trinh, T., Coleman, H. M., Stuetz, R. M., Le-Clech, P., & Khan, S. J. (2014). Validation of a full-scale membrane bioreactor and the impact of membrane cleaning on the removal of microbial indicators. Bioresour Technol, 155, 432–437.

    Article  Google Scholar 

  42. Whitton, R., Fane, S., Jarvis, P., Tupper, M., Raffin, M., Coulon, F., & Nocker, A. (2018). Flow cytometry-based evaluation of the bacterial removal efficiency of a blackwater reuse treatment plant and the microbiological changes in the associated non-potable distribution network. Sci Total Environ, 645, 1620–1629.

    CAS  Article  Google Scholar 

  43. Winward, G. P., Avery, L. M., Williams, R. F., Pidou, M., Jeffrey, P., Stephenson, T., & Jefferson, B. (2008). A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse. Ecol Eng, 32(2), 187–197.

    Article  Google Scholar 

  44. Zannetti, F., De Luca, G., & Sacchetti, R. (2010). Performance of a full-scale membrane bioreactor system in treating municipal wastewater for reuse purposes. Bioresour Technol, 101(10), 3768–3771.

    Article  Google Scholar 

  45. Zhang, X. J., Qin, H. W., Su, L. M., Qin, W. C., Zou, M. Y., Sheng, L. X., Zhao, Y. H., & Abraham, M. H. (2010). Interspecies correlations of toxicity to eight aquatic organisms: Theoretical considerations. Sci Total Environ, 408(20), 4549–4555.

    CAS  Article  Google Scholar 

  46. Zhou, J., Wang, X. C., Ji, Z., Xu, L., & Yu, Z. (2015). Source identification of bacterial and viral pathogens and their survival/fading in the process of wastewater treatment, reclamation, and environmental reuse. World J Microbiol Biotechnol, 31(1), 109–120.

    Article  Google Scholar 

  47. Zularisam, A. W., Ismail, A. F., & Salim, R. (2006). Behaviours of natural organic matter in membrane filtration for surface water treatment — A review. Desalination, 194(1-3), 211–231.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Izmir Torbalı Organized Industrial Zone and especially T.Ö. Pek for the help in getting samples at wastewater treatment plant. Also, we acknowledge M. Hacifazlioğlu and I. Parlar for providing us with RO permeate and mixture of MBR + RO (2:1) samples from the pilot RO system for our analyses and N.J. Falizi for chemical analyses of water samples.

Funding

This research was funded by Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TUBITAK-Project No: 114Y500) in behalf of Prof. Kabay.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Güven Özdemir.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vural, C., Topbaş, T., Dağlıoğlu, S.T. et al. Assessment of Microbial and Ecotoxicological Qualities of Industrial Wastewater Treated with Membrane Bioreactor (MBR) Process for Agricultural Irrigation. Water Air Soil Pollut 232, 442 (2021). https://doi.org/10.1007/s11270-021-05372-0

Download citation

Keywords

  • Agricultural irrigation
  • Membrane bioreactor (MBR)
  • Reverse osmosis (RO)
  • Microbial quality
  • Toxicity
  • Wastewater reclamation and reuse