Skip to main content

Synthesizing a Novel Zr/Fe/Al-Incorporated Cross-linked Chitosan as Absorbent for Effective Removal of Fluoride from Aqueous Solution

Abstract

Zr/Fe/Al-modified chitosan beads were synthesized as a potential absorbent to remove fluoride on wastewater. In this study, the effects of solution pH, absorbent dosage, initial concentration, adsorption time, and coexisting ions were evaluated through a series of experiments. It was found that an adsorption capacity of 37.49 mg/g was achieved in the conditions with pH at 6.0, 1.6 g/L of the dose of CS-ZFA, 60 mg/L of fluoride concentration, and 120 min adsorption time. The adsorption results indicated that fluoride adsorption by CS-ZFA can be explained by Langmuir isotherm. Moreover, the kinetic studies indicated that the adsorption process was in good compliance with the pseudo-second-order kinetics and intra-particle diffusion model. The newly synthesized absorbents were characterized by SEM, EDS, FTIR, and TG analysis. Based on the characterization, the high adsorption capacity of the newly synthesized absorbent is due to the electrostatic attraction between amino and metal ions and the formation of CS-ZFA complex for fluoride. These excellent adsorption properties revealed that CS-ZFA is an effective absorbent for removing fluoride in aqueous solutions of environmental remediation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Abtahi, M., Dobaradaran, S., Jorfi, S., Koolivand, A., Khaloo, S. S., & Spitz, J. (2019). Age-sex specific disability-adjusted life years (DALYs) attributable to elevated levels of fluoride in drinking water: A national and subnational study in Iran, 2017. Water Research, 157, 94–105. https://doi.org/10.1016/j.watres.2019.03.087.

    CAS  Article  Google Scholar 

  2. Akhavan, G., Dobaradaran, S., & Borazjani, J. M. (2016). Data on fluoride concentration level in villages of Asara (Alborz, Iran) and daily fluoride intake based on drinking water consumption. Data in Brief, 9(1), 625–628. https://doi.org/10.1016/j.dib.2016.09.050.

    Article  Google Scholar 

  3. Andrew, L. K. Y., Liu, Y. T., & Chen, S. Y. (2016). Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies. Journal of Colloid & Interface Science, 461, 79–87. https://doi.org/10.1016/j.jcis.2015.08.061.

    CAS  Article  Google Scholar 

  4. Anush, S. M., Vishalakshi, B., Chandan, H. R., & Geetha, B. R. (2018). Heterocyclic modification of chitosan for the adsorption of Cu (II) and Cr (VI) ions. Separation Science and Technology, 53(13), 1979–1990. https://doi.org/10.1080/01496395.2018.1442859.

    CAS  Article  Google Scholar 

  5. Cai, J. G., Zhao, X., Zhang, Y. Y., Zhang, Q. X., & Pan, B. C. (2018). Enhanced fluoride removal by La-doped Li/Al layered double hydroxides. Journal of Colloid & Interface Science, 509, 353–359. https://doi.org/10.1016/j.jcis.2017.09.038.

    CAS  Article  Google Scholar 

  6. Chethan, P. D., & Vishalakshi, B. (2015). Synthesis of ethylenediamine modified chitosan microspheres for removal of divalent and hexavalent ions. International Journal of Biological Macromolecules, 75, 179–185. https://doi.org/10.1016/j.ijbiomac.2015.01.032.

    CAS  Article  Google Scholar 

  7. Chi, Y., Chen, Y., Hu, C., Wang, Y., & Liu, C. (2017). Preparation of Mg-Al-Ce triple-metal composites for fluoride removal from aqueous solutions. Journal of Molecular Liquids, 242, 416–422. https://doi.org/10.1016/j.molliq.2017.07.026.

    CAS  Article  Google Scholar 

  8. Cho, D.-W., Jeon, B.-H., Jeong, Y. J., Nam, I. H., & Choi, U.-K. (2016). Synthesis of hydrous zirconium oxide-impregnated chitosan beads and their application for removal of fluoride and lead. Applied Surface Science, 372, 13–19. https://doi.org/10.1016/j.apsusc.2016.03.068.

    CAS  Article  Google Scholar 

  9. Dobaradaran, S., Abadi, D. R. V., Mahvi, A. H., & Javid, A. (2011). Fluoride in skin and muscle of two commercial species of fish harvested off the Bushehr shores of the Persian Gulf. Fluoride, 44(3), 143–146.

    CAS  Google Scholar 

  10. Dobaradaran, S., Zazuli, M. A., Keshtkar, M., Noshadi, S., Khorsand, M., & Ghasemi, F. F. (2016). Biosorption of fluoride from aqueous phase onto Padina sanctae crucis algae: Evaluation of biosorption kinetics and isotherms. Desalination and Water Treatment, 57(58), 28405–28416. https://doi.org/10.1080/19443994.2016.118208.

    CAS  Article  Google Scholar 

  11. Dobaradaran, S., Babaei, A. A., Nabipour, I., Tajbakhsh, S., Noshadi, S., & Keshtkar. (2017). Determination of fluoride biosorption from aqueous solutions using Sargassum hystrix algae. Desalination Water Treat, 63, 87–95. https://doi.org/10.5004/dwt.2017.0052.

    CAS  Article  Google Scholar 

  12. Dobaradaran, S., Khorsand, M., Hayati, A., Moradzadeh, R., Pouryousefi, M., & Ahmadi, M. (2018). Data on fluoride contents in groundwater of Bushehr province, Iran. Data in Brief, 17(1), 1158–1162. https://doi.org/10.1016/j.dib.2018.02.016.

    Article  Google Scholar 

  13. Farjami, M., Moghadassi, A., & Vatanpour, V. (2015). Modeling and simulation of CO2 removal in a polyvinylidene fluoride hollow fiber membrane contactor with computational fluid dynamics. Chemical Engineering & Processing Process Intensification, 98, 41–51. https://doi.org/10.1016/j.cep.2015.10.006.

    CAS  Article  Google Scholar 

  14. Hernández-Campos, M., Polo, A. M. S., Sánchez-Polo, M., Rivera-Utrilla, J., Berber-Mendoza, M. S., Andrade-Espinosa, G., & López-Ramó, M. V. (2018). Lanthanum-doped silica xerogels for the removal of fluorides from waters. Journal of Environmental Management, 213, 549–554. https://doi.org/10.1016/j.jenvman.2018.02.016.

    CAS  Article  Google Scholar 

  15. Izadi, A., Dobaradaran, S., Nabipour, I., Mahvi, A. H., Abedi, E., & Keshtkar, M. (2017). The fluoride and chloride ion levels in the seawater along the northern part of the Persian gulf in Bushehr province, Iran. Fluoride, 50(1), 127–134.

    CAS  Google Scholar 

  16. Jia, Z. P., Hao, S., & Lu, X. Y. (2018). Exfoliated Mg-Al-Fe layered double hydroxides/polyether sulfone mixed matrix membranes for adsorption of phosphate and fluoride from aqueous solutions. Journal of Environmental Sciences, 8, 63–73. https://doi.org/10.1016/j.jes.2017.11.012.

    Article  Google Scholar 

  17. Kang, D. J., Yu, X. L., Ge, M. F., Xiao, F., & Xu, H. (2016). Novel Al-doped carbon nanotubes with adsorption and coagulation promotion for organic pollutant removal. Journal of Environmental Sciences, 54(4), 1–12. https://doi.org/10.1016/j.jes.2016.04.022.

    CAS  Article  Google Scholar 

  18. Keshtkar, M., Dobaradaran, S., Keshmiri, S., Ramavandi, B., Arfaeinia, H., & Ghaedi, H. (2017). Effective parameters, equilibrium, and kinetics of fluoride adsorption on Prosopis cineraria and Syzygium cumini leaves. Environmental Progress and Sustainable Energy, 38(1), S429–S440. https://doi.org/10.1002/ep.13118.

    CAS  Article  Google Scholar 

  19. Li, K., Li, P., Cai, J., Xiao, S. J., Yang, H., & Li, A. (2016). Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent. Chemosphere, 154, 310–318. https://doi.org/10.1016/j.chemosphere.2016.03.100.

    CAS  Article  Google Scholar 

  20. Li, L., Zhu, Q., Man, K. X., & Xing, Z. P. (2017). Fluoride removal from liquid phase by Fe-Al-La trimetal hydroxides adsorbent prepared by iron and aluminum leaching from red mud. Journal of Molecular Liquids, 237(24), 164–172. https://doi.org/10.1016/j.molliq.2017.04.097.

    CAS  Article  Google Scholar 

  21. Mei, J., Zhang, H., Li, Z., & Ou, H. (2019). A novel tetraethylenepentamine crosslinked chitosan oligosaccharide hydrogel for total adsorption of Cr(VI). Carbohydrate Polymers, 224, 154–115. https://doi.org/10.1016/j.carbpol.2019.115154.

    CAS  Article  Google Scholar 

  22. Ostovar, A., Dobaradaran, S., Ravanipour, M., & Khajeian, A. M. (2013). Correlation between fluoride level in drinking water and the prevalence of hypertension: An ecological correlation study. The International Journal of Occupational and Environmental Medicine, 4(4), 216–217.

    CAS  Google Scholar 

  23. Ramanaiah, S. V., Venkata Mohan, S., & Sarma, P. N. (2007). Adsorptive removal of fluoride from aqueous phase using waste fungus (Pleurotus ostreatus 1804) biosorbent: Kinetics evaluation. Ecological Engineering, 31(1), 47–56. https://doi.org/10.1016/j.ecoleng.2007.05.006.

    Article  Google Scholar 

  24. Ravanipour, M., Kafaei, R., Keshtkar, M., Tajalli, S., Mirzaei, N., & Ramavandi, B. (2017). Fluoride ion adsorption onto palm stone: Optimization through response surface methodology, isotherm, and adsorbent characteristics data. Data in Brief, 12(1), 471–479. https://doi.org/10.1016/j.dib.2017.04.030.

    Article  Google Scholar 

  25. Richards, L. A., Vuachère, M., & Schäfer, A. I. (2010). Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination, 261(3), 331–337. https://doi.org/10.1016/j.desal.2010.06.025.

    CAS  Article  Google Scholar 

  26. Shams, M., Dobaradaran, S., Mazloomi, S., Afsharnia, M., Ghasemi, M., & Bahreini, M. (2012). Drinking water in Gonabad, Iran: Fluoride levels in bottled, distribution network, point of use desalinator, and decentralized municipal desalination plant water. Fluoride, 45(2), 138–141.

    CAS  Google Scholar 

  27. Sobeih, M. M., El-Shahat, M. F., Osman, A., Zaid, M. A., & Nassar, M. Y. (2020). Glauconite clay-functionalized chitosan nanocomposites for efficient adsorptive removal of fluoride ions from polluted aqueous solutions. RSC Advances, 10(43), 25567–25585. https://doi.org/10.1039/D0RA02340J.

    CAS  Article  Google Scholar 

  28. Sowmya, A., & Meenakshi, S. (2013). An efficient and regenerable quaternary amine modified chitosan beads for the removal of nitrate and phosphate anions. Journal of Environmental Chemical Engineering, 1(4), 906–915. https://doi.org/10.1016/j.jece.2013.07.031.

    CAS  Article  Google Scholar 

  29. Turner, B. D., Binning, P., & Stipp, S. L. S. (2005). Fluoride removal by calcite: Evidence for fluorite precipitation and surface adsorption. Environmental Science & Technology, 39(24), 9561–9568. https://doi.org/10.1021/es0505090.

    CAS  Article  Google Scholar 

  30. Vaaramaa, K., & Lehto, J. (2003). Removal of metals and anions from drinking water by ion exchange. Desalination, 155(2), 157–170. https://doi.org/10.1016/S0011-9164(03)00293-5.

    CAS  Article  Google Scholar 

  31. Vakili, M., Rafatulla, M., Salamatinia, B., Abdullah, A. Z., & Ibrahim, M. H. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers, 26(113), 115–130. https://doi.org/10.1016/j.carbpol.2014.07.007.

    CAS  Article  Google Scholar 

  32. Viswanathan, N., & Meenakshi, S. (2008a). Selective sorption of fluoride using Fe(III) loaded carboxylated chitosan beads. Journal of Fluorine Chemistry, 129(6), 503–509. https://doi.org/10.1016/j.jfluchem.2008.03.005.

    CAS  Article  Google Scholar 

  33. Viswanathan, N., & Meenakshi, S. (2008b). Enhanced fluoride sorption using La(III) incorporated carboxylated chitosan beads. Journal of Colloid and Interface Science, 322(2), 375–383. https://doi.org/10.1016/j.jcis.2008.03.007.

    CAS  Article  Google Scholar 

  34. Viswanathan, N., & Meenakshi, S. (2009). Role of metal ion incorporation in ion exchange resin on the selectivity of fluoride. Journal of Hazardous Materials, 162(2–3), 920–930. https://doi.org/10.1016/j.jhazmat.2008.05.118.

    CAS  Article  Google Scholar 

  35. Viswanathan, N., & Meenakshi, S. (2010). Enriched fluoride sorption using alumina/chitosan composite. Journal of Hazardous Materials, 178(1), 226–232. https://doi.org/10.1016/j.jhazmat.2010.01.067.

    CAS  Article  Google Scholar 

  36. Viswanathan, N., Sundaram, C. S., & Meenakshi, S. (2009). Removal of fluoride from aqueous solution using protonated chitosan beads. Journal of Hazardous Materials, 161(1), 423–430. https://doi.org/10.1016/j.jhazmat.2008.03.115.

    CAS  Article  Google Scholar 

  37. Wan Ngah, S. W., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83(4), 1446–1456. https://doi.org/10.1016/j.carbpol.2010.11.004.

    CAS  Article  Google Scholar 

  38. Wang, M., Yu, X., & Yang, C. (2017). Removal of fluoride from aqueous solution by Mg-Al-Zr triple-metal composite. Chemical Engineering Journal, 322(12), 246–253. https://doi.org/10.1016/j.cej.2017.03.155.

    CAS  Article  Google Scholar 

  39. Yadav, A. K., Abbassi, R., Gupta, A., & Dadashzadeh, M. (2013). Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane. Ecological Engineering, 52, 211–218. https://doi.org/10.1016/j.ecoleng.2012.12.069.

    Article  Google Scholar 

  40. Yan, J. H., Lan, G. H., Qiu, H. Y., Chen, C., & Liu, Y. Q. (2018). Adsorption of heavy metals and methylene blue from aqueous solution with citric acid modified peach stone. Separation Science & Technology, 53(11), 1678–1688. https://doi.org/10.1080/01496395.2018.1439064.

    CAS  Article  Google Scholar 

  41. Yang, Y., Ling, Y., & Chen, J. P. (2015). Adsorption of fluoride by Fe-Mg-La triple-metal composite: Adsorbent preparation, illustration of performance and study of mechanisms. Chemical Engineering Journal, 15(262), 839–846. https://doi.org/10.1016/j.cej.2014.09.006.

    CAS  Article  Google Scholar 

  42. Zhang, M., Zhang, Z., Peng, Y. Z., Feng, L., Li, X. H., & Zhao, C. L. (2020). Novel cationic polymer modified magnetic chitosan beads for efficient adsorption of heavy metals and dyes over a wide pH range. International Journal of Biological Macromolecules, 156, 289–301. https://doi.org/10.1016/j.ijbiomac.2020.04.020.

    CAS  Article  Google Scholar 

  43. Zhang, Y. T., Lan, G. H., Liu, Y. Q., Zhang, T. L., Qiu, H. Y., et al. (2021). Enhanced adsorption of Cr (VI) from aqueous solution by zirconium impregnated chitosan microspheres: Mechanism and equilibrium. Separation Science and Technology, 56(5), 2532–2545. https://doi.org/10.1080/01496395.2020.1842451.

    CAS  Article  Google Scholar 

  44. Zhou, J., Zhu, W. K., Yu, J., & Zhang, H. P. (2018). Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide. Applied Surface Science, 435(MAR.30), 920–927. https://doi.org/10.1016/j.apsusc.2017.11.108.

    CAS  Article  Google Scholar 

  45. Zhu, T. Y., Huang, W., Zhang, L. F., Gao, J., & Zhang, W. Q. (2017). Adsorption of Cr(VI) on cerium immobilized cross-linked chitosan composite in single system and coexisted with Orange II in binary system. International Journal of Biological Macromolecules, 103(14), 605–612. https://doi.org/10.1016/j.ijbiomac.2017.05.051.

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by Science and Technology Key R&D projects “Integrated R&D and Demonstration of Wastewater Treatment Stabilization Standards in Typical Industrial Clusters” of Sichuan Province (2018SZ0313).

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Feng Li, Yingting Zhang, Bo Xu, Yongqiang Liu, Haiyan Qiu, Guihong Lan, and Qianxia Xu. The first draft of the manuscript was written by Feng Li and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bo Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhang, Y., Xu, B. et al. Synthesizing a Novel Zr/Fe/Al-Incorporated Cross-linked Chitosan as Absorbent for Effective Removal of Fluoride from Aqueous Solution. Water Air Soil Pollut 232, 401 (2021). https://doi.org/10.1007/s11270-021-05355-1

Download citation

Keywords

  • Chitosan
  • Metal ions
  • Fluoride adsorption
  • Electrostatic attraction
  • Langmuir isotherm
  • Kinetics