Skip to main content
Log in

Synthesis and Characterization of Chitosan-Alginate-Based Cross-linked Copolymer for the Effective Removal of Methylene Blue from Its Aqueous Solution

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The objective of the present study was the synthesis and characterization of chitosan-alginate-based cross-linked copolymer (CACC) for the effective removal of methylene blue (MB) from its aqueous solution. The CACC before and after the removal of MB was confirmed by in-depth characterization techniques. The thermal stability of the materials before and after adsorption of MB was determined by thermal gravimetric analysis. The solid–liquid phase interactions between CACC and MB during the adsorption/removal was observed employing several affecting operating parameters like the concentration of MB, CACC dose, pH, contact time and temperature were studied. Langmuir isotherm model described better MB adsorption onto CACC than the model of Freundlich model with determination coefficient R2-value of 0.990 in Langmuir equation. Thus, being an eco-friendly, biodegradable, biocompatible and low-cost material, the CACC could be a potential polymeric-based adsorbent for the effective removal of MB from its aqueous solution and wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelrahman, E. A., Hegazey, R., & El-Azabawy, R. E. (2019). “Efficient removal of methylene blue dye from aqueous media using Fe/Si Cr/si, Ni/si, and Zn/si Amorphous Novel Adsorbents.” Journal of Materials Research and Technology, 8, 5301–5313.

    Article  CAS  Google Scholar 

  • Abdullah, A., Salamatinia, B., & Kamaruddin, A. (2009). Application of response surface methodology for the optimization of NaOH treatment on oil palm frond towards improvement in the sorption of heavy metals. Desalination, 244, 227–238.

    Article  CAS  Google Scholar 

  • Akarslan, F., & Demiralay, H. (2015). Effects of textile materials harmful to human health. Acta Physica Polonica A, 128, 407–409.

    Article  Google Scholar 

  • Al-Degs, Y. S., El-Barghouthi, M. I., El-Sheikh, A. H., & Walker, G. M. (2008). Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments, 77, 16–23.

    Article  CAS  Google Scholar 

  • Albadarin, A. B., Collins, M. N., Naushad, M., Shirazian, S., Walker, G., & Mangwandi, C. (2017). Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chemical Engineering Journal, 307, 264–272.

    Article  CAS  Google Scholar 

  • Ali, N., Hameed, A., & Ahmed, S. (2009). Physicochemical characterization and bioremediation perspective of textile effluent, dyes and metals by indigenous bacteria. Journal of Hazardous Materials, 164, 322–328.

    Article  CAS  Google Scholar 

  • Alver, E., & Metin, A. Ü. (2012). Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chemical Engineering Journal, 200, 59–67.

    Article  Google Scholar 

  • Annadurai, G. (2002). Adsorption of basic dye on strongly chelating polymer: Batch kinetics studies. Iranian Polynter Jourual, 2, 237–244.

    Google Scholar 

  • Asgher, M., & Bhatti, H. N. (2012). Evaluation of thermodynamics and effect of chemical treatments on sorption potential of Citrus waste biomass for removal of anionic dyes from aqueous solutions Ecological. Engineering, 38, 79–85.

    Google Scholar 

  • Badawy, M. E., Taktak, N. E., Awad, O. M., Elfiki, S. A., & El-Ela, N. E. A. (2017). Preparation and characterization of biopolymers chitosan/alginate/gelatin gel spheres crosslinked by glutaraldehyde. Journal of Macromolecular Science, Part B, 56, 359–372.

    Article  CAS  Google Scholar 

  • Baysal, K., Aroguz, A. Z., Adiguzel, Z., & Baysal, B. M. (2013). Chitosan/alginate crosslinked hydrogels: Preparation, characterization and application for cell growth purposes. International Journal of Biological Macromolecules, 59, 342–348.

    Article  CAS  Google Scholar 

  • Buthelezi, S. P., Olaniran, A. O., & Pillay, B. (2012). Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules, 17, 14260–14274.

    Article  CAS  Google Scholar 

  • Ceyhan, Ö., & BAYBAŞ, D. (2001). Adsorption of some textile dyes by hexadecyltrimethylammonium bentonite. Turkish Journal of Chemistry, 25, 193–200.

    CAS  Google Scholar 

  • Chafi, M., Gourich, B., Essadki, A., Vial, C., & Fabregat, A. (2011). Comparison of electrocoagulation using iron and aluminium electrodes with chemical coagulation for the removal of a highly soluble acid dye. Desalination, 281, 285–292.

    Article  CAS  Google Scholar 

  • Chatterjee, S., Chatterjee, T., Lim, S. R., & Woo, S. H. (2011). Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation. Environmental Technology, 32, 1503–1514.

    Article  CAS  Google Scholar 

  • Chen, L., Ge, M.-D., Zhu, Y.-J., Song, Y., Cheung, P. C., Zhang, B.-B., & Liu, L.-M. (2019). Structure, bioactivity and applications of natural hyperbranched polysaccharides. Carbohydrate Polymers, 223, 115076.

    Article  CAS  Google Scholar 

  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97, 1061–1085.

    Article  CAS  Google Scholar 

  • De Lima, R. O. A., Bazo, A. P., Salvadori, D. M. F., Rech, C. M., de Palma Oliveira, D., & de Aragão Umbuzeiro, G. (2007). Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutation Research/genetic Toxicology and Environmental Mutagenesis, 626, 53–60.

    Article  Google Scholar 

  • Dey, S. C., Al-Amin, M., Rashid, T. U., Sultan, M. Z., Ashaduzzaman, M., Sarker, M., & Shamsuddin, S. M. (2016). Preparation, characterization and performance evaluation of chitosan as an adsorbent for remazol red. International Journal of Latest Research in Engineering and Technology, 2, 52–62.

    Google Scholar 

  • Doshi, B., Ayati, A., Tanhaei, B., Repo, E., & Sillanpää, M. (2018). Partially carboxymethylated and partially cross-linked surface of chitosan versus the adsorptive removal of dyes and divalent metal ions. Carbohydrate Polymers, 197, 586–597.

    Article  CAS  Google Scholar 

  • Dragan, E. S., Lazar, M. M., Dinu, M. V., & Doroftei, F. (2012). Macroporous composite IPN hydrogels based on poly (acrylamide) and chitosan with tuned swelling and sorption of cationic dyes. Chemical Engineering Journal, 204, 198–209.

    Article  Google Scholar 

  • Fan, L., Luo, C., Sun, M., Li, X., Lu, F., & Qiu, H. (2012a). Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresource Technology, 114, 703–706.

    Article  CAS  Google Scholar 

  • Fan, L., Zhang, Y., Luo, C., Lu, F., Qiu, H., & Sun, M. (2012b). Synthesis and characterization of magnetic β-cyclodextrin–chitosan nanoparticles as nano-adsorbents for removal of methyl blue. International Journal of Biological Macromolecules, 50, 444–450.

    Article  CAS  Google Scholar 

  • Fernandes, F. H., de Aragão Umbuzeiro, G., & Salvadori, D. M. F. (2019). Genotoxicity of textile dye CI Disperse Blue 291 in mouse bone marrow. Mutation Research/genetic Toxicology and Environmental Mutagenesis, 837, 48–51.

    Article  CAS  Google Scholar 

  • Freundlich, H. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 1100–1107.

    Google Scholar 

  • García-Gabaldón, M., Pérez-Herranz, V., García-Antón, J., & Guiñón, J. (2006). Electrochemical recovery of tin from the activating solutions of the electroless plating of polymers: Galvanostatic operation. Separation and Purification Technology, 51, 143–149.

    Article  Google Scholar 

  • Golka, K., Kopps, S., & Myslak, Z. W. (2004). Carcinogenicity of azo colorants: Influence of solubility and bioavailability. Toxicology Letters, 151, 203–210.

    Article  CAS  Google Scholar 

  • Guesmi, Y., Agougui, H., Lafi, R., Jabli, M., & Hafiane, A. (2018). Synthesis of hydroxyapatite-sodium alginate via a co-precipitation technique for efficient adsorption of Methylene Blue dye. Journal of Molecular Liquids, 249, 912–920.

    Article  CAS  Google Scholar 

  • Guo, R., & Wilson, L. D. (2012). Synthetically engineered chitosan-based materials and their sorption properties with methylene blue in aqueous solution. Journal of Colloid and Interface Science, 388, 225–234.

    Article  CAS  Google Scholar 

  • Gupta, V. (2009). Application of low-cost adsorbents for dye removal–A review. Journal of Environmental Management, 90, 2313–2342.

    Article  CAS  Google Scholar 

  • Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., & Schewe, J. (2014). Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences, 111, 3251–3256.

    Article  CAS  Google Scholar 

  • Hariharasuthan, R., Rao, A., & Bhaskaran, A. (2013). Adsorption studies on reactive blue 4 by varying the concentration of Mgo In Sorel’s cement. Adsorption, 2, 287–292.

    Google Scholar 

  • Huang, X.-Y., Bu, H.-T., Jiang, G.-B., & Zeng, M.-H. (2011). Cross-linked succinyl chitosan as an adsorbent for the removal of Methylene Blue from aqueous solution. International Journal of Biological Macromolecules, 49, 643–651.

    Article  CAS  Google Scholar 

  • Huang, Y., Zhu, J., Liu, H., Wang, Z., & Zhang, X. (2019). Preparation of porous graphene/carbon nanotube composite and adsorption mechanism of methylene blue. SN Applied Sciences, 1, 1–11.

    Article  Google Scholar 

  • Kazemi, J., & Javanbakht, V. (2020). Alginate beads impregnated with magnetic Chitosan@ Zeolite nanocomposite for cationic methylene blue dye removal from aqueous solution. International Journal of Biological Macromolecules, 154, 1426–1437.

    Article  CAS  Google Scholar 

  • Khanday, W., Asif, M., & Hameed, B. (2017). Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes. International Journal of Biological Macromolecules, 95, 895–902.

    Article  CAS  Google Scholar 

  • Kobya, M., Demirbas, E., Senturk, E., & Ince, M. (2005). Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technology, 96, 1518–1521.

    Article  CAS  Google Scholar 

  • Koch, M., Yediler, A., Lienert, D., Insel, G., & Kettrup, A. (2002). Ozonation of hydrolyzed azo dye reactive yellow 84 (CI). Chemosphere, 46, 109–113.

    Article  CAS  Google Scholar 

  • Kumar, D., Pandey, J., & Kumar, P. (2018). Microwave assisted synthesis of binary grafted psyllium and its utility in anticancer formulation. Carbohydrate Polymers, 179, 408–414.

    Article  CAS  Google Scholar 

  • Kumar, P., Gihar, S., Kumar, B., & Kumar, D. (2019). Synthesis and characterization of crosslinked chitosan for effective dye removal antibacterial activity. International Journal of Biological Macromolecules, 139, 752–759.

    Article  CAS  Google Scholar 

  • Kumar, S., & Koh, J. (2012). Physiochemical, optical and biological activity of chitosan-chromone derivative for biomedical applications. International Journal of Molecular Sciences, 13, 6102–6116.

    Article  CAS  Google Scholar 

  • Kurniawan, T. A., Chan, G. Y., Lo, W.-H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118, 83–98.

    Article  CAS  Google Scholar 

  • Laaraibi, A., Charhouf, I., Bennamara, A., Abourriche, A., & Berrada, M. B. (2015). Valorization of marine wastes in a preserving film based on chitosan for food applications. Journal of Materials and Environmental Science, 6, 3511–3516.

    CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Li, C., Lou, T., Yan, X., Long, Y.-Z., Cui, G., & Wang, X. (2018). Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal. International Journal of Biological Macromolecules, 106, 768–774.

    Article  CAS  Google Scholar 

  • Li, Y., Du, Q., Liu, T., Sun, J., Wang, Y., Wu, S., Wang, Z., Xia, Y., & Xia, L. (2013). Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydrate Polymers, 95, 501–507.

    Article  CAS  Google Scholar 

  • Lim, S.-H., & Hudson, S. M. (2004). Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydrate Research, 339, 313–319.

    Article  CAS  Google Scholar 

  • Lin, N., Huang, J., & Dufresne, A. (2012). Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: A review. Nanoscale, 4, 3274–3294.

    Article  CAS  Google Scholar 

  • Liu, S., Ge, H., Cheng, S. & Zou, Y.: 2018, 'Green synthesis of magnetic 3D bio-adsorbent by corn straw core and chitosan for methylene blue removal', Environmental Technology, 2109–2121.

  • Liu, X., Xue, W., Liu, Q., Yu, W., Fu, Y., Xiong, X., Ma, X., & Yuan, Q. (2004). Swelling behaviour of alginate–chitosan microcapsules prepared by external gelation or internal gelation technology. Carbohydrate Polymers, 56, 459–464.

    Article  CAS  Google Scholar 

  • Ma, Y., Qi, P., Ju, J., Wang, Q., Hao, L., Wang, R., Sui, K., & Tan, Y. (2019). Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes. Composites Part b: Engineering, 162, 671–677.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M. (2011). Equilibrium, kinetics, and thermodynamics of dye removal using alginate in binary systems. Journal of Chemical & Engineering Data, 56, 2802–2811.

    Article  CAS  Google Scholar 

  • Malaviya, P., & Singh, A. (2011). Physicochemical technologies for remediation of chromium-containing waters and wastewaters. Critical Reviews in Environmental Science and Technology, 41, 1111–1172.

    Article  CAS  Google Scholar 

  • Malik, P., & Saha, S. (2003). Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Separation and Purification Technology, 31, 241–250.

    Article  CAS  Google Scholar 

  • Mark, A. (2008). Science and technology for water purification in the coming decades. Nature, 452, 20.

    Google Scholar 

  • Marrakchi, F., Ahmed, M., Khanday, W., Asif, M., & Hameed, B. (2017). Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue. International Journal of Biological Macromolecules, 98, 233–239.

    Article  CAS  Google Scholar 

  • Marrakchi, F., Khanday, W., Asif, M., & Hameed, B. (2016). Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. International Journal of Biological Macromolecules, 93, 1231–1239.

    Article  CAS  Google Scholar 

  • Melo, B. C., Paulino, F. A., Cardoso, V. A., Pereira, A. G., Fajardo, A. R., & Rodrigues, F. H. (2018). Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly (acrylic acid) hydrogel. Carbohydrate Polymers, 181, 358–367.

    Article  CAS  Google Scholar 

  • Mezohegyi, G., van der Zee, F. P., Font, J., Fortuny, A., & Fabregat, A. (2012). Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. Journal of Environmental Management, 102, 148–164.

    Article  CAS  Google Scholar 

  • Mohammadi, T., Razmi, A., & Sadrzadeh, M. (2004). Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis. Desalination, 167, 379–385.

    Article  CAS  Google Scholar 

  • Mustafa, I. (2019). Methylene blue removal from water using H2SO4 crosslinked magnetic chitosan nanocomposite beads. Microchemical Journal, 144, 397–402.

    Article  Google Scholar 

  • Nakhjiri, M. T., Marandi, G. B., & Kurdtabar, M. (2018). Poly (AA-co-VPA) hydrogel cross-linked with N-maleyl chitosan as dye adsorbent: Isotherms, kinetics and thermodynamic investigation. International Journal of Biological Macromolecules, 117, 152–166.

    Article  CAS  Google Scholar 

  • Nataraj, S., Hosamani, K., & Aminabhavi, T. (2009). Nanofiltration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures. Desalination, 249, 12–17.

    Article  CAS  Google Scholar 

  • Oki, T.: 'Kanae (2006)', Global hydrological cycles and world water resources, Science 313, 1068–1072.

  • Panswad, T., & Wongchaisuwan, S. (1986). Mechanisms of dye wastewater colour removal by magnesium carbonate-hydrated basic. Water Science and Technology, 18, 139–144.

    Article  CAS  Google Scholar 

  • Pereira, Ad. S., Diniz, M. M., De Jong, G., Gama Filho, H. S., Dos Anjos, M. J., Finotelli, P. V., Fontes-Sant’Ana, G. C., & Amaral, P. F. (2019). Chitosan-alginate beads as encapsulating agents for Yarrowia lipolytica lipase: Morphological, physico-chemical and kinetic characteristics. International Journal of Biological Macromolecules, 139, 621–630.

    Article  CAS  Google Scholar 

  • Pereira, A. G., Rodrigues, F. H., Paulino, A. T., Martins, A. F., & Fajardo, A. R. (2020). Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review. Journal of Cleaner Production, 284, 124703.

    Article  Google Scholar 

  • Pourjavadi, A., Nazari, M., Kabiri, B., Hosseini, S. H., & Bennett, C. (2016). Preparation of porous graphene oxide/hydrogel nanocomposites and their ability for efficient adsorption of methylene blue. RSC Advances, 6, 10430–10437.

    Article  CAS  Google Scholar 

  • Prasad, A. L., & Santhi, T. (2012). Adsorption of hazardous cationic dyes from aqueous solution onto Acacia nilotica leaves as an eco friendly adsorbent. Sustainable Environment Research, 22, 113–122.

    CAS  Google Scholar 

  • Preetha, B. K., & Vishalakshi, B. (2020). Microwave assisted synthesis of karaya gum based montmorillonite nanocomposite: Characterisation, swelling and dye adsorption studies. International Journal of Biological Macromolecules, 154, 739–750.

    Article  CAS  Google Scholar 

  • Purkait, M., DasGupta, S., & De, S. (2004). Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Separation and Purification Technology, 37, 81–92.

    Article  CAS  Google Scholar 

  • Royer, B., Cardoso, N. F., Lima, E. C., Macedo, T. R., & Airoldi, C. (2010). A useful organofunctionalized layered silicate for textile dye removal. Journal of Hazardous Materials, 181, 366–374.

    Article  CAS  Google Scholar 

  • Sabar, S., Aziz, H. A., Yusof, N., Subramaniam, S., Foo, K., Wilson, L., & Lee, H. (2020). Preparation of sulfonated chitosan for enhanced adsorption of methylene blue from aqueous solution. Reactive and Functional Polymers, 151, 104584.

    Article  CAS  Google Scholar 

  • Seshadri, S., Bishop, P. L., & Agha, A. M. (1994). Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Management, 14, 127–137.

    Article  CAS  Google Scholar 

  • Sharma, A. K., Kaith, B. S., Chandel, K., & Singh, A. (2020). Chemically modified chitosan-sodium alginate as chemo-sensor adsorbent for the detection of picric acid and removal of biebrich scarlet. International Journal of Biological Macromolecules, 147, 582–594.

    Article  Google Scholar 

  • Shi, H., Dong, C., Yang, Y., Han, Y., Wang, F., Wang, C., & Men, J. (2020). Preparation of sulfonate chitosan microspheres and study on its adsorption properties for methylene blue. International Journal of Biological Macromolecules, 163, 2334–2345.

    Article  CAS  Google Scholar 

  • Singh, K. & Kumar, A.: 2020, 'Physicochemical aspects for the binding mechanism of sodium carboxymethyl cellulose onto mesoporous tea waste carbon from its aqueous solutions', Journal of Dispersion Science and Technology, 1–19.

  • Singh, K., Kumar, A., Pandey, S. K., Awasthi, S., Gupta, S. P., & Mishra, P. (2020). Interpretation of adsorption behavior of carboxymethyl cellulose onto functionalized accurel polymeric surface. Industrial & Engineering Chemistry Research, 59, 19102–19116.

    Article  CAS  Google Scholar 

  • Song, C., Yu, H., Zhang, M., Yang, Y., & Zhang, G. (2013). Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. International Journal of Biological Macromolecules, 60, 347–354.

    Article  CAS  Google Scholar 

  • Sundarrajan, P., Eswaran, P., Marimuthu, A., Subhadra, L. B., & Kannaiyan, P. (2012). One pot synthesis and characterization of alginate stabilized semiconductor nanoparticles. Bulletin of the Korean Chemical Society, 33, 3218–3224.

    Article  CAS  Google Scholar 

  • Thinakaran, N., Baskaralingam, P., Pulikesi, M., Panneerselvam, P., & Sivanesan, S. (2008). Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull. Journal of Hazardous Materials, 151, 316–322.

    Article  CAS  Google Scholar 

  • Tran, H. V., Bui, L. T., Dinh, T. T., Le, D. H., Huynh, C. D., & Trinh, A. X. (2017). “Graphene oxide/Fe3O4/chitosan nanocomposite: A recoverable and recyclable adsorbent for organic dyes removal Application to methylene blue.” Materials Research Express, 4, 035701.

    Article  Google Scholar 

  • Usman, M., Ahmed, A., Yu, B., Wang, S., Shen, Y., & Cong, H. (2021). Simultaneous adsorption of heavy metals and organic dyes by β-cyclodextrin-chitosan based cross-linked adsorbent. Carbohydrate Polymers, 255, 117486.

    Article  CAS  Google Scholar 

  • Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A. Z., Ibrahim, M. H., Tan, K. B., Gholami, Z., & Amouzgar, P. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers, 113, 115–130.

    Article  CAS  Google Scholar 

  • Vaz, M. G., Pereira, A. G., Fajardo, A. R., Azevedo, A. C., & Rodrigues, F. H. (2017). Methylene blue adsorption on chitosan-g-poly (acrylic acid)/rice husk ash superabsorbent composite: Kinetics, equilibrium, and thermodynamics. Water, Air, & Soil Pollution, 228, 1–13.

    Article  CAS  Google Scholar 

  • Vino, A. B., Ramasamy, P., Shanmugam, V., & Shanmugam, A. (2012). Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pacific Journal of Tropical Biomedicine, 2, S334–S341.

    Article  Google Scholar 

  • Wang, Q., Ju, J., Tan, Y., Hao, L., Ma, Y., Wu, Y., Zhang, H., Xia, Y., & Sui, K. (2019a). Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue. Carbohydrate Polymers, 205, 125–134.

    Article  CAS  Google Scholar 

  • Wang, W., Bai, H., Zhao, Y., Kang, S., Yi, H., Zhang, T., & Song, S. (2019b). Synthesis of chitosan cross-linked 3D network-structured hydrogel for methylene blue removal. International Journal of Biological Macromolecules, 141, 98–107.

    Article  CAS  Google Scholar 

  • Wang, W., Zhao, Y., Bai, H., Zhang, T., Ibarra-Galvan, V., & Song, S. (2018). Methylene blue removal from water using the hydrogel beads of poly (vinyl alcohol)-sodium alginate-chitosan-montmorillonite. Carbohydrate Polymers, 198, 518–528.

    Article  CAS  Google Scholar 

  • Wang, X., Wang, P., Ma, J., Liu, H., & Ning, P. (2015). Synthesis, characterization, and reactivity of cellulose modified nano zero-valent iron for dye discoloration. Applied Surface Science, 345, 57–66.

    Article  CAS  Google Scholar 

  • Wu, F.-C., & Tseng, R.-L. (2008). High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution. Journal of Hazardous Materials, 152, 1256–1267.

    Article  CAS  Google Scholar 

  • Xia, Y., Dai, X., Huang, S., Tian, X., Yang, H., Li, Y., Liu, Y., & Zhao, M. (2013). Fast and highly efficient removal of methylene blue by a novel EDTAD-modified magnetic chitosan material. Desalination and Water Treatment, 51, 7586–7595.

    Article  CAS  Google Scholar 

  • Xing, Y., Chen, X., & Wang, D. (2007). Electrically regenerated ion exchange for removal and recovery of Cr (VI) from wastewater. Environmental Science & Technology, 41, 1439–1443.

    Article  CAS  Google Scholar 

  • Xue, J. Q., Mao, W. B., Wen, D. D., Li, J. X., & Wang, Y. J. (2011). Kinetics studies of methylene blue adsorption onto spherical chitosan resin. Advanced Materials Research, Trans Tech Publ, 233–235, 567–570.

    Article  Google Scholar 

  • Xun, J., Lou, T., Xing, J., Zhang, W., Xu, Q., Peng, J., & Wang, X. (2019). Synthesis of a starch–acrylic acid–chitosan copolymer as flocculant for dye removal. Journal of Applied Polymer Science, 136, 47437.

    Article  Google Scholar 

  • Zeng, H., Wang, L., Zhang, D., Yan, P., Nie, J., Sharma, V. K., & Wang, C. (2019). Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent. Chemical Engineering Journal, 358, 253–263.

    Article  CAS  Google Scholar 

  • Zeng, W., Liu, Y.-G., Hu, X.-J., Liu, S.-B., Zeng, G.-M., Zheng, B.-H., Jiang, L.-H., Guo, F.-Y., Ding, Y., & Xu, Y. (2016). Decontamination of methylene blue from aqueous solution by magnetic chitosan lignosulfonate grafted with graphene oxide: Effects of environmental conditions and surfactant. RSC Advances, 6, 19298–19307.

    Article  CAS  Google Scholar 

  • Zhang, H., Omer, A., Hu, Z., Yang, L.-Y., Ji, C., & Ouyang, X.-k. . (2019). Fabrication of magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu (II) adsorption. International Journal of Biological Macromolecules, 135, 490–500.

    Article  CAS  Google Scholar 

  • Zhou, Q., Gao, Q., Luo, W., Yan, C., Ji, Z., & Duan, P. (2015). One-step synthesis of amino-functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 470, 248–257.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful to the Prof. Kaman Singh, Surface Science Laboratory, Department of Chemistry and University Instrumental Sophisticated Centre (USIC), Babasaheb Bhimrao Ambedkar University (A Central University), Uttar Pradesh, India. Thankful to Dr. Mukesh Kumar and Mr. Manish Kumar, Lab Technician, USIC, BBAU for experimental and characterization facilities.

Author information

Authors and Affiliations

Authors

Contributions

Sumit Kumar: adsorption study and synthesis. Shailesh Kumar*: conceptualization, analysis and final preparation. Ashok Kumar: manuscript preparation and statistical analysis. Swati Rastogi: technical discussion. Deepak Kumar: visualization and investigation.

Corresponding author

Correspondence to Shailesh Kumar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kumar, S., Kumar, A. et al. Synthesis and Characterization of Chitosan-Alginate-Based Cross-linked Copolymer for the Effective Removal of Methylene Blue from Its Aqueous Solution. Water Air Soil Pollut 232, 445 (2021). https://doi.org/10.1007/s11270-021-05334-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05334-6

Keywords

Navigation