Skip to main content

Assessment of Human Induced Potentially Toxic Metal Aggregation and Decadal Change in Sediment Quality of River Hooghly: Implications to the Usage of Pneumatophores as a Potential Bio-indicator and Phytoremediator

Abstract

Mangrove sediment acts as a natural accumulator of potentially toxic metals (PTMs). Here, we have investigated the efficiency of mangrove species, e.g., Sonneratia caseolaris and Avicennia officinalis phytoremediation potential in a globally significant vulnerable river. The lower pH and anoxic conditions facilitate the elevated accumulation of PTMs in river Hooghly. The presence of PTMs in fine sediment fraction in greater proportion indicates a larger role of fine-grained silt and clay particles in the accumulation process. The estimated sediment quality indices indicate no significant change in the last 30 years. However, the ecotoxicological indices suggest a low level of ecological risks but can turn toxic because of the gradual accumulation of metals. The accumulations of PTMs in mangroves are regulated by the metal bio-availability. The result emphasizes mangrove pneumatophores, as a greater accumulator of PTMs than mangrove leaves. Higher translocation factors also indicate the applicability of mangroves as a phytoremediator of contaminated sediment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data Availability

The data generated during this study can be obtained upon request to the corresponding author.

References

  1. Abdo, M. H., & Sayed, M. F. (2009). Profile of some trace elements in the water-surficial sediment of Wadi El-Natrun depresion lakes, Egypt. Global Journal of Environmental Research, 3(2), 76–81.

    CAS  Google Scholar 

  2. Abera, T. A., Heiskanen, J., Pellikka, P. K., Adhikari, H., & Maeda, E. E. (2020). Climatic impacts of bushland to cropland conversion in Eastern Africa. Science of the Total Environment, 717, 137255.

    CAS  Article  Google Scholar 

  3. Agoramoorthy, G., Chen, F. A., & Hsu, M. J. (2008). Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environmental Pollution, 155(2), 320–326.

    CAS  Article  Google Scholar 

  4. Alsamadany, H., Al-Zahrani, H. S., Selim, E. M. M., & El-Sherbiny, M. M. (2020). Spatial distribution and potential ecological risk assessment of some trace elements in sediments and grey mangrove (Avicennia marina) along the Arabian Gulf coast, Saudi Arabia. Open Chemistry, 18(1), 77–96.

    CAS  Article  Google Scholar 

  5. Amaral, V., Cabral, H. N., & Bishop, M. J. (2011). Effect of runoff from acid-sulfate soils on pneumatophores of the grey mangrove, Avicennia marina. Marine and Freshwater Research, 62(8), 974–979.

    CAS  Article  Google Scholar 

  6. Atkinson, C. A., Jolley, D. F., & Simpson, S. L. (2007). Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere, 69(9), 1428–1437.

    CAS  Article  Google Scholar 

  7. Bakshi, M., Ghosh, S., Chakraborty, D., Hazra, S., & Chaudhuri, P. (2018). Assessment of potentially toxic metal (PTM) pollution in mangrove habitats using biochemical markers: A case study on Avicennia officinalis L. in and around Sundarban, India. Marine Pollution Bulletin, 133, 157–172.

    CAS  Article  Google Scholar 

  8. Bakshi, M., Ram, S. S., Ghosh, S., Chakraborty, A., Sudarshan, M., & Chaudhuri, P. (2017). Micro-spatial variation of elemental distribution in estuarine sediment and their accumulation in mangroves of Indian Sundarban. Environmental Monitoring and Assessment, 189(5), 221.

    Article  CAS  Google Scholar 

  9. Bandaranayake, W. M. (1998). Traditional and medicinal uses of mangroves. Mangroves and Salt Marshes, 2(3), 133–148.

    Article  Google Scholar 

  10. Banerjee, K., Senthilkumar, B., Purvaja, R., & Ramesh, R. (2012). Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, northeast coast of India. Environmental Geochemistry and Health, 34(1), 27–42.

    CAS  Article  Google Scholar 

  11. Bastami, K. D., Bagheri, H., Kheirabadi, V., Zaferani, G. G., Teymori, M. B., Hamzehpoor, A., & Ganji, S. (2014). Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea. Marine Pollution Bulletin, 81(1), 262–267.

    CAS  Article  Google Scholar 

  12. Bayen, S. (2012). Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: A review. Environment International, 48, 84–101.

    CAS  Article  Google Scholar 

  13. Birch, G. F. (2018). Determination of sediment metal background concentrations and enrichment in marine environments–A critical review. Science of the Total Environment, 580, 813–831.

    Article  CAS  Google Scholar 

  14. Birch, G. F., & Taylor, S. E. (2002). Assessment of possible sediment toxicity of contaminated sediments in Port Jackson, Sydney, Australia. Hydrobiologia, 472(1–3), 19–27.

    CAS  Article  Google Scholar 

  15. Birch, G. F., Vanderhayden, M., & Olmos, M. (2011). The nature and distribution of metals in soils of the Sydney estuary catchment, Australia. Water, Air, & Soil Pollution, 216(1–4), 581–604.

    CAS  Article  Google Scholar 

  16. Birch, G., Nath, B., & Chaudhuri, P. (2015). Effectiveness of remediation of metal-contaminated mangrove sediments (Sydney estuary, Australia). Environmental Science and Pollution Research, 22(8), 6185–6197.

    CAS  Article  Google Scholar 

  17. Charriau, A., Lesven, L., Gao, Y., Leermakers, M., Baeyens, W., Ouddane, B., & Billon, G. (2011). Trace metal behaviour in riverine sediments: Role of organic matter and sulfides. Applied Geochemistry, 26(1), 80–90.

    CAS  Article  Google Scholar 

  18. Chatterjee, M., Massolo, S., Sarkar, S. K., Bhattacharya, A. K., Bhattacharya, B. D., Satpathy, K. K., & Saha, S. (2009). An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environmental Monitoring and Assessment, 150(1–4), 307.

    CAS  Article  Google Scholar 

  19. Chaudhuri, P., Nath, B., & Birch, G. (2014). Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: The role of rhizosphere processes. Marine Pollution Bulletin, 79(1–2), 284–292.

    CAS  Article  Google Scholar 

  20. Chowdhury, R., Favas, P. J., Pratas, J., Jonathan, M. P., Ganesh, P. S., & Sarkar, S. K. (2015). Accumulation of trace metals by mangrove plants in Indian Sundarban Wetland: Prospects for phytoremediation. International Journal of Phytoremediation, 17(9), 885–894.

    CAS  Article  Google Scholar 

  21. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., ... & Jones, C. (2014). Carbon and other biogeochemical cycles. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465–570). Cambridge University Press.

  22. Clark, M. W., McConchie, D., Lewis, D. W., & Saenger, P. (1998). Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: A geochemical model. Chemical Geology, 149(3–4), 147–171.

    CAS  Article  Google Scholar 

  23. Clark, M. W., McConchie, D., Saenger, P., & Pillsworth, M. (1997). Hydrological controls on copper, cadmium, lead and zinc concentrations in an anthropogenically polluted mangrove ecosystem, Wynnum, Brisbane, Australia. Journal of Coastal Research, 1150–1158.

  24. Colmer, T. D., & Pedersen, O. (2008). Oxygen dynamics in submerged rice (Oryza sativa). New Phytologist, 178(2), 326–334.

    CAS  Article  Google Scholar 

  25. Comeaux, R. S., Allison, M. A., & Bianchi, T. S. (2012). Mangrove expansion in the Gulf of Mexico with climate change: Implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science, 96, 81–95.

    CAS  Article  Google Scholar 

  26. Coynel, A., Gorse, L., Curti, C., Schafer, J., Grosbois, C., Morelli, G., & Mojtahid, M. (2016). Spatial distribution of trace elements in the surface sediments of a major European estuary (Loire Estuary, France): Source identification and evaluation of anthropogenic contribution. Journal of Sea Research, 118, 77–91.

    Article  Google Scholar 

  27. Dahdouh-Guebas, F., Kairo, J. G., De Bondt, R., & Koedam, N. (2007). Pneumatophore height and density in relation to micro-topography in the grey mangrove Avicennia marina. Belgian Journal of Botany, 213–221.

  28. Dromgoole, F. I. (1988). Carbon dioxide fixation in aerial roots of the New Zealand mangrove Avicennia marina var. resinifera (Note). New Zealand Journal of Marine and Freshwater Research, 22(4),617–619.

  29. Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407(13), 3972–3985.

    Article  CAS  Google Scholar 

  30. Du Laing, G., Van Ryckegem, G., Tack, F. M., & Verloo, M. G. (2006). Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis. Chemosphere, 63(11), 1815–1823.

    Article  CAS  Google Scholar 

  31. Ferraz, M. A., & Lourençlo, J. C. N. (2000). The influence of organic matter content of contaminated soils on the leaching rate of heavy metals. Environmental Progress, 19(1), 53–58.

    CAS  Article  Google Scholar 

  32. Frontier, S., Pichod-Viale, D., Leprêtre, A., Davoult, D., & Luczak, C. (2008). Ecosystèmes. Structure, fonctionnement, évolution (pp 558). Dunod.

  33. Gambrell, R. P. (1994). Trace and toxic metals in wetlands—a review. Journal of Environmental Quality, 23(5), 883–891.

    CAS  Article  Google Scholar 

  34. Ghosh, S., Bakshi, M., Bhattacharyya, S., Nath, B., & Chaudhuri, P. (2015). A review of threats and vulnerabilities to mangrove habitats: With special emphasis on East Coast of India. J Earth Sci Clim Change, 6(4).

  35. Ghosh, S., Bakshi, M., Gupta, K., Mahanty, S., Bhattacharyya, S., & Chaudhuri, P. (2020). A preliminary study on upstream migration of mangroves in response to changing environment along River Hooghly, India. Marine Pollution Bulletin, 151, 110840.

    CAS  Article  Google Scholar 

  36. Ghosh, S., Bakshi, M., Kumar, A., Ramanathan, A. L., Biswas, J. K., Bhattacharyya, S., ... & Rinklebe, J. (2018). Assessing the potential ecological risk of Co, Cr, Cu, Fe and Zn in the sediments of Hooghly–Matla estuarine system, India. Environmental geochemistry and health, 1–18.

  37. Ghosh, S., Bakshi, M., Mitra, S., Mahanty, S., Ram, S. S., Banerjee, S., & Chaudhuri, P. (2019). Elemental geochemistry in acid sulphate soils–A case study from reclaimed islands of Indian Sundarban. Marine Pollution Bulletin, 138, 501–510.

    CAS  Article  Google Scholar 

  38. Ghosh, S., Ram, S. S., Bakshi, M., Chakraborty, A., Sudarshan, M., & Chaudhuri, P. (2016). Vertical and horizontal variation of elemental contamination in sediments of Hooghly Estuary, India. Marine Pollution Bulletin, 109(1), 539–549.

    CAS  Article  Google Scholar 

  39. Giri, S., Mukhopadhyay, A., Hazra, S., Mukherjee, S., Roy, D., Ghosh, S., & Mitra, D. (2014). A study on abundance and distribution of mangrove species in Indian Sundarban using remote sensing technique. Journal of Coastal Conservation, 18(4), 359–367.

    Article  Google Scholar 

  40. Graf, W. L. (1999). Dam nation: A geographic census of American dams and their large-scale hydrologic impacts. Water Resources Research, 35(4), 1305–1311.

    Article  Google Scholar 

  41. Guo, T., DeLaune, R. D., & Patrick, W. H., Jr. (1997). The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environment International, 23(3), 305–316.

    CAS  Article  Google Scholar 

  42. Hakanson, L. (1980). An ecological risk index for aquatic pollution control A Sedimentological Approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  43. Hennekam, R., Sweere, T., Tjallingii, R., de Lange, G. J., & Reichart, G. J. (2019). Trace metal analysis of sediment cores using a novel X-ray fluorescence core scanning method. Quaternary International, 514, 55–67.

    Article  Google Scholar 

  44. Hogarth, P. J. (1999). The biology of mangroves. Oxford University Press (OUP).

    Google Scholar 

  45. Hogarth, P. J. (2007). The Biology of Mangroves and Seagrasses. Oxford University Press.

    Book  Google Scholar 

  46. IPCC (2007) Forth assessment report on addressing uncertainties. Intergovernmental panel on climate changeworking group 1: the physical science basis. http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html (January 2010)

  47. Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., & Masunaga, S. (2014). Trace metals in soil and vegetables and associated health risk assessment. Environmental Monitoring and Assessment, 186(12), 8727–8739.

    CAS  Article  Google Scholar 

  48. Jokinen, S. A., Jilbert, T., Tiihonen-Filppula, R., & Koho, K. (2020). Terrestrial organic matter input drives sedimentary trace metal sequestration in a human-impacted boreal estuary. Science of the Total Environment, 717, 137047.

    CAS  Article  Google Scholar 

  49. Joshi, H., & Ghose, M. (2003). Forest structure and species distribution along soil salinity and pH gradient in mangrove swamps of the Sundarbans. Tropical Ecology, 44(2), 195–204.

    Google Scholar 

  50. Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed.). CRC Press Inc.

    Google Scholar 

  51. Kulkarni, R., Deobagkar, D., & Zinjarde, S. (2018). Metals in mangrove ecosystems and associated biota: A global perspective. Ecotoxicology and Environmental Safety, 153, 215–228.

    CAS  Article  Google Scholar 

  52. Kumar, A., & Ramanathan, A. L. (2015). Speciation of selected trace metals (Fe, Mn, Cu and Zn) with depth in the sediments of Sundarban mangroves: India and Bangladesh. Journal of Soils and Sediments, 15(12), 2476–2486.

    CAS  Article  Google Scholar 

  53. Kuusisto-Hjort, P., & Hjort, J. (2013). Land use impacts on trace metal concentrations of suburban stream sediments in the Helsinki region, Finland. Science of the Total Environment, 456, 222–230.

    Article  CAS  Google Scholar 

  54. Lacerda, L. D., & Rezende, C. E. (1987). Metal geochemistry in mangrove sediments. Proceedings of the I Simpósio sobre Ecossistemas da Costa Sudeste-Sul do Brasil. ACIESP, São Paulo, 3, 123–131.

  55. Larrose, A., Coynel, A., Schäfer, J., Blanc, G., Massé, L., & Maneux, E. (2010). Assessing the current state of the Gironde Estuary by mapping priority contaminant distribution and risk potential in surface sediment. Applied Geochemistry, 25(12), 1912–1923.

    CAS  Article  Google Scholar 

  56. Lewis, M., Pryor, R., & Wilking, L. (2011). Fate and effects of anthropogenic chemicals in mangrove ecosystems: A review. Environmental Pollution, 159(10), 2328–2346.

    CAS  Article  Google Scholar 

  57. Li, H., Gao, X., Gu, Y., Wang, R., Xie, P., Liang, M., & Su, J. (2018). Comprehensive large-scale investigation and assessment of trace metal in the coastal sediments of Bohai Sea. Marine Pollution Bulletin, 129(1), 126–134.

    CAS  Article  Google Scholar 

  58. Li, S., & Zhang, Q. (2010). Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. Journal of Hazardous Materials, 181(1–3), 1051–1058.

    CAS  Google Scholar 

  59. Liu, W. J., Zhu, Y. G., Hu, Y., Williams, P. N., Gault, A. G., Meharg, A. A., & Smith, F. A. (2006). Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environmental Science & Technology, 40(18), 5730–5736.

    CAS  Article  Google Scholar 

  60. Liu, Y., Tam, N. F. Y., Yang, J. X., Pi, N., Wong, M. H., & Ye, Z. H. (2009). Mixed heavy metals tolerance and radial oxygen loss in mangrove seedlings. Marine Pollution Bulletin, 58(12), 1843–1849.

    CAS  Article  Google Scholar 

  61. Long, E. R., Field, L. J., & MacDonald, D. D. (1998). Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry, 17(4), 714–727.

    CAS  Article  Google Scholar 

  62. Long, E. R., MacDonald, D. D., Severn, C. G., & Hong, C. B. (2000). Classifying probabilities of acute toxicity in marine sediments with empirically derived sediment quality guidelines. Environmental Toxicology and Chemistry, 19(10), 2598–2601.

    CAS  Article  Google Scholar 

  63. Long, E. R., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97.

    Article  Google Scholar 

  64. MacFarlane, G. R., & Burchett, M. D. (2002). Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Marine Environmental Research, 54(1), 65–84.

    CAS  Article  Google Scholar 

  65. MacFarlane, G. R., Koller, C. E., & Blomberg, S. P. (2007). Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies. Chemosphere, 69(9), 1454–1464.

    CAS  Article  Google Scholar 

  66. Machado, W., Gueiros, B. B., Lisboa-Filho, S. D., & Lacerda, L. D. (2005). Trace metals in mangrove seedlings: Role of iron plaque formation. Wetlands Ecology and Management, 13(2), 199–206.

    CAS  Article  Google Scholar 

  67. Macia, A., Abrantes, K. G. S., & Paula, J. (2003). Thorn fish Terapon jarbua (Forskål) predation on juvenile white shrimp Penaeus indicus H. Milne Edwards and brown shrimp Metapenaeus monoceros (Fabricius): The effect of turbidity, prey density, substrate type and pneumatophore density. Journal of Experimental Marine Biology and Ecology, 291(1), 29–56.

    Article  Google Scholar 

  68. MacFarlane, G. R., Pulkownik, A., & Burchett, M. D. (2003). Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.) Vierh.: biological indication potential. Environmental Pollution, 123(1), 139–151.

  69. Marchand, C., Lallier-Vergès, E., Baltzer, F., Albéric, P., Cossa, D., & Baillif, P. (2006). Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Marine Chemistry, 98(1), 1–17.

    CAS  Article  Google Scholar 

  70. Miao, S., DeLaune, R. D., & Jugsujinda, A. (2006). Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. Science of the Total Environment, 371(1–3), 334–343.

    CAS  Article  Google Scholar 

  71. Morelli, G., Gasparon, M., Fierro, D., Hu, W. P., & Zawadzki, A. (2012). Historical trends in trace metal and sediment accumulation in intertidal sediments of Moreton Bay, southeast Queensland, Australia. Chemical Geology, 300, 152–164.

    Article  CAS  Google Scholar 

  72. Munkholm, L. J., Esu, I., & Moberg, J. P. (1993). Trace elements in some northern Nigerian soils. Communications in Soil Science and Plant Analysis, 24(7–8), 657–672.

    Article  Google Scholar 

  73. Nagelkerken, I. (2009). Evaluation of nursery function of mangroves and seagrass beds for tropical decapods and reef fishes: Patterns and underlying mechanisms. In Ecological connectivity among tropical coastal ecosystems (pp. 357-399). Springer, Dordrecht

  74. Nath, B., Chaudhuri, P., & Birch, G. (2014). Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney Estuary, Australia. Ecotoxicology and Environmental Safety, 107, 284–290.

    CAS  Article  Google Scholar 

  75. Nayak, S., & Bahuguna, A. (2001). Application of remote sensing data to monitor mangroves and other coastal vegetation of India. Indian Journal of Marine Science, 30, 195–213.

    Google Scholar 

  76. Nobi, E. P., Dilipan, E., Thangaradjou, T., Sivakumar, K., & Kannan, L. (2010). Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuarine, Coastal and Shelf Science, 87(2), 253–264.

    CAS  Article  Google Scholar 

  77. Noronha-D’Mello, C. A., & Nayak, G. N. (2016). Assessment of metal enrichment and their bioavailability in sediment and bioaccumulation by mangrove plant pneumatophores in a tropical (Zuari) estuary, west coast of India. Marine Pollution Bulletin, 110(1), 221–230.

    Article  CAS  Google Scholar 

  78. Nowrouzi, M., Pourkhabbaz, A., & Rezaei, M. (2012). Bioaccumulation and distribution of metals in sediments and Avicenna marina tissues in the Hara Biosphere Reserve, Iran. Bulletin of Environmental Contamination and Toxicology, 89(4), 799–804.

    CAS  Article  Google Scholar 

  79. Ong Che, R. G. (1999). Concentration of 7 heavy metals in sediments and mangrove root samples from Mai Po, Hong Kong. Marine Pollution Bulletin, 39(1–12), 269–279.

    Article  Google Scholar 

  80. Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126.

    CAS  Article  Google Scholar 

  81. Pi, N., Tam, N. F. Y., & Wong, M. H. (2011). Formation of iron plaque on mangrove roots receiving wastewater and its role in immobilization of wastewater-borne pollutants. Marine Pollution Bulletin, 63(5–12), 402–411.

    CAS  Article  Google Scholar 

  82. Pi, N., Tam, N. F. Y., Wu, Y., & Wong, M. H. (2009). Root anatomy and spatial pattern of radial oxygen loss of eight true mangrove species. Aquatic Botany, 90(3), 222–230.

    Article  Google Scholar 

  83. Premier, V., de Souza Machado, A. A., Mitchell, S., Zarfl, C., Spencer, K., & Toffolon, M. (2019). A model-based analysis of metal fate in the Thames Estuary. Estuaries and Coasts, 42(4), 1185–1201.

    CAS  Article  Google Scholar 

  84. Purnobasuki, H., & Suzuki, M. (2005). Functional anatomy of air conducting network on the pneumatophores of a mangrove plant, Avicennia marina (Forsk.) Vierh. Asian Journal of Plant Sciences, 4(4), 334–347.

    Article  Google Scholar 

  85. Qiu, Y. W., Yu, K. F., Zhang, G., & Wang, W. X. (2011). Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China. Journal of Hazardous Materials, 190(1–3), 631–638.

    CAS  Article  Google Scholar 

  86. Rajmohan, N., Nagarajan, R., Jayaprakash, M., & Prathapar, S. A. (2020). The impact of seasonal waterlogging on the depth-wise distribution of major and trace metals in the soils of the eastern Ganges basin. CATENA, 189, 104510.

    CAS  Article  Google Scholar 

  87. Ramanathan, A. L., Subramanian, V., Ramesh, R., Chidambaram, S., & James, A. (1999). Environmental geochemistry of the Pichavaram mangrove ecosystem (tropical), southeast coast of India. Environmental Geology, 37(3), 223–233.

    CAS  Article  Google Scholar 

  88. Ramesh, R., Ramanathan, A. L., James, R. A., Subramanian, V., Jacobsen, S. B., & Holland, H. D. (1999). Rare earth elements and heavy metal distribution in estuarine sediments of east coast of India. Hydrobiologia, 397, 89–99.

    CAS  Article  Google Scholar 

  89. Rieuwerts, J. S. (2007). The mobility and bioavailability of trace metals in tropical soils: A review. Chemical Speciation & Bioavailability, 19(2), 75–85.

    CAS  Article  Google Scholar 

  90. Rogers, K. G., Goodbred, S. L., Jr., & Mondal, D. R. (2013). Monsoon sedimentation on the ‘abandoned’tide-influenced Ganges-Brahmaputra delta plain. Estuarine, Coastal and Shelf Science, 131, 297–309.

    Article  Google Scholar 

  91. Saenger, P. (2002). Mangrove ecology, silviculture and conservation (pp 360). Springer Netherlands.

  92. Sarangi, R. K., Kathiresan, K., & Subramanian, A. N. (2002). Metal concentrations in five mangrove species of the Bhitarkanika, Orissa, east coast of India. Indian Journal of Marine Sciences, 31(3),251–253.

  93. Saunders, K. M., Harrison, J. J., Butler, E. C., Hodgson, D. A., & McMinn, A. (2013). Recent environmental change and trace metal pollution in World Heritage Bathurst Harbour, southwest Tasmania, Australia. Journal of Paleolimnology, 50(4), 471–485.

    Article  Google Scholar 

  94. Shafroth, P. B., Stromberg, J. C., & Patten, D. T. (2002). Riparian vegetation response to altered disturbance and stress regimes. Ecological Applications, 12(1), 107–123.

    Article  Google Scholar 

  95. Shaheen, S. M., Antoniadis, V., Kwon, E., Song, H., Wang, S. L., Hseu, Z. Y., & Rinklebe, J. (2020). Soil contamination by potentially toxic elements and the associated human health risk in geo-and anthropogenic contaminated soils: A case study from the temperate region (Germany) and the arid regions (Egypt). Environmental Pollution, 114312.

  96. Simpson, S. L., & Batley, G. E. (2003). Disturbances to metal partitioning during toxicity testing of iron (II)-rich estuarine pore waters and whole sediments. Environmental Toxicology and Chemistry: An International Journal, 22(2), 424–432.

    CAS  Article  Google Scholar 

  97. Spetter, C. V., Buzzi, N. S., Fernández, E. M., Cuadrado, D. G., & Marcovecchio, J. E. (2015). Assessment of the physicochemical conditions sediments in a polluted tidal flat colonized by microbial mats in Bahía Blanca Estuary (Argentina). Marine Pollution Bulletin, 91(2), 491–505.

    CAS  Article  Google Scholar 

  98. Srikanth, S., Lum, S. K. Y., & Chen, Z. (2016). Mangrove root: Adaptations and ecological importance. Trees, 30(2), 451–465.

    Article  Google Scholar 

  99. Subramanian, S., Eswaramoorthi, S., Periakali, P., Saravana-Kumar, K., & Lakshmi-Narasimhan, C. L. (2001). Major and trace elements (Fe, Mn, Al, Cu, & Hg) in Pichavaram Mangrove sediments, Tamil Nadu, east coast of India. Journal of Applied Geochemistry, 3(1), 6–12.

    Google Scholar 

  100. Subramanian, V., Jha, P. K., & Van Grieken, R. (1988). Heavy metals in the Ganges estuary. Marine pollution bulletin-London, 19(2), 290–293.

    CAS  Article  Google Scholar 

  101. Sun, B., Zhao, F. J., Lombi, E., & McGrath, S. P. (2001). Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 113(2), 111–120.

    CAS  Article  Google Scholar 

  102. Tack, F. M., Callewaert, O. W. J. J., & Verloo, M. G. (1996). Metal solubility as a function of pH in a contaminated, dredged sediment affected by oxidation. Environmental Pollution, 91(2), 199–208.

    CAS  Article  Google Scholar 

  103. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution Blackwell Oxford.

  104. Thampanya, U., Vermaat, J. E., Sinsakul, S., & Panapitukkul, N. (2006). Coastal erosion and mangrove progradation of Southern Thailand. Estuarine, Coastal and Shelf Science, 68(1–2), 75–85.

    Article  Google Scholar 

  105. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1), 566.

    Article  Google Scholar 

  106. Traven, L. (2013). Sources, trends and ecotoxicological risks of PAH pollution in surface sediments from the northern Adriatic Sea (Croatia). Marine Pollution Bulletin, 77(1–2), 445–450.

    CAS  Article  Google Scholar 

  107. Usman, A. R., Lee, S. S., Awad, Y. M., Lim, K. J., Yang, J. E., & Ok, Y. S. (2012). Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Chemosphere, 87(8), 872–878.

    CAS  Article  Google Scholar 

  108. Van Den Berg, H., Manuweera, G., & Konradsen, F. (2017). Global trends in the production and use of DDT for control of malaria and other vector-borne diseases. Malaria Journal, 16(1), 401.

    Article  Google Scholar 

  109. Wakushima, S., Kuraishi, S., & Sakurai, N. (1994). Soil salinity and pH in Japanese mangrove forests and growth of cultivated mangrove plants in different soil conditions. Journal of Plant Research, 107(1), 39–46.

    Article  Google Scholar 

  110. Wenning, R. J. (Ed.). (2005). Use of sediment quality guidelines and related tools for the assessment of contaminated sediments. SETAC.Press (Societyof Environmental Toxicology and Chemistry).

  111. Yabuki K, Kitaya Y, Sugi J (1985) Studies on the function of the mangrove pneumatophore. In: Sugi J (ed) Studies on the mangrove ecosystem. Tokyo Institute of Agriculture, Toyko, pp 76–79

  112. Yabuki, K., Kitaya, Y., & Sugi, J. (1990). Studies on the function of mangrove pneumatophores (2). Environment Control in Biology, 28(3), 99–102.

    Article  Google Scholar 

  113. Yang, Q., Lei, A. P., Li, F. L., Liu, L. N., Zan, Q. J., Shin, P. K. S., & Tam, N. F. Y. (2014). Structure and function of soil microbial community in artificially planted Sonneratia apetala and S. caseolaris forests at different stand ages in Shenzhen Bay, China. Marine pollution bulletin, 85(2), 754–763.

    CAS  Article  Google Scholar 

  114. Yim, M. W., & Tam, N. F. Y. (1999). Effects of wastewater-borne heavy metals on mangrove plants and soil microbial activities. Marine Pollution Bulletin, 39(1–12), 179–186.

    CAS  Article  Google Scholar 

  115. Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2–3), 456–464.

    CAS  Article  Google Scholar 

  116. Zhang, C., Yu, Z. G., Zeng, G. M., Jiang, M., Yang, Z. Z., Cui, F., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270–281.

    CAS  Article  Google Scholar 

  117. Zhang, J., & Gao, X. (2015). Heavy metals in surface sediments of the intertidal Laizhou Bay, Bohai Sea, China: Distributions, sources and contamination assessment. Marine Pollution Bulletin, 98(1–2), 320–327.

    Article  CAS  Google Scholar 

  118. Zheng, S., Zheng, D., Liao, B., & Li, Y. (1998). Tideland pollution in Guangdong Province of China and mangrove afforestation. Oceanographic Literature Review, 7(45), 1222.

    Google Scholar 

  119. Zhou, Y. W., Peng, Y. S., Li, X. L., & Chen, G. Z. (2011). Accumulation and partitioning of heavy metals in mangrove rhizosphere sediments. Environmental Earth Sciences, 64(3), 799–807.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the University of Calcutta and CU-UPE facility for providing instrumental and infrastructural facilities for the research work.

Funding

The work was supported by the Scientific and Engineering Research Board (SR/FT/LS-155/2011 dated 25.04.2013), Department of Science and Technology, Govt. of India, in University of Calcutta.

Author information

Affiliations

Authors

Contributions

Somdeep Ghosh: writing—original draft preparation, analysis, data curation, software; Madhurima Bakshi: analysis, reviewing and editing; Shouvik Mahanty: software; Punarbasu Chaudhuri: supervision, fund.

Corresponding author

Correspondence to Punarbasu Chaudhuri.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 66 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Bakshi, M., Mahanty, S. et al. Assessment of Human Induced Potentially Toxic Metal Aggregation and Decadal Change in Sediment Quality of River Hooghly: Implications to the Usage of Pneumatophores as a Potential Bio-indicator and Phytoremediator. Water Air Soil Pollut 232, 399 (2021). https://doi.org/10.1007/s11270-021-05357-z

Download citation

Keywords

  • Phytoremediation
  • Sonneratia caseolaris
  • Avicennia officinalis
  • Pollution load translocation factor