Skip to main content

Response of the Tropical Tree Species Astronium graveolens to Meteorological Conditions and Ground-Level Ozone in São Paulo, Brazil


Astronium graveolens is a native tree species from Atlantic Forest considered sensitive to O3. This study aimed to determine which environmental factors, including air quality and meteorological conditions, have the most significant influence on gas exchange and the appearance of visible foliar symptoms in this species. Saplings were potted and exposed in a standardized manner in an open area in the southeastern city of São Paulo, Brazil. Gas exchange was measured weekly in the morning (9 am to 10 am), midday (11 am to 12 pm), and afternoon (2 pm to 3 pm) during the spring and summer seasons (n = 10). Data on O3 concentration and meteorological conditions were obtained on-site. Principal component analysis identified that the morning hours provide the most favorable meteorological conditions for gas exchange. High temperature and VPD reduced gas exchange in the midday and afternoon. Although the AOT40 was high, there were no visible foliar symptoms, which was an unexpected result. We propose that the meteorological conditions, mainly the VPD and temperature, caused stomatal closure, and consequently prevented the absorption of O3; therefore, there was no association between O3 and reduction of gas exchange, nor manifestation of foliar visible symptoms. We consider that more studies are necessary for the proper use of A. graveolens as an O3 bioindicator species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

Repository: Mendeley Data,

Code availability

“Not applicable”.


  1. Agathokleous, E., Saitanis, C.J., Feng, Z.Z., De Marco, A., Araminiene, V., Domingos, M., Sicard, P., Paoletti, E. 2020. Ozone biomonitoring: A versatile tool for science, education and regulation. Current Opinion in Environmental Science & Health

  2. Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D. (2012). The effects of tropospheric of ozone on net primary productivity and implications for climate change. Ann Rev Plant Biol, 63, 637–661.

    CAS  Article  Google Scholar 

  3. Boian, C., & Andrade, M. F. (2012). Characterization of ozone transport among Metropolitan Regions. Rev Bras Meteor, 27, 229–242.

    Article  Google Scholar 

  4. Cassimiro, J. C., & Moraes, R. M. (2016). Responses of a tropical tree species to ozone: Visible leaf injury, growth, and lipid peroxidation. Environmental Science and Pollution Research, 23, 8085–8090.

    CAS  Article  Google Scholar 

  5. Cassimiro, J. C., Moura, B. B., Alonso, R., Meirelles, S. T., & Moraes, R. M. (2016). Ozone stomatal flux and O3 concentration-based metrics for Astronium graveolens Jacq., a Brazilian native forest tree species. Environmental Pollution, 213, 1007–1015.

    CAS  Article  Google Scholar 

  6. Cassimiro, J. C., Souza, S. R., & Moraes, R. M. (2015). Trocas gasosas e injúrias foliares visíveis em plantas jovens de Astronium graveolens Jacq. fumigadas com ozônio. Hoehnea, 42, 689–696.

    Article  Google Scholar 

  7. CETESB (2014) Relatório de qualidade do ar no estado de São Paulo. Série Relatórios. Companhia Ambiental do Estado de São Paulo.

  8. CETESB (2019) Relatório de qualidade do ar no estado de São Paulo. Série Relatórios. Companhia Ambiental do Estado de São Paulo.

  9. CLRTAP (2017) Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Chapter 3: Mapping critical levels for vegetation Accessed date: 01 Sept 2020.

  10. Domingos, M., Bulbovas, P., Camargo, C. S., Aguiar-Silva, C., Brandão, S. E., Dafré-Martinelli, M., Dias, A. P., Engela, M. R. S., Gagliono, J., Moura, B. B., Alves, E. S., Rinaldi, M. C. S., Gomes, E. P. C., Furlan, C. M., & Figueiredo, A. M. G. (2015). Searching for native tree species and respective potential biomarkers for future assessment of pollution effects on the highly diverse Atlantic Forest in SE-Brazil. Environmental Pollution, 202, 85–95.

    CAS  Article  Google Scholar 

  11. Emberson, L. D., Ashmore, M. R., Cambridge, H. M., Simpson, D., & Tuovinen, J. (2000). Modelling stomatal ozone flux across Europe. Environmental Pollution, 109, 403–413.

    CAS  Article  Google Scholar 

  12. Franco, A. C., & Lüttge, U. (2002). Midday depression in savanna trees: Coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. Oecologia, 131, 356–365.

    CAS  Article  Google Scholar 

  13. Gerosa, B., Marzuoli, R., Desotgiu, R., Bussotti, F., & Ballarin-Denti, A. (2009). Validation of the stomatal flux approach for the assessment of ozone visible injury in young forest trees. Results from the TOP (transboundary ozone pollution) experiment at Curno. Italy. Environ Pollut, 157, 1497–1505.

    CAS  Article  Google Scholar 

  14. Guaratini, M. T. G., Gomes, E. C. P., Tamashiro, J. Y., & Rodrigues, R. R. (2008). Composição florística da Reserva Municipal de Santa Genebra, Campinas, SP. Rev Bras Bot, 31, 323–337.

    Article  Google Scholar 

  15. Gutiérrez, M. V. S., Pacheco, A., & Holbrook, N. M. (2008). Leaf age and the timing of leaf abscission in two tropical dry forest trees. Trees, 22, 393–401.

    Article  Google Scholar 

  16. Heath, R. (2009). Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to change? Environmental Pollution, 155, 453–463.

    Article  Google Scholar 

  17. Heath, R. L., Lefohn, A. S., & Musselman, R. C. (2009). Temporal processes that contribute to nonlinearity in vegetation responses to ozone exposure and dose. Atmospheric Environment, 43, 2919–2928.

    CAS  Article  Google Scholar 

  18. IAG. (2019). Boletins mensais da estação meteorológica IAG-USP. Geofísica e Ciências Atmosféricas da Universidade de São Paulo.

    Google Scholar 

  19. Jarvis, P. G. (1976). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London. Series b, Biological Sciences, 273, 593–610.

    CAS  Google Scholar 

  20. Li, P., Feng, Z., Catalayud, V., Yuan, X., Xu, Y., & Paoletti, E. (2017). A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. Plant, Cell and Environment, 40, 2369–2380.

    CAS  Article  Google Scholar 

  21. Lin, Y., Medlyn, B., Duursma, R., et al. (2015). Optimal stomatal behavior around the world. Nature Clim Change, 5, 459–464.

    CAS  Article  Google Scholar 

  22. Medlyn, B. E., Pepper, D. A., O’Grady, A. P., & Keith, H. (2007). Linking leaf and tree water use with an individual-tree model. Tree Physiology, 27, 1687–1699.

    Article  Google Scholar 

  23. Moura, B. B., Alves, E. S., Souza, S. R., Domingos, M., & Vollenweider, P. (2014). Ozone phytotoxic potential with regard to fragments of the Atlantic Semi-deciduous Forest downwind of Sao Paulo, Brazil. Environmental Pollution, 192, 65–73.

    CAS  Article  Google Scholar 

  24. Moura, B. B., Alves, E. S., Souza, M. M. A., & SR, Schaub M, Vollenweider P, . (2018). Ozone affects leaf physiology and causes injury to foliage of native tree species from the tropical Atlantic Forest of southern Brazil. Science of the Total Environment, 610, 912–925.

    Article  Google Scholar 

  25. Murata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S. I. (2007). Photoinhibition of photosystem II under environmental stress. Biochimica Et Biophysica Acta, 1767, 414–421.

    CAS  Article  Google Scholar 

  26. Nogueira, A., Matinez, C. A., Ferreira, L., & Prado, C. A. (2004). Photosynthesis and water use efficiency in twenty tropical tree species of differing succession status in a Brazilian reforestation. Photosynthetica, 42, 351–356.

    CAS  Article  Google Scholar 

  27. Overmyer, K., Wrzaczek, M., & Kangasjärvi, J. (2009). Reactive oxygen species in ozone toxicity. In F. Baluška & J. Vivanco (Eds.), Signaling and communication in plants (pp. 191–207). Springer.

    Google Scholar 

  28. Paoletti, E., & Manning, W. J. (2007). Toward a biologically significant and usable standard for ozone that will also protect plants. Environmental Pollution, 150, 85–95.

    CAS  Article  Google Scholar 

  29. Pina, J. M., & Moraes, R. M. (2010). Gas exchange, antioxidants and foliar injuries in saplings of a tropical woody species exposed to ozone. Ecotoxicology and Environmental Safety, 73, 685–691.

    CAS  Article  Google Scholar 

  30. Prado, C. A., Wenhui, Z., Rojas, M. H. C., & Souza, G. M. (2004). Seasonal leaf gas exchange and water potential in a cerrado woody species community. Brazilian Journal of Plant Physiology, 16, 7–16.

    Article  Google Scholar 

  31. Ribeiro, R. V., Souza, G. M., Oliveira, R. F., & Machado, E. C. (2005). Photosynthetic responses of tropical tree species from different successional groups under contrasting irradiance conditions. Rev Bras Bot, 28, 49–161.

    Google Scholar 

  32. Urban, O., Klem, K., Ac, A., Havrankova, K., Holisova, P., Navratil, M., Zitova, M., Kozlova, K., Pokorný, R., Sprtova, M., Tomaskova, I., Spunda, V., & Grace, J. (2012). Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within spruce canopy. Func Ecol, 26, 46–55.

    Article  Google Scholar 

  33. Vanderwel, M. C., Slot, M., Lichtstein, J. W., Reich, P. B., Kattge, J., Atkin, O. K., Bloomfield, K. J., Tjoelker, M. G., & Kitajima, K. (2015). Global convergence in leaf respiration from estimates of thermal acclimation across time and space. New Phytologist, 207, 1026–1037.

    Article  Google Scholar 

  34. Wang Z, Wang C, Wang B, Wang X, Li J, Wu J, Liu L (2020) Interactive effects of air pollutants and atmospheric moisture stress on aspen growth and photosynthesis along an urban-rural gradient. Environ Pollut 260:114076.

  35. Wujeska, A., Bossinger, G., & Tausz, M. (2013). Responses of foliar antioxidative and pho-toprotective defence systems of trees to drought: A meta-analysis. Tree Physiology, 33, 1018–1029.

    CAS  Article  Google Scholar 

  36. Zhang, J. J., Wei, Y., & Fang, Z. (2019). Ozone pollution: A major health hazard worldwide. Frontiers in Immunology, 10, 2518.

    CAS  Article  Google Scholar 

Download references


The authors would like to thank the graduate program at the Institute of Botany of São Paulo and the São Paulo Research Foundation (FAPESP) for financial support (Process 2016/19738-8).


R.M. Moraes received funding from FAPESP (Process 2016 / 19.738–8) to carry out this study.

Author information




M.S.B.: investigation, formal analysis, writing-original draft; C.M.F.: review and editing; S.T.M.: formal analysis, review and editing; S.R.S.: review and editing; R.M.M.: funding acquisition; conceptualization; review and editing.

Corresponding author

Correspondence to Regina M. Moraes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics Approval

“Not applicable”.

Authors’ Agreement

The authors declare that the manuscript has been approved by all named authors and confirm that the order of authors listed in the manuscript has been approved by all of us.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brito, M.S., Furlan, C.M., Meirelles, S.T. et al. Response of the Tropical Tree Species Astronium graveolens to Meteorological Conditions and Ground-Level Ozone in São Paulo, Brazil. Water Air Soil Pollut 232, 320 (2021).

Download citation


  • Bioindicator
  • Gas exchange
  • Meteorological conditions
  • Ozone
  • Visible foliar symptoms