Skip to main content

Stabilization and Management of Sulfate-Reducing Bioreactor Residues After Acid Mine Drainage Treatment

Abstract

Passive and semi-passive sulfate-reducing bioreactors (SRBRs) are attracting increasing attention worldwide for the treatment of contaminated mine effluents. This study focuses on the management of post-treatment residues from these bioreactors. The residues of two bioreactors with different medium compositions were studied after they were mixed with different alkaline amendments (25% biomass ash, 30% aluminum red mud, 10% lime kiln dust, or 15% hydroxyapatite). Weathering cell tests showed that aluminum red mud and Bedford lime kiln dust efficiently maintain the leachate at neutral pH (≥ 7.0) and immobilize some metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the post-treatment residues with average dissolved concentrations < 0.5 mg/L for all toxic metals, except for Mn, which are less than 3.2 mg/L. Column tests were also performed on the unamended post-treatment residues under unsaturated, saturated, and immersed conditions. The storage of the post-treatment SRBR residues under saturated and immersed conditions preserved the reducing conditions of the media and the neutrality of the leachate pH and also limited the leaching of metals retained by the bioreactor media.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aachib, M., Mbonimpa, M., & Aubertin, M. (2004). Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers. Water, Air, & Soil Pollution, 156(1), 163–193.

    CAS  Article  Google Scholar 

  2. Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327–363.

    CAS  Article  Google Scholar 

  3. Al-Abed, S. R., Jegadeesan, G., Purandare, J., & Allen, D. (2008). Leaching behavior of mineral processing waste: Comparison of batch and column investigations. Journal of Hazardous Materials, 153(3), 1088–1092.

    CAS  Article  Google Scholar 

  4. Arnich, N., Lanhers, M. C., Laurensot, F., Podor, R., Montiel, A., & Burnel, D. (2003). In vitro and in vivo studies of lead immobilization by synthetic hydroxyapatite. Environmental Pollution, 124(1), 139–149.

    CAS  Article  Google Scholar 

  5. ASTM. (1995). Standard test method for pH of soils. In: Annual book of ASTM standards. vol. 04.08, Washington, DC, USA, pp. 27–28.

  6. ASTM. (1995). Standard test method for pH of soils. In: Annual book of ASTM standards. vol. 04.08, Washington, DC, USA, pp. 27–28

  7. Autefage, H., Briand-Mésange, F., Cazalbou, S., Drouet, C., Fourmy, D., Gonçalvès, S., Salles, J. P., Combes, C., Swider, P., & Rey, C. (2009). Adsorption and release of BMP-2 on nanocrystalline apatite-coated and uncoated hydroxyapatite/β-tricalcium phosphate porous ceramics. Journal of Biomedical Materials Research Part b: Applied Biomaterials, 91(2), 706–715.

    Article  CAS  Google Scholar 

  8. Awoh, A.S. (2012). Étude expérimentale du comportement géochimique de résidus miniers hautement sulfureux sous un recouvrement en eau. PhD thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 256 p

  9. Bailliez, S., Nzihou, A., Beche, E., & Flamant, G. (2004). Removal of lead (Pb) by hydroxyapatite sorbent. Process Safety and Environmental Protection, 82(2), 175–180.

    CAS  Article  Google Scholar 

  10. Bekaert, É. (2004). Gestion des chlorures de métaux lourds: stabilisation d'un phosphate d'étain dans un vitrifiat silicaté. PhD thesis, Université de Lille 1, Lille, France, 245 p

  11. Ben Ali, H. E., Neculita, C. M., Molson, J. W., Maqsoud, A., & Zagury, G. J. (2019). Efficiency of batch biochemical reactors for mine drainage treatment at low temperature and high salinity. Applied Geochemistry, 103, 40–49.

    CAS  Article  Google Scholar 

  12. Benzaazoua, M., Fall, M., & Belem, T. (2004). A contribution to understanding the hardening process of cemented pastefill. Minerals Engineering, 17(2), 141–152.

    CAS  Article  Google Scholar 

  13. Bertocchi, A. F., Ghiani, M., Peretti, R., & Zucca, A. (2006). Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn. Journal of Hazardous Materials, 134(1), 112–119.

    CAS  Article  Google Scholar 

  14. Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M. B., & Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166.

    CAS  Article  Google Scholar 

  15. Bouzahzah, H. (2013). Modification et amélioration des tests statiques et cinétiques pour une prédiction fiable et sécuritaire du drainage minier acide. PhD thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 276 p

  16. Bouzahzah, H., Benzaazoua, M., Bussiere, B., & Plante, B. (2014). Prediction of acid mine drainage: Importance of mineralogy and the test protocols for static and kinetic tests. Mine Water and the Environment, 33(1), 54–65.

    CAS  Article  Google Scholar 

  17. Bussière, B., Nicholson, R.V., Aubertin, M., & Benzaazoua, M. (1997). Evaluation of the effectiveness of covers built with desulfurized tailings for preventing acid mine drainage. Proceedings of the 50th Canadian Geotechnical Conference, Octobre 1997, Ottawa, ON, Canada, pp. 20–22

  18. Calugaru, I.L. (2014). Modification des matériaux naturels et des résidus industriels et application à la rétention des métaux du drainage minier. MSc thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 127 p

  19. Calugaru, I. L., Neculita, C. M., Genty, T., Bussière, B., & Potvin, R. (2016). Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage. Journal of Hazardous Materials, 310, 48–55.

    CAS  Article  Google Scholar 

  20. Cao, R. X., Ma, L. Q., Chen, M., Singh, S. P., & Harris, W. G. (2003). Phosphate-induced metal immobilization in a contaminated site. Environmental Pollution, 122(1), 19–28.

    CAS  Article  Google Scholar 

  21. Chen, M., Ma, L. Q., Singh, S. P., Cao, R. X., & Melamed, R. (2003). Field demonstration of in situ immobilization of soil Pb using P amendments. Advances in Environmental Research, 8(1), 93–102.

    CAS  Article  Google Scholar 

  22. Chrysochoou, M., Dermatas, D., & GrTests-B, D. G. (2007). Phosphate application to firing range soils for Pb immobilization: The unclear role of phosphate. Journal of Hazardous Materials, 144(1), 1–14.

    CAS  Article  Google Scholar 

  23. Collins, R. J., & Emery, J. J. (1983). Kiln dust-fly ash systems for highway bases and sub-bases. Report No. FHWA/RD-82/167, Federal Highway Administration, September 1983, Washington, DC, USA, 135 p.

  24. Cruz, R., Mendez, B. A., Monroy, M., & González, I. (2001). Cyclic voltammetry applied to evaluate reactivity in sulfide mining residues. Applied Geochemistry, 16(14), 1631–1640.

    CAS  Article  Google Scholar 

  25. Desjardins, M. E. (2007). Évaluation de la performance des barrières perméables réactives en utilisant des boues rouges. MSc thesis, Université Laval, Québec, QC, Canada, 156 p

  26. Dijkstra, J. J., Van Der Sloot, H. A., & Comans, R. N. (2006). The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Applied Geochemistry, 21(2), 335–351.

    CAS  Article  Google Scholar 

  27. Doye, I. (2005). Évaluation de la capacité de matériaux industriels alcalins à neutraliser des résidus et stériles miniers acides. MSc thesis, Université Laval, Québec, QC, Canada, 303 p

  28. El Gheriany, I. A., Bocioaga, D., Hay, A. G., Ghiorse, W. C., Shuler, M. L., & Lion, L. W. (2009). Iron requirement for Mn(II) oxidation by Leptothrix discophora SS-1. Applied Environmental Microbiology, 75(5), 1229–1235.

    Article  CAS  Google Scholar 

  29. Éthier, M. P. (2011). Évaluation du comportement géochimique en conditions normale et froides de différents stériles présents sur le site de la mine Raglan. MSc thesis, École Polytechnique de Montréal, Montréal, QC, Canada, 237 p

  30. Fuller, C., Bargar, J., & Davis, J. (2003). Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration. Environmental Science and Technology, 37(20), 4642–4649.

    CAS  Article  Google Scholar 

  31. Genty, T., Bussière, B., Benzaazoua, M., Neculita, C. M., & Zagury, G. J. (2018). Changes in efficiency and hydraulic parameters during the passive treatment of ferriferous acid mine drainage in biochemical reactors. Mine Water and the Environment, 37(4), 686–695.

    CAS  Article  Google Scholar 

  32. Genty, T., Bussière, B., Benzaazoua, M., & Zagury, G. J. (2012). Capacity of wood ash filters to remove iron from acid mine drainage: Assessment of retention mechanism. Mine Water and the Environment, 31(4), 273–286.

    CAS  Article  Google Scholar 

  33. Gitari, W., Petrik, L., Etchebers, O., Key, D., & Okujeni, C. (2008). Utilization of fly ash for treatment of coal mines wastewater: Solubility controls on major inorganic contaminants. Fuel, 87(12), 2450–2462.

    CAS  Article  Google Scholar 

  34. González-Corrochano, B., Alonso-Azcárate, J., & Rodas, M. (2009). Characterization of lightweight aggregates manufactured from washing aggregate sludge and fly ash. Resources Conservation and Recycling, 53(10), 571–581.

    Article  Google Scholar 

  35. Graymont (2013). Rapport technique - De produits de chaux et de pierre de qualité qui améliores notre monde. Bedford and Marbleton, QC, Canada, 15 p

  36. Greben, H. A., Baloyi, J., Sigama, J., & Venter, S. N. (2009). Bioremediation of sulphate rich mine effluents using grass cuttings and rumen fluid microorganisms. Journal of Geochemical Exploration, 100(2), 163–168.

    CAS  Article  Google Scholar 

  37. Hébert, M., & Breton, B. (2008). Recyclage agricole des cendres de bois au Québec – État de la situation, impacts et bonnes pratiques agro-environnementales. Agro-Solution, 19, 18–33.

    Google Scholar 

  38. Heviánková, S., Bestová, I., & Kyncl, M. (2014). The application of wood ash as a reagent in acid mine drainage treatment. Minerals Engineering, 56, 109–111.

    Article  CAS  Google Scholar 

  39. Jouini, M., Neculita, C. M., Genty, T., & Benzaazoua, M. (2020). Environmental behavior of metal-rich residues from the passive treatment of acid mine drainage. Science of the Total Environment, 712, 136541.

    CAS  Article  Google Scholar 

  40. Kastyuchik, A., Karam, A., & Aïder, M. (2016). Effectiveness of alkaline amendments in acid mine drainage remediation. Environmental Technology & Innovation, 6, 49–59.

    Article  Google Scholar 

  41. Kribi, S. (2005). Décomposition des matières organiques et stabilisation des métaux lourds dans les sédiments de dragage. PhD thesis, INSA, Lyon, France, 224 p

  42. Kumpiene, J., Lagerkvist, A., & Maurice, C. (2007). Stabilization of Pb-and Cu-contaminated soil using coal fly ash and peat. Environmental Pollution, 145(1), 365–373.

    CAS  Article  Google Scholar 

  43. Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Management, 28(1), 215–225.

    CAS  Article  Google Scholar 

  44. Lapointe, F. (2005). Potentiel d'utilisation du Bauxsol TM comme matériel réactif d'une barrière perméable pour contrôler le drainage minier acide. MSc thesis, Université Laval, Québec, QC, Canada, 70 p

  45. Lawrence, R. (1990). Laboratory procedures for the prediction of long term weathering characteristics of mining wastes. Acid mine drainage: Designing for closure. In F. M. Doyle (Ed.), Western regional symposium on mining and mineral processing wastes (pp. 115–121). AIME/SME Publication.

    Google Scholar 

  46. Lawrence, R.W., & Wang, Y. (1997). Determination of neutralization potential in the prediction of acid rock drainage. Proceedings of the Fourth International Conference on Acid Rock Drainage, Proc 4th Int Conf on Acid Rock Drainage, May 31 mai – June 6, 1997, Vancouver, BC, Canada, pp 451–464

  47. Lefebvre-Drouet, E., & Rousseau, M. (1995). Dissolution de différents oxyhydroxydes de fer par voie chimique et par voie biologique: Importance des bactéries réductrices. Soil Biology and Biochemistry, 27(8), 1041–1050.

    CAS  Article  Google Scholar 

  48. Lefticariu, L., Walters, E. R., Pugh, C. W., & Bender, K. S. (2015). Sulfate reducing bioreactor dependence on organic substrates for remediation of coal-generated acid mine drainage: Field experiments. Applied Geochemistry, 63, 70–82.

    CAS  Article  Google Scholar 

  49. Lewis, A. E. (2010). Review of metal sulphide precipitation. Hydrometallurgy, 104(2), 222–234.

    CAS  Article  Google Scholar 

  50. Liu, Y., Naidu, R., & Ming, H. (2011). Red mud as an amendment for pollutants in solid and liquid phases. Geoderma, 163(1–2), 1–12.

    CAS  Article  Google Scholar 

  51. Lombi, E., Zhao, F. J., Zhang, G., Sun, B., Fitz, W., Zhang, H., & McGrath, S. P. (2002). In situ fixation of metals in soils using bauxite residue: Chemical assessment. Environmental Pollution, 118(3), 435–443.

    CAS  Article  Google Scholar 

  52. Lopez, E., Soto, B., Arias, M., Nunez, A., Rubinos, D., & Barral, M. (1998). Adsorbent properties of red mud and its use for wastewater treatment. Water Research, 32(4), 1314–1322.

    CAS  Article  Google Scholar 

  53. Lounate, K. (2019). Performance des matériaux alcalins pour prévenir la génération d’acidité et la mobilisation des métaux retenus par de nouveaux biofiltres semi-passifs sulfato-réducteurs utilisés pour le traitement du drainage minier acide. Ph.D. thesis, INRS-ETE, Québec, QC, Canada, 278 p

  54. Lounate, K., Coudert, L., Genty, T., Mercier, G., & Blais, J.F. (2020a). Geochemical behavior and stabilization of spent sulfate-reducing biofilter mixtures for treatment of acid mine drainage. Science of the Total Environment 718, 137394

  55. Lounate, K., Coudert, L., Genty, T., Mercier, G., & Blais, J. F. (2020b). Performance of a semi-passive sulfate-reducing bioreactor for acid mine drainage treatment and prediction of environmental behavior of post-treatment residues. Mine Water and the Environment, 39(4), 769–784.

    CAS  Article  Google Scholar 

  56. Ma, Q. Y., Traina, S. J., Logan, T. J., & Ryan, J. A. (1994). In situ lead immobilization by apatite. Environmental Science and Technology, 27(9), 1803–1810.

    Article  Google Scholar 

  57. Ma, Q. Y., Logan, T. J., & Traina, S. J. (1995). Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environmental Science and Technology, 29(4), 1118–1126.

    CAS  Article  Google Scholar 

  58. Macías, F., Caraballo, M. A., Nieto, J. M., Rötting, T. S., & Ayora, C. (2012). Natural pretreatment and passive remediation of highly polluted acid mine drainage. Journal of Environmental Management, 104, 93–100.

    Article  CAS  Google Scholar 

  59. Marchat, D. (2005). Fixation du cadmium par une hydroxyapatite phosphocalcique: Étude cinétique et thermodynamique. PhD thesis, Faculté des Sciences et Techniques, Université de Limoges, Limoges, France, 214 p

  60. Masiá, A. T., Buhre, B., Gupta, R., & Wall, T. (2007). Characterising ash of biomass and waste. Fuel Processing Technology, 88(11), 1071–1081.

    Article  CAS  Google Scholar 

  61. Mauric, A., & Lottermoser, B. G. (2011). Phosphate amendment of metalliferous waste rocks, Century Pb–Zn mine, Australia: Laboratory and field trials. Applied Geochemistry, 26(1), 45–56.

    CAS  Article  Google Scholar 

  62. Mehling, P. E., Day, S. J., & Sexsmith, K. S. (1997). Blending and layering waste rock to delay, mitigate or prevent acid generation: A case review study. Proceedings of the Fourth International Conference on Acid Rock Drainage, vol II, May 30 mai – June 6, Vancouver, CB, Canada, pp 953–970

  63. Melamed, R., Cao, X., Chen, M., & Ma, L. Q. (2003). Field assessment of lead immobilization in a contaminated soil after phosphate application. Science of the Total Environment, 305(1), 117–127.

    CAS  Article  Google Scholar 

  64. Melanson, M. (2006). Analyse d’un système de traitement passif pour le site de la mine Eustis. MSc thesis, Université de Sherbrooke, Sherbrooke, QC, Canada, 69 p

  65. Minh, D. P., Sebei, H., Nzihou, A., & Sharrock, P. (2012). Apatitic calcium phosphates: Synthesis, characterization and reactivity in the removal of lead (II) from aqueous solution. Chemical Engineering Journal, 198, 180–190.

    Article  CAS  Google Scholar 

  66. Ministère de l’Environnement et de la Lutte contre les Changements Climatiques (2020). Guide de caractérisation des résidus miniers et du minerai (p. 52). Québec, QC, Canada. http://www.environnement.gouv.qc.ca/Industriel/secteur-minier/guidecaracterisation-minerai.pdf. Accessed Jun 2020

  67. Miretzky, P., & Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils: A review. Environmental Chemistry Letters, 6(3), 121–133.

    CAS  Article  Google Scholar 

  68. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60(1–4), 193–207.

    Article  Google Scholar 

  69. Nduwayezu, I. (2010). Adsorption et désorption du plomb dans un sol sablonneux traité par divers amendements. MSc thesis, Université du Québec à Montréal, Montréal, QC, Canada, 146 p

  70. Neculita, C.M. (2008). Traitement biologique passif du drainage minier acide: Sources de carbone, mécanismes d'enlèvement des métaux et écotoxicité. PhD thesis, École Polytechnique de Montréal, Montréal, QC, Canada, 244 p

  71. Nielsen, G., Coudert, L., Janin, A., Blais, J. F., & Mercier, G. (2019). Influence of organic carbon sources on metal removals from mine impacted water using sulfate-reducing bacteria bioreactors in cold climates. Mine Water and the Environment, 38(1), 104–118.

    CAS  Article  Google Scholar 

  72. Paradis, M., Duchesne, J., Lamontagne, A., & Isabel, D. (2006). Using red mud bauxite for the neutralization of acid mine tailings: A column leaching test. Canadian Geotechnical Journal, 43(11), 1167–1179.

    CAS  Article  Google Scholar 

  73. Pérez-López, R., Nieto, J. M., & de Almodóvar, G. R. (2007). Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: Column experiments. Chemosphere, 67(8), 1637–1646.

    Article  CAS  Google Scholar 

  74. Phillips, I. R. (1998). Use of soil amendments to reduce nitrogen, phosphorus and heavy metal availability. Journal of Soil Contamination, 7(2), 191–212.

    CAS  Article  Google Scholar 

  75. Plante, B. (2010). Évaluation des principaux facteurs d’influence sur la prédiction du drainage neutre contaminé. PhD thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 271 p

  76. Postgate, J. R., Kent, H. M., Robson, R. L., & Chesshyre, J. A. (1984). The genomes of Desulfovibrio gigas and D vulgaris. Microbiology, 130(7), 1597–1601.

    CAS  Article  Google Scholar 

  77. Poulin, E., Blais, J. F., & Mercier, G. (2008). Transformation of red mud from aluminium industry into a coagulant for wastewater treatment. Hydrometallurgy, 92(1), 16–25.

    CAS  Article  Google Scholar 

  78. Rakotonimaro, T. V., Neculita, C. M., Bussière, B., & Zagury, G. J. (2017). Comparative column testing of three reactive mixtures for the bio-chemical treatment of iron-rich acid mine drainage. Minerals Engineering, 111, 79–89.

    CAS  Article  Google Scholar 

  79. Rakovan, J., Reeder, R. J., Elzinga, E. J., Cherniak, D. J., Tait, C. D., & Morris, D. E. (2002). Structural characterization of U (VI) in apatite by X-ray absorption spectroscopy. Environmental Science and Technology, 36(14), 3114–3117.

    CAS  Article  Google Scholar 

  80. Ramlan, B., & Sheridan, C. (2015). The potential utilisation of indigenous South African grasses for acid mine drainage remediation. Water SA, 41(2), 247–252.

    Article  CAS  Google Scholar 

  81. Rose, A. W., Parizek, R. R., & Phelps, L. B. (1995). Effectiveness of lime kiln flue dust in preventing acid mine drainage at the Kauffman Surface Coal Mine, Clearfield County, Pennsylvania. (No CONF-9506226-) National Meeting American Society for Surface Mining and Reclamation, June 5–8 , Gillette, Wyoming, USA, pp 159–171

  82. Rose, A. W., Means, B., & Shah, P. J. (2003). Methods for passive removal of manganese from acid mine drainage. Procedings of the 24th West Virginia Surface Mine Drainage Task Force Symposium, (http://wvtaskforcecom/proceedings/2003cfm), August 1 2007, Virginia, USA, pp 71–82

  83. Skousen, J., Zipper, C. E., Rose, A., Ziemkiewicz, P. F., Nairn, R., McDonald, L. M., & Kleinmann, R. L. (2017). Review of passive systems for acid mine drainage treatment. Mine Water and the Environment, 36(1), 133–153.

    CAS  Article  Google Scholar 

  84. Sorrenti, E. (2007). Étude de la passivation de la pyrite: chimie de surface et réactivité. PhD thesis, Institut National de Polytechnique de Lorraine, Vandoeuvre-les-Nancy, France, 247 p

  85. Strydom, C., Roode, Q., & Potgieter, J. (1996). Thermogravimetric and X-ray powder diffraction analysis of precipitator dust from a rotating lime kiln. Cement and Concrete Research, 26(8), 1269–1276.

    CAS  Article  Google Scholar 

  86. Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry (3rd ed., p. 1022). Wiley and Sons.

    Google Scholar 

  87. Sun, W., Nešić, S., & Woollam, R. C. (2009). The effect of temperature and ionic strength on iron carbonate (FeCO3) solubility limit. Corrosion Science, 51(6), 1273–1276.

    CAS  Article  Google Scholar 

  88. Tack, F., Lapauw, F., & Verloo, M. (1997). Determination and fractionation of sulphur in a contaminated dredged sediment. Talanta, 44(12), 2185–2192.

    CAS  Article  Google Scholar 

  89. Takeuchi, Y., & Arai, H. (1990). Removal of coexisting Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder. Journal of Chemical Engineering of Japan, 23(1), 75–80.

    CAS  Article  Google Scholar 

  90. Tang, H., Xin, T., & Wang, F. (2013). Calcium phosphate/titania sol-gel coatings on AZ31 magnesium alloy for biomedical applications International. Journal of Electrochemical Science, 8, 8115–8125.

    CAS  Google Scholar 

  91. Thy, P., Jenkins, B., Grundvig, S., Shiraki, R., & Lesher, C. (2006). High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel, 85(5), 783–795.

    CAS  Article  Google Scholar 

  92. Vasquez, Y., Escobar, M. C., Neculita, C. M., Arbeli, Z., & Roldan, F. (2016). Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity. Chemosphere, 153, 244–253.

    CAS  Article  Google Scholar 

  93. Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913–933.

    CAS  Article  Google Scholar 

  94. Villeneuve, M. (2004). Évaluation du comportement géochimique à long terme de rejets miniers à faible potentiel de génération d'acide à l'aide d'essais cinétiques. MSc thesis, École Polytechnique de Montréal, Montréal, QC, Canada, 576 p

  95. Wright, J., Rice, K.R., Murphy, B., & Conca, J. (2004). PIMS using Apatite II™: How it works to remediate soil and water. In: Sustainable range management, Proceeding of the Conference on Sustainable Range Management, January 5–8, New Orleans, Battelle Memorial Institute (Eds), Columbus, OH, USA, 8 p

  96. Xenidis, A., Stouraiti, C., & Papassiopi, N. (2010). Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron. Journal of Hazardous Materials, 177(1), 929–937.

    CAS  Article  Google Scholar 

  97. Zagury, G. J., Kulnieks, V. I., & Neculita, C. M. (2006). Characterization and reactivity assessment of organic substrates for sulfate-reducing bacteria in acid mine drainage treatment. Chemosphere, 64(6), 944–954.

    CAS  Article  Google Scholar 

Download references

Funding

This research was supported by the Natural Sciences and Engineering Research Council of Canada (Grant RGPIN 2014–04794), the Canada Research Chair program (No. 950–232194), and CTRI (Rouyn-Noranda, Canada).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-François Blais.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lounate, K., Mueller, K.K., Coudert, L. et al. Stabilization and Management of Sulfate-Reducing Bioreactor Residues After Acid Mine Drainage Treatment. Water Air Soil Pollut 232, 404 (2021). https://doi.org/10.1007/s11270-021-05325-7

Download citation

Keywords

  • Iron
  • Metal
  • Post-treatment residue management
  • Alkaline amendments
  • Weathering cell tests
  • Column tests