Skip to main content
Log in

Physiological Responses of Pak Choi to Exogenous Foliar Salicylic Acid Under Soil Se Stress

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In plants, excess selenium causes general toxic symptoms. However, salicylic acid plays an important role in alleviating toxic effects of various stresses. This study aimed to clarify the role of exogenous foliar salicylic acid on alleviating selenium toxicity of pak choi exposed to moderately and highly Se-excessive soils (4 mg·kg−1 Se and 10 mg·kg−1 Se, respectively). The results showed that Se stress caused severe lipid peroxidation, desynchronization of the antioxidant enzymatic system, and significant decreases in the measures of photosynthetic activity and shoot biomass. Under Se stress conditions, exogenous foliar salicylic acid significantly increased measures of photosynthetic activity and shoot biomass, increased catalase activity, and decreased measures of oxidative stress. Moreover, exogenous salicylic acid significantly enhanced Se accumulation in shoots under Se stress conditions. We demonstrate here that foliar spraying with salicylic acid is an effective measure to alleviate the adverse effects of Se stress and enhance Se accumulation for optimizing crop Se biofortification in Se-excessive soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data are available upon request.

References

  • Abdalla, M. A., Meschede, C. A., & Mühling, K. H. (2020). Selenium foliar application alters patterns of glucosinolate hydrolysis products of pak choi Brassica rapa L. var chinensis. Scientia Horticulturae, 273(17), 109614.

    Article  CAS  Google Scholar 

  • Ahmad, R., Ali, S., Rizwan, M., Dawood, M., Farid, M., Hussain, A., Wijaya, L., Alyemeni, M. N., & Ahmad, P. (2020). Hydrogen sulfide alleviates chromium stress on cauliflower by restricting its uptake and enhancing antioxidative system. Physiologia Plantarum, 168(2), 289–300.

    CAS  Google Scholar 

  • Al-Othman, A. M., Al-Othman, Z. A., El-Desoky, G. E., Aboul-Soud, M. A., Habila, M. A., & Giesy, J. P. (2012). Daily intake of selenium and concentrations in blood of residents of Riyadh City, Saudi Arabia. Environmental Geochemistry and Health, 34, 417–431.

    Article  CAS  Google Scholar 

  • Broadley, M. R., White, P. J., Bryson, R. J., Meacham, M. C., Bowen, H. C., Johnson, S. E., Hawkesford, M. J., McGrath, S. P., Zhao, F. J., Breward, N., Harriman, M., & Tucker, M. (2006). Biofortification of UK food crops with selenium. The Proceedings of the Nutrition Society, 65(2), 169–181.

    Article  CAS  Google Scholar 

  • Cabral Gouveia, G. C., Galindo, F. S., Lanza, DantasBereta, & M. G., Caroline da Rocha Silva, A., Pereira de Brito Mateus, M., Souza da Silva, M., RimoldiTavanti, R. F., Tavanti, T. R., Lavres, J., & Reis, A. . (2020). Selenium toxicity stress-induced phenotypical, biochemical and physiological responses in rice plants: Characterization of symptoms and plant metabolic adjustment. Ecotoxicology and Environmental Safety, 202, 110916.

    Article  CAS  Google Scholar 

  • Chaturvedi, R., Favas, P., Pratas, J., Varun, M., & Paul, M. S. (2019). EDTA-assisted metal uptake in Raphanus sativus L. and Brassica oleracea L: Assessment of toxicity and food safety. Bulletin of Environmental Contamination and Toxicology, 103(3), 490–495.

    Article  CAS  Google Scholar 

  • Coelho, D. G., de Andrade, H. M., Marinato, C. S., Araujo, S. C., de Matos, L. P., da Silva, V. M., & de Oliveira, J. A. (2020). Exogenous jasmonic acid enhances oxidative protection of Lemna valdiviana subjected to arsenic. Acta Physiologiae Plantarum, 42(97), 97.

    Article  CAS  Google Scholar 

  • Cui, Z. W., Huang, J., Peng, Q., Yu, D. S., Wang, S. S., & Liang, D. L. (2017). Risk assessment for human health in a seleniferous area, Shuang’an China. Environmental Science and Pollution Research, 24(21), 17701–17710.

    Article  CAS  Google Scholar 

  • Dai, Z. H., Rizwan, M., Gao, F., Yuan, Y., Huang, H. L., Hossain, M. M., Xiong, S. L., Cao, M. H., Liu, Y. X., & Tu, S. X. (2020). Nitric oxide alleviates selenium toxicity in rice by regulating antioxidation, selenium uptake, speciation and gene expression. Environmental Pollution, 257, 113540.

    Article  CAS  Google Scholar 

  • Dhillon, K. S., & Dhillon, S. K. (2003). Distribution and management of seleniferous soils. Advances in Agronomy, 79, 119–184.

    Article  CAS  Google Scholar 

  • Dinh, Q. T., Cui, Z. W., Huang, J., Tran, T. A. T., Wang, D., Yang, W. X., Zhou, F., Wang, M. K., Yu, D. S., & Liang, D. L. (2018). Selenium distribution in the Chinese environment and its relationship with human health: A review. Environment International, 112, 294–309.

    Article  CAS  Google Scholar 

  • Durner, J., & Klessig, D. F. (1996). Salicylic acid is a modulator of tobacco and mammalian catalases. The Journal of Biological Chemistry, 271(45), 28492–28501.

    Article  CAS  Google Scholar 

  • El Dakak, R. A., & Hassan, I. A. (2020). The alleviative effects of salicylic acid on physiological indices and defense mechanisms of maize (Zea Mays L. Giza 2) stressed with cadmium. Environmental Processes, 7(3), 873–884.

    Article  CAS  Google Scholar 

  • Fairweather-Tait, S. J., Bao, Y., Broadley, M. R., Collings, R., Ford, D., Hesketh, J. E., & Hurst, R. (2011). Selenium in human health and disease. Antioxidants & Redox Signaling, 14(7), 1337–1383.

    Article  CAS  Google Scholar 

  • Gondor, O. K., Pál, M., Darkó, É., Janda, T., & Szalai, G. (2016). Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize (Zea mays L.). PLOS ONE, 11(8), e0160157.

    Article  CAS  Google Scholar 

  • Gupta, S., & Gupta, M. (2016). Alleviation of selenium toxicity in Brassica juncea L.: Salicylic acid-mediated modulation in toxicity indicators, stress modulators, and sulfur-related gene transcripts. Protoplasma, 253(6), 1515–1528.

    Article  CAS  Google Scholar 

  • Han, D., Li, X. H., Xiong, S. L., Tu, S. X., Chen, Z. G., Li, J. P., & Xie, Z. J. (2013). Selenium uptake, speciation and stressed response of Nicotiana tabacum L. Environmental and Experimental Botany, 95, 6–14.

    Article  CAS  Google Scholar 

  • Harper, J. P., & Balke, N. E. (1981). Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiology, 68, 1349–1353.

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak, B., Matraszek, R., & Pogorzelec, M. (2015). The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiologiae Plantarum, 37(2), 41.

    Article  CAS  Google Scholar 

  • Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68(1), 14–25.

    Article  CAS  Google Scholar 

  • Hayat, S., Khan, N. A., & Alyemeni, M. (2013). Salicylic Acid: Plant Growth and Development. Springer.

    Book  Google Scholar 

  • He, Y. Z., Xiang, Y. J., Zhou, Y. Y., Yang, Y., Zhang, J. C., Huang, H. L., Shang, C., Luo, L., Gao, J., & Tang, L. (2018). Selenium contamination, consequences and remediation techniques in water and soils: A review. Environmental Research, 164, 288–301.

    Article  CAS  Google Scholar 

  • Kate, M., & Giles, N. J. (2000). Chlorophyll fluorescence–A practical guide. Journal of Experimental Botany, 51(345), 659–668.

    Article  Google Scholar 

  • Kittipornkul, P., Treesubsuntorn, C., & Thiravetyan, P. (2020). Effect of exogenous catechin and salicylic acid on rice productivity under ozone stress: The role of chlorophyll contents, lipid peroxidation, and antioxidant enzymes. Environmental Science and Pollution Research, 27, 25774–25784.

    Article  CAS  Google Scholar 

  • Kolbert, Z., Molnár, Á., Feigl, G., & Van Hoewyk, D. (2019). Plant selenium toxicity: Proteome in the crosshairs. Journal of Plant Physiology, 232, 291–300.

    Article  CAS  Google Scholar 

  • Kowalska, I., Smoleń, S., Czernicka, M., Halka, M., Kęska, K., & Pitala, J. (2020). Effect of selenium form and salicylic acid on the accumulation of selenium speciation forms in hydroponically grown lettuce. Agriculture, 10, 584.

    Article  CAS  Google Scholar 

  • Lehotai, N., Kolbert, Z., Pető, A., Feigl, G., Rdg, A., Kumar, D., Tari, I., & Erdei, L. (2012). Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana L. Journal of Experimental Botany, 63(15), 5677–5687.

    Article  CAS  Google Scholar 

  • Li, J., Liang, D. L., Qin, S. Y., Feng, P. Y., & Wu, X. P. (2015). Effects of selenite and selenate application on growth and shoot selenium accumulation of pak choi (Brassica chinensis L.) during successive planting conditions. Environmental Science and Pollution Research, 22(14), 11076–11086.

    Article  CAS  Google Scholar 

  • Li, T. T., Yun, Z., Zhang, D. D., Yang, C. W., Zhu, H., Jiang, Y. M., & Duan, X. W. (2015b). Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit. Frontiers in Plant Science, 6, 845.

    Google Scholar 

  • Li, Y. F., Huang, L. L., Liu, X. L., Li, X. S., & Tan, H. H. (2020). Exogenous salicylic acid alleviates halosulfuron-methyl toxicity by coordinating the antioxidant system and improving photosynthesis in soybean (Glycine max Merr.). Acta Physiologiae Plantarum, 42(5):85. https://doi.org/10.1007/s11738-020-03075-3.

  • Lima, L. W., Pilon-Smits, E. A., & Schiavon, M. (2018). Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues. Biochimica Et Biophysica Acta - General Subjects, 1862(11), 2343–2353.

    Article  CAS  Google Scholar 

  • Liu, Z. H., Shi, X. Y., Li, S., Zhang, L. L., & Song, X. Y. (2018). Oxidative stress and aberrant programmed cell death are associated with pollen abortion in isonuclear alloplasmic male-sterile wheat. Frontiers in Plant Science, 9, 595.

    Article  Google Scholar 

  • Molnár, Á., Kolbert, Z., Kéri, K., Feigl, G., Ördög, A., Szőllősi, R., & Erdei, L. (2018). Selenite-induced nitro-oxidative stress processes in Arabidopsis thaliana and Brassica juncea. Ecotoxicology and Environmental Safety, 148, 664–674.

    Article  CAS  Google Scholar 

  • Mostofa, M. G., & Fujita, M. (2013). Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology, 22, 959–973.

    Article  CAS  Google Scholar 

  • Mostofa, M. G., Rahman, M. M., Siddiqui, M. N., Fujita, M., & Tran, L. P. (2020). Salicylic acid antagonizes selenium phytotoxicity in rice: Selenium homeostasis, oxidative stress metabolism and methylglyoxal detoxification. Journal of Hazardous Materials, 394, 122572.

    Article  CAS  Google Scholar 

  • Moustafa-Farag, M., Mohamed, H. I., Mahmoud, A., Elkelish, A., Misra, A. N., Guy, K. M., Kamran, M., Ai, S., & Zhang, M. F. (2020). Salicylic acid stimulates antioxidant defense and osmolyte metabolism to alleviate oxidative stress in watermelons under excess boron. Plants, 9(6), 724.

    Article  CAS  Google Scholar 

  • Mroczek-Zdyrska, M., & Wójcik, M. (2012). The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biological Trace Element Research, 147(1), 320–328.

    Article  CAS  Google Scholar 

  • Nazar, R., Iqbal, N., Syeed, S., & Khan, N. A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168(8), 807–815.

    Article  CAS  Google Scholar 

  • Rajabi, D., & A., Zahedi, M., Razmjoo, J., & Eshghizadeh, H. . (2019). Effect of exogenous application of salicylic acid on salt-stressed sorghum growth and nutrient contents. Journal of Plant Nutrition, 42(11–12), 1333–1349.

    Article  CAS  Google Scholar 

  • Rascher, U., Liebig, M., & Lüttge, U. (2000). Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell and Environment, 23(12), 1397–1405.

    Article  CAS  Google Scholar 

  • Rayman, M. P. (2012). Selenium and human health. The Lancet, 379, 1256–1268.

    Article  CAS  Google Scholar 

  • Shakirova, F. M., Allagulova, C. R., Maslennikova, D. R., Klyuchnikova, E. O., Avalbaev, A. M., & Bezrukova, M. V. (2016). Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environmental and Experimental Botany, 122, 19–28.

    Article  CAS  Google Scholar 

  • Sharma, S., Bansal, A., Dhillon, S. K., & Dhillon, K. S. (2010). Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L.). Plant and Soil, 329, 339–348.

    Article  CAS  Google Scholar 

  • Singh, A. P., Dixit, G., Mishra, S., Dwivedi, S., Tiwari, M., Mallick, S., Pandey, V., Trivedi, P. K., Chakrabarty, D., & Tripathi, R. D. (2015). Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Frontiers Plant Science, 6, 340.

    Google Scholar 

  • Singh, S., Singh, V. P., Prasad, S. M., Sharma, S., Ramawat, N., Dubey, N. K., Tripathi, D. K., & Chauhan, D. K. (2019). Interactive effect of silicon (Si) and salicylic acid (SA) in maize seedlings and their mechanisms of cadmium (Cd) toxicity alleviation. Journal of Plant Growth Regulation, 38(4), 1587–1597.

    Article  CAS  Google Scholar 

  • White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets - Iron, zinc, copper, calcium, magnesium, selenium and iodine. The New Phytologist, 182(1), 49–84.

    Article  CAS  Google Scholar 

  • White, P. J., Bowen, H. C., Parmaguru, P., Fritz, M., Spracklen, W. P., Spiby, R. E., Meacham, M. C., Mead, A., Harriman, M., Trueman, L. J., Smith, B. M., Thomas, B., & Broadley, M. R. (2004). Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. Journal of Experimental Botany, 55(404), 1927–1937.

    Article  CAS  Google Scholar 

  • Zhao, Y. F., Song, X. S., Cao, X., Wang, Y. H., Si, Z. H., & Chen, Y. (2019). Toxic effect and bioaccumulation of selenium in green alga Chlorella pyrenoidosa. Journal of Applied Phycology, 31(3), 1733–1742.

    Article  CAS  Google Scholar 

  • Zhong, Y., & Cheng, J. J. (2017). Effects of selenite on unicellular green microalga Chlorella pyrenoidosa: Bioaccumulation of selenium, enhancement of photosynthetic pigments, and amino acid production. Journal of Agricultural and Food Chemistry, 65(50), 10875–10883.

    Article  CAS  Google Scholar 

  • Zhu, J. M., Wang, N., Li, S., Li, L., Su, H., & Liu, C. X. (2008). Distribution and transport of selenium in Yutangba, China: Impact of human activities. The Science of the Total Environment, 392(2–3), 252–261.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Guangxi, China (2020GXNSFBA297014), National Natural Science Foundation of China (41761052), and the projects from Guangxi Academy of Agricultural Sciences (Guinongke 2020YM109, Guinongke JZ202016, Guinongke 2020YT039, and Guinongkemeng 202014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinping Chen or Yongxian Liu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18.3 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Huang, T., Zeng, C. et al. Physiological Responses of Pak Choi to Exogenous Foliar Salicylic Acid Under Soil Se Stress. Water Air Soil Pollut 232, 374 (2021). https://doi.org/10.1007/s11270-021-05319-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05319-5

Keywords

Navigation