Skip to main content

Monitoring Sediment and Water Chemistry in Small Remote Aquatic Systems in East Sepik Province, Papua New Guinea

Abstract

Small rivers are complex ecosystems facing threats from human activities and climate change. Therefore, studying the sediment and water chemistry of several streams in the East Sepik Province of Papua New Guinea will enhance our understanding of the characteristics of remote aquatic systems. We found high total organic carbon (OC) and vanillic acid to vanillin ratio, (Ad/Al)v, and high dissolved CH4, indications of methanogenesis, at some locations. High sediments inorganic carbon and high total alkalinity (TA) and SiO2 in the water were characteristic of carbonate minerals at other locations. Some locations showed high dissolved oxygen (DO), and low dissolved CH4, dissolved inorganic carbon (DIC), and partial pressure of CO2 (pCO2), indicating autotrophic condition. Other sites showed remarkably low DO and high pCO2, dissolved CH4, nutrient, and DIC, indicating heterotrophy and possibly anoxic condition. These findings reveal that even small remote aquatic systems of the areas sampled exhibit high variability in their sediment and water chemistries, probably due to human activities and different watershed morphology. Furthermore, higher dissolved NO3, NO2, N2O, PO43−, SiO2, TA, DIC, pCO2, DOC, particulate OC, and nitrogen were found at lower salinity, and vice versa, indicating the importance of mixing from seawater in diluting materials and affecting the autotrophy/heterotrophy in these systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

The datasets generated during this study are presented in the tables in this manuscript.

References

  1. Alin, S. R., Aalto, R., Goni, M. A., Richey, J. E., & Dietrich, W. E. (2008). Biogeochemical characterization of carbon sources in the Strickland and Fly rivers, Papua New Guinea. Journal of Geophysical Research, 113, F01S05.

  2. Alkhatib, M., Jennerjahn, T. C., & Samiaji, J. (2007). Biogeochemistry of the Dumai River estuary, Sumatra, Indonesia, a tropical black-water river. Limnology and Oceanography, 52(6), 2410–2417.

    CAS  Google Scholar 

  3. Aller, R. C., & Blair, N. E. (2004). Early diagenetic remineralization of sedimentary organic C in the Gulf of Papua deltaic complex (Papua New Guinea): Net loss of terrestrial C and diagenetic fractionation of C isotopes. Geochimica Et Cosmochimica Acta, 68(8), 1815–1825.

    CAS  Google Scholar 

  4. Alongi, D. M. (1995). Decomposition and recycling of organic matter in muds of the Gulf of Papua, northern Coral Sea. Continental Shelf Research, 15(11/12), 1319–1337.

    Google Scholar 

  5. Bao, H., Kao, S.-J., Lee, T.-Y., Zehetner, F., Huang, J.-C., Chang, Y.-P., Lu, J.-T., & Lee, J.-Y. (2017). Distribution of organic carbon and lignin in soils in a subtropical small mountainous river basin. Geoderma, 306, 81–88.

    CAS  Google Scholar 

  6. Baum, A., Rixen, T., & Samiaji, J. (2007). Relevance of peat draining rivers in central Sumatra for the riverine input of dissolved organic carbon into the ocean. Estuarine, Coastal and Shelf Science, 73, 563–570.

    Google Scholar 

  7. Bianchi, T. S., Mitra, S., & McKee, B. A. (2002). Sources of terrigenously-derived organic carbon in lower Mississippi River and Louisiana shelf sediments: Implications for differential sedimentation and transport at the coastal margin. Marine Chemistry, 77(2), 211–223.

    CAS  Google Scholar 

  8. Bianchi, T. S., Wysocki, L. A., Stewart, M., Filley, T. R., & McKee, B. A. (2007a). Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries. Geochimica Et Cosmochimica Acta, 71, 4425–4437.

    CAS  Google Scholar 

  9. Bianchi, T. S., Galler, J. J., & Allison, M. A. (2007b). Hydrodynamic sorting and transport of terrestrially derived organic carbon in sediments of the Mississippi and Atchafalaya Rivers. Estuarine, Coastal and Shelf Science, 73, 211–222.

    Google Scholar 

  10. Bryan, J., Shearman, P., Ash, J., & Kirkpatrick, J. B. (2010). Estimating rainforest biomass stocks and carbon loss from deforestation and degradation in Papua New Guinea 1972–2002: Best estimates, uncertainties and research needs. Journal of Environmental Management, 91, 995–1001.

    Google Scholar 

  11. Burns, K. A., Greenwood, P., Benner, R., Brinkman, D., Brunskill, G., Codi, S., & Zagorskis, I. (2004). Organic biomarkers for tracing carbon cycling in the Gulf of Papua (Papua New Guinea). Continental Shelf Research, 24, 2373–2394.

    Google Scholar 

  12. Burns, K. A., Hernes, P. J., Brinkman, D., Poulsen, A., & Benner, R. (2008). Dispersion and cycling of organic matter from the Sepik River outflow to the Papua New Guinea coast as determined from biomarkers. Organic Geochemistry, 39, 1747–1764.

    CAS  Google Scholar 

  13. Chen, C.-T.A., & Pytkowicz, R. M. (1979). On the total CO2 – titration alkalinity – oxygen system in the Pacific Ocean. Nature, 281, 362–365.

    CAS  Google Scholar 

  14. Chen, C.-T.A., Liu, J. T., & Tsuang, B.-J. (2004). Island-based catchment – The Taiwan example. Regional Environmental Change, 4, 39–48.

    Google Scholar 

  15. Chen, C.-T.A., Wang, S.-L., Lu, X.-X., Zhang, S.-R., Lui, H.-K., Tseng, H.-C., Wang, B.-J., & Huang, H.-I. (2008). Hydrogeochemistry and greenhouse gases of the Pearl River, its estuary and beyond. Quaternary International, 186, 79–90.

    Google Scholar 

  16. Constant, M., Ludwig, W., Kerherve, P., Sola, J., Charrière, B., Sanchez-Vidal, A., Canals, M., Heussner, S. (2020). Microplastic fluxes in a large and small Mediterranean river catchments: The Têt and the Rhône, Northwestern Mediterranean Sea. Science of the Total Environment 716, 136984.

  17. Deng, K., Yang, S., Bi, L., Chang, Y.-P., Su, N., Frings, P., & Xie, X. (2019). Small dynamic mountainous rivers in Taiwan exhibit large sedimentary geochemical and provenance heterogeneity over multi-spatial scales. Earth Planet Science Letters, 505, 96–109.

    CAS  Google Scholar 

  18. Dinauer, A., & Mucci, A. (2018). Distinguishing between physical and biological controls on the spatial variability of pCO2: A novel approach using OMP water mass analysis (St. Lawrence, Canada). Marine Chemistry, 204, 107–120.

    CAS  Google Scholar 

  19. Dvorak, M., Mora, G., Graniero, L., & Surge, D. (2016). Carbon and nitrogen tracers of land use effects on net ecosystem metabolism in mangrove estuaries, southwest Florida. Estuarine, Coastal and Shelf Science, 181, 14–26.

    CAS  Google Scholar 

  20. Fanning, K. A., & Pilson, M. E. Q. (1973). On the spectrophotometric determination of dissolved silica in natural water. Analytical Chemistry, 45, 136–141.

    CAS  Google Scholar 

  21. Ferguson, P. R., Dubois, K. D., & Veizer, J. (2011). Fluvial carbon fluxes under extreme rainfall conditions: Inferences from the Fly River, Papua New Guinea. Chemical Geology, 281, 283–292.

    CAS  Google Scholar 

  22. Goñi, M. A., Teixeira, M. J., & Perkey, D. W. (2003). Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuarine, Coastal and Shelf Science, 57(5), 1023–1048.

    Google Scholar 

  23. Goñi, M. A., Monacci, N., Gisewhite, R., Ogston, A., Crockett, J., & Nittrouer, C. (2006). Distribution and sources of particulate organic matter in the water column and sediments of the Fly River Delta, Gulf of Papua (Papua New Guinea). Estuarine, Coastal and Shelf Science, 69, 225–245.

    Google Scholar 

  24. Goñi, M. A., Moore, E., Kurtz, A., Portier, E., Alleau, Y., & Merrell, D. (2014). Organic matter compositions and loadings in soils and sediments along the Fly River, Papua New Guinea. Geochimica Et Cosmochimica Acta, 140, 275–296.

    Google Scholar 

  25. Gran, G. (1952). Determination of the equivalence point in potentiometric titrations- Part II. The Analyst, 77, 661–671.

    CAS  Google Scholar 

  26. Harris, P. T., Hughes, M. G., Baker, E. R., Dalrymple, R. W., & Keene, J. B. (2004). Sediment transport in distributary channels and its export to the pro-deltaic environment in a tidally dominated delta: Fly River, Papua New Guinea. Continental Shelf Research, 24, 2431–2454.

    Google Scholar 

  27. Hedges, J. I., & Mann, D. C. (1979). The characterization of plant tissues by their lignin oxidation products. Geochimica Et Cosmochimica Acta, 43, 1803–1807.

    CAS  Google Scholar 

  28. Hedges, J. I., & Ertel, J. R. (1982). Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Analytical Chemistry, 54(2), 174–178.

    CAS  Google Scholar 

  29. Higgins, H. W., Mackey, D. J., & Clementson, L. (2006). Phytoplankton distribution in the Bismarck Sea north of Papua New Guinea: The effect of the Sepik River outflow. Deep-Sea Research I, 53, 1845–1863.

    Google Scholar 

  30. Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J., Wösten, H., & Jauhiainen, J. (2010). Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences, 7, 15–5–1514.

  31. Huang, T.-S., Fu, Y.-H., Pan, P., & Y., & Chen, C. -T. A. . (2012). Fluvial carbon fluxes in tropical rivers. Current Opinion in Environmental Sustainability, 4, 162–169.

    Google Scholar 

  32. Jennerjahn, T. C., Ittekkot, V., Klöpper, S., Adi, S., Nugroho, S. P., Sudiana, N., Yusmal, A., & Prihartanto, & Gaye-Haake, B. . (2004). Biogeochemistry of a tropical river affected by human activities in its catchment: Brantas River estuary and coastal waters of Madura Strait, Java, Indonesia. Estuarine, Coastal and Shelf Science, 60, 503–514.

    CAS  Google Scholar 

  33. Kabir, A. H. M. E., Sekine, M., Imai, T., Yamamoto, K., Kanno, A., Higuchi, T. (2021). Assessing small-scale freshwater microplastic pollution, land-use, source-to-sink conduits, and pollution risks: Perspective from Japanese rivers polluted with microplastic. Science of the Total Environment, 768, 144655.

  34. Kao, S. J., & Liu, K. K. (2000). Stable carbon and nitrogen isotope systematic in a human-disturbed watershed (Lanyang-His) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxes. Global Biogeochemical Cycles, 14, 189–198.

    CAS  Google Scholar 

  35. Kineke, G. C., Woolfe, K. J., Kuehl, S. A., Milliman, J. D., Dellapenna, T. M., & Purdon, R. G. (2000). Sediment export from the Sepik River, Papua New Guinea: Evidence for a divergent sediment plume. Continental Shelf Research, 20, 2239–2266.

    Google Scholar 

  36. Kuehl, S. A., Brunskill, G. J., Burns, K., Fugate, D., Kniskern, T., & Meneghini, L. (2004). Nature of sediment dispersal off the Sepik River, Papua New Guinea: Preliminary sediment budget and implications for margin processes. Continental Shelf Research, 24, 2417–2429.

    Google Scholar 

  37. Kumar, B. S. K., & Sarma, V. V. S. S. (2018). Variations in concentrations and sources of bioavailable organic compounds in the Indian estuaries and their fluxes to coastal waters. Continental Shelf Research, 166, 22–33.

    Google Scholar 

  38. Kuzyk, Z. Z. A., Goñi, M. A., Stern, G. A., & Macdonald, R. W. (2008). Sources, pathways and sinks of particulate organic matter in Hudson Bay: Evidence from lignin distributions. Marine Chemistry, 112(3), 215–229.

    CAS  Google Scholar 

  39. Loh, P. S., Chen, C.-T.A., Anshari, G. Z., Wang, J.-T., Lou, J.-Y., & Wang, S.-L. (2012a). A comprehensive survey of lignin geochemistry in the sedimentary organic matter along the Kapuas River (West Kalimantan, Indonesia). Journal of Asian Earth Sciences, 43, 118–129.

    Google Scholar 

  40. Loh, P. S., Chen, C.-T.A., Lou, J.-Y., Anshari, G. Z., Chen, H.-Y., & Wang, J.-T. (2012b). Comparing lignin-derived phenols, δ13C values, OC/N ratio and 14C age between sediments in the Kaoping (Taiwan) and the Kapuas (Kalimantan, Indonesia) Rivers. Aquatic Geochemistry, 18, 141–158.

    CAS  Google Scholar 

  41. Lou, J.-Y., Chen, C.-T.A., Lui, H.-K., Selvaraj, K., Zhang, S.-R., & Lu, X.-X. (2014). Comparison of subtropical surface water chemistry between the large Pearl River in China and small mountainous rivers in Taiwan. Journal of Asian Earth Sciences, 79, 182–190.

    Google Scholar 

  42. Milliman, J. D., Farnsworth, K. L., & Albertin, C. S. (1999). Flux and fate of fluvial sediments leaving large islands in the East Indies. Journal of Sea Research, 41, 97–107.

    Google Scholar 

  43. Millero, F. J. (2010). Carbonate constants for estuarine waters. Marine and Freshwater Research, 61(2), 139–142.

    CAS  Google Scholar 

  44. Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    CAS  Google Scholar 

  45. Ningal, T., Hartemink, A. E., & Bregt, A. K. (2008). Land use change and population growth in the Morobe Province of Papua New Guinea between 1975 and 2000. Journal of Environmental Management, 87, 117–124.

    Google Scholar 

  46. Pai, S.-C., Yang, C.-C., & Riley, J. P. (1990). Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonyl molybdenum blue complex. Analytica Chimica Acta, 229, 115–120.

    CAS  Google Scholar 

  47. Pierrot, D., Lewis, E., & Wallace, D. W. R. (2006). MS Excel program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. ORNL/CDIAC-105a.

  48. Prasad, M. B. K., Kaushal, S. S., & Murtugudde, R. (2013). Long-term pCO2 dynamics in rivers in the Chesapeake Bat watershed. Applied Geochemistry, 31, 209–215.

    CAS  Google Scholar 

  49. Renagi, O., Ridd, P., & Stieglitz, T. (2010). Quantifying the suspended sediment discharge to the ocean from the Markham River, Papua New Guinea. Continental Shelf Research, 30, 1030–1041.

    Google Scholar 

  50. Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis. Fisheries Research Board of Canada.

    Google Scholar 

  51. Wohl, E. (2011). A world of rivers (p. 359). The University of Chicago Press, Chicago and London.

    Google Scholar 

  52. Yang, L. Y., Hong, H. S., Guo, W. D., Chen, C.-T.A., Pan, P. I., & Feng, C. C. (2012). Absorption and fluorescence of dissolved organic matter in submarine hydrothermal vents off NE Taiwan. Marine Chemistry, 128–129, 64–71.

    Google Scholar 

  53. Zhang, Y., Meng, X., Bai, Y., Wang, X., Xia, P., Yang, G., Zhu, Z., Zhang, H. (2021). Sources and features of particulate organic matter in tropical small mountainous rivers (SW China) under the effects of anthropogenic activities. Ecological Indicators, 125, 107471.

Download references

Acknowledgements

We wish to thank Hsiu-I Huang, Bing-Jye Wang, and everyone who provided assistance during the sampling trips. We thank the reviewers for their valuable comments which have helped improve this manuscript greatly.

Funding

This study acknowledges the NSC101-2611-M-110–010-MY3, MOST 104–2611-M-110–016, and Zhejiang University Fundamental Research Funds for the Central Universities 2013QNA4037.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Pei Sun Loh or Chen-Tung Arthur Chen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 45 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loh, P.S., Chen, CT.A., Huang, TH. et al. Monitoring Sediment and Water Chemistry in Small Remote Aquatic Systems in East Sepik Province, Papua New Guinea. Water Air Soil Pollut 232, 446 (2021). https://doi.org/10.1007/s11270-021-05359-x

Download citation

Keywords

  • Remote aquatic systems
  • Water chemistry
  • Particulate organic matter
  • Sediment
  • Papua New Guinea