Skip to main content

Haloacetic Acids Formation Potential of Tropical Peat Water DOM Fractions and Its Correlation with Spectral Parameters

Abstract

Tropical peat water dissolved organic matter (DOM) fractions spectral parameters correlate with the formation of carcinogenic disinfection by-products (DBPs), haloacetic acids (HAAs). Peat water DOM has been fractionated using Superlite DAX-8, Amberlite XAD-4, and Amberlite IRA-958 resins to separate hydrophobic acid (HPOA), transphilic (TPH), hydrophilic-charged (HPIC), and hydrophilic-neutral (HPIN). The formation potential of HAA was determined using the total concentration of 5 HAAs (HAA5). The DOM characteristic was determined using dissolved organic carbon (DOC) and ultraviolet–visible (UV–Vis) absorbance was evaluated at 200–700 nm. The HPOA fraction dominates the DOM of tropical peat water with a 40% DOC concentration when the HPIC fraction was the slighter. The spectral absorbance ratios (E4/E6 and A253/A203) and spectral slopes (S206–213, S251–280, S281–295, and S>295) have a strong positive correlation with HAA5 formation potential (HAA5FP). Similarly, the absorbance ratio A210/A254 and spectral slopes S200–205 are strongly correlated to HAA5FP, but in a negative direction. In contrast, the E2/E3 and A280/A350 spectral ratio, and spectral slopes (S214-227, and S228–250), has a weaker correlation with HAA5FP. The E2/E3 and A280/A350 ratios and S251–280 S200–205 spectral slope show a strong relationship with the brominated HAA5FP (B-HAA5FP). The spectral parameters of DOM fractions can be used as surrogate parameters of HAA5FP of peat water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Not applicable.

Code Availability

Not applicable.

References

  1. APHA, A. P. H. A. (1998). Standard methods for the examination of water and wastewater. American Physical Education Review, 24(9), 481–486.

  2. Asgari, G., Mohammadi, A. S., & Ebrahimi, A. (2012). Performance of the catalytic ozonation process with pumice in removal of humic acids from aqueous solutions. International Journal of Environmental Health Engineering, 1(3), 1–7. https://doi.org/10.4103/2277-9183.99327

    CAS  Article  Google Scholar 

  3. Bing-zhi, D., Yan, C., Nai-yun, G., & Jin-chu, F. (2007). Effect of coagulation pretreatment on the fouling of ultrafiltration membrane. Journal of Environmental Sciences, 19(May 2006), 278–283. https://doi.org/10.1016/S1001-0742(07)60045-X

  4. Bond, T., Goslan, E. H., Parsons, S. A., & Jefferson, B. (2012). A critical review of trihalomethane and haloacetic acid formation from natural organic matter surrogates. Environmental Technology Reviews, 1(1), 93–113. https://doi.org/10.1080/09593330.2012.705895

    CAS  Article  Google Scholar 

  5. Chaukura, N., Ndlangamandla, N. G., Moyo, W., Msagati, T. A. M., Mamba, B. B., & Nkambule, T. T. I. (2018). Natural organic matter in aquatic systems – a South African perspective. Water S.A, 44(4), 624–635. https://doi.org/10.4314/wsa.v44i4.11

    CAS  Article  Google Scholar 

  6. Chen, Y., Senesi, N., & Schnitzer, M. (1976). Information provided on humic substances by E4/E6 ratios. Soil Science Society of America Journal, 606, 352–358. https://doi.org/10.2136/sssaj1977.03615995004100020037x

    Article  Google Scholar 

  7. Dickenson, E. R. V., Summers, R. S., Croué, J., & Gallard, H. (2008). Haloacetic acid and trihalomethane formation from the chlorination and bromination of aliphatic -dicarbonyl acid model compounds. Environmental Science and Technology, 42(9), 3226–3233. https://doi.org/10.1021/es0711866

    CAS  Article  Google Scholar 

  8. Edzwald, J. K., & Tobiason, J. E. (1999). Enhanced coagulation: US requirements and a broader view. Water Science and Technology, 40(9), 63–70. https://doi.org/10.1016/S0273-1223(99)00641-1

    CAS  Article  Google Scholar 

  9. Feng, H., Ruan, Y., Wu, R., Zhang, H., & Lam, P. K. S. (2019). Occurrence of disinfection by-products in sewage treatment plants and the marine environment in Hong Kong. Ecotoxicology and Environmental Safety, 181, 404–411. https://doi.org/10.1016/j.ecoenv.2019.06.034

    CAS  Article  Google Scholar 

  10. Gough, R., Holliman, P. J., Cooke, G. M., & Freeman, C. (2015). Characterisation of algogenic organic matter during an algal bloom and its implications for trihalomethane formation. Sustainability of Water Quality and Ecology, 6, 11–19. https://doi.org/10.1016/j.swaqe.2014.12.008

    Article  Google Scholar 

  11. He, K., Okuta, E., Cordero, J. A., Echigo, S., Asada, Y., & Itoh, S. (2018). Formation of chlorinated haloacetic acids by chlorination of low molecular weight compounds listed on pollutant release and transfer registers (PRTRs). Journal of Hazardous Materials, 351(2010), 98–107. https://doi.org/10.1016/j.jhazmat.2018.02.028

    CAS  Article  Google Scholar 

  12. Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., & Mopper, K. (2008). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography, 53(3), 955–969.

    Article  Google Scholar 

  13. Her, N., Amy, G., Sohn, J., & von Gunten, U. (2008). UV absorbance ratio index with size exclusion chromatography (URI-SEC) as an NOM property indicator. Journal of Water Supply: Research and Technology-Aqua, 57(1), 35–44. https://doi.org/10.2166/aqua.2008.029

    CAS  Article  Google Scholar 

  14. Hu, Y., Qian, Y., Chen, Y., Guo, J., Song, J., & An, D. (2021). Characteristics of trihalomethane and haloacetic acid precursors in filter backwash and sedimentation sludge waters during drinking water treatment. Science of the Total Environment, 775, 145952. https://doi.org/10.1016/j.scitotenv.2021.145952

    CAS  Article  Google Scholar 

  15. Hua, G., & Reckhow, D. A. (2007). Characterization of disinfection by-product precursors based on hydrophobicity and molecular size. Environmental Science and Technology, 41, 3309–3315.

    CAS  Article  Google Scholar 

  16. Hua, G., & Reckhow, D. A. (2013). Effect of pre-ozonation on the formation and speciation of DBPs. Water Research, 47(13), 4322–4330. https://doi.org/10.1016/j.watres.2013.04.057

    CAS  Article  Google Scholar 

  17. Kanokkantapong, V., Marhaba, T. F., Pavasant, P., & Panyapinyophol, B. (2006). Characterization of haloacetic acid precursors in source water. Journal of Environmental Management, 80(3), 214–221. https://doi.org/10.1016/j.jenvman.2005.09.006

    CAS  Article  Google Scholar 

  18. Korshin, G., Chow, C. W. K., Fabris, R., & Drikas, M. (2009). Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights. Water Research, 43(6), 1541–1548. https://doi.org/10.1016/j.watres.2008.12.041

    CAS  Article  Google Scholar 

  19. Korshin, G. V., Li, C., & Benjamin, M. M. (1997). Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Research, 31(7), 1787–1795. https://doi.org/10.1016/S0043-1354(97)00006-7

    CAS  Article  Google Scholar 

  20. Kuokkanen, V., Kuokkanen, T., Rämö, J., & Lassi, U. (2015). Electrocoagulation treatment of peat bog drainage water containing humic substances. Water Research, 79, 79–87. https://doi.org/10.1016/j.watres.2015.04.029

    CAS  Article  Google Scholar 

  21. Liu, S., Benedetti, M. F., Han, W., & Korshin, G. V. (2020). Comparison of the properties of standard soil and aquatic fulvic and humic acids based on the data of differential absorbance and fl uorescence spectroscopy. Chemosphere, 261, 128189. https://doi.org/10.1016/j.chemosphere.2020.128189

    CAS  Article  Google Scholar 

  22. Lu, J., Zhang, T., Ma, J., & Chen, Z. (2009). Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water. Journal of Hazardous Materials, 162(1), 140–145. https://doi.org/10.1016/j.jhazmat.2008.05.058

    CAS  Article  Google Scholar 

  23. Mahmud, Abdi, C., & Mu’min, B. (2013). Removal natural organic matter (NOM) in peat water from wetland area by coagulation-ultrafiltration hybrid process with pretreatment two-stage coagulation. Journal of Wetlands Environmental Management, 1(1), 42–49. https://doi.org/10.20527/jwem.v1i1.88

  24. Marhaba, T. F., & Van, D. (2000). The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant. Journal of Hazardous Materials, 74(3), 133–147. https://doi.org/10.1016/S0304-3894(99)00190-9

    CAS  Article  Google Scholar 

  25. Moyo, W., Chaukura, N., Msagati, T. A. M., & Mamba, B. B. (2019). The properties and removal efficacies of natural organic matter fractions by South African drinking water treatment plants. Journal of Environmental Chemical Engineering, 7(3), 103101. https://doi.org/10.1016/j.jece.2019.103101

    CAS  Article  Google Scholar 

  26. Navalon, S., Alvaro, M., Alcaina, I., & Garcia, H. (2010). Multi-method characterization of DOM from the Turia river (Spain). Applied Geochemistry, 25(11), 1632–1643. https://doi.org/10.1016/j.apgeochem.2010.08.011

    CAS  Article  Google Scholar 

  27. Notodarmojo, S., Mahmud, & Larasati, A. (2017). Adsorption of natural organic matter (NOM) in peat water by local Indonesia tropical clay soils. International Journal of GEOMATE, 13(38), 111–119. https://doi.org/10.21660/2017.38.30379

  28. Peuravuori, J., & Pihlaja, K. (1997). Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta, 337, 133–149. https://doi.org/10.1016/S0003-2670(96)00412-6

    CAS  Article  Google Scholar 

  29. Postigo, C., Emiliano, P., Barceló, D., & Valero, F. (2018). Chemical characterization and relative toxicity assessment of disinfection byproduct mixtures in a large drinking water supply network. Journal of Hazardous Materials, 359, 166–173. https://doi.org/10.1016/j.jhazmat.2018.07.022

    CAS  Article  Google Scholar 

  30. Qadafi, M., Notodarmojo, S., & Zevi, Y. (2021). Performance of microbubble ozonation on treated tropical peat water: Effects on THM4 and HAA5 precursor formation based on DOM hydrophobicity fractions. Chemosphere, 279, 130642. https://doi.org/10.1016/j.chemosphere.2021.130642

    CAS  Article  Google Scholar 

  31. Qadafi, M., Notodarmojo, S., Zevi, Y., & Maulana, Y. E. (2020). Trihalomethane and haloacetic acid formation potential of tropical peat water: Effect of tidal and seasonal variations. International Journal of GEOMATE, 18(66), 111–117. https://doi.org/10.21660/2020.66.9487

    Article  Google Scholar 

  32. Raghunandan, M. E., & Sriraam, A. S. (2017). An overview of the basic engineering properties of Malaysian peats. Geoderma Regional, 11(February), 1–7. https://doi.org/10.1016/j.geodrs.2017.08.003

    Article  Google Scholar 

  33. Ritson, J. P., Bell, M., Graham, N. J. D., Templeton, M. R., Brazier, R. E., Verhoef, A., et al. (2014). Simulated climate change impact on summer dissolved organic carbon release from peat and surface vegetation: Implications for drinking water treatment. Water Research, 67, 66–76. https://doi.org/10.1016/j.watres.2014.09.015

    CAS  Article  Google Scholar 

  34. Siddique, A., Saied, S., Mumtaz, M., Hussain, M. M., & Khwaja, H. A. (2015). Multipathways human health risk assessment of trihalomethane ex- posure through drinking water. Ecotoxicology and Environmental Safety, 116, 129–136. https://doi.org/10.1016/j.ecoenv.2015.03.011

    CAS  Article  Google Scholar 

  35. Sillanpää, M., Ncibi, M. C., & Matilainen, A. (2018). Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. Journal of Environmental Management, 208, 56–76. https://doi.org/10.1016/j.jenvman.2017.12.009

    CAS  Article  Google Scholar 

  36. Sururi, M. R., Notodarmojo, S., & Roosmini, D. (2019). Aquatic organic matter characteristics and THMFP occurrence in a tropical river. International Journal of GEOMATE, 17(62), 203–211. https://doi.org/10.21660/2019.62.85393

    Article  Google Scholar 

  37. Tada, Y., Cordero, J. A., Echigo, S., & Itoh, S. (2021). Effect of coexisting manganese ion on the formation of haloacetic acids during chlorination. Chemosphere, 263, 127862. https://doi.org/10.1016/j.chemosphere.2020.127862

    CAS  Article  Google Scholar 

  38. Twardowski, M. S., Boss, E., Sullivan, J. M., & Donaghay, P. L. (2004). Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Marine Chemistry, 89, 69–88. https://doi.org/10.1016/j.marchem.2004.02.008

    CAS  Article  Google Scholar 

  39. USEPA. (1995). Method 552.2: Determination of haloacetic acids and dalapon in drinking water by liquid-liquid extraction, derivatization and gas chromatography with electron capture detection. National exposure research laboratory office of research and development U.S. Environmental protection agency, 1–32.

  40. USEPA. (1998). Final rule. Federal Register, 63(241), 69390–69476. https://www.federalregister.gov/documents/1998/12/16/98-32887/national-primary-drinking-water-regulations-disinfectants-and-disinfection-byproducts. Accessed 11/06/2020

  41. USEPA. (2003). Method 415.3 determination of total organic carbon and specific UV absorbance at 254 nm in source water and drinking water. National exposure research laboratory office of research and development U.S. Environmental protection agency, 28(1), 17–59. https://doi.org/10.35362/rie280958

    Article  Google Scholar 

  42. Vergnoux, A., Rocco, R. D., Domeizel, M., Guiliano, M., Doumenq, P., & Théraulaz, F. (2011). Effects of forest fires on water extractable organic matter and humic substances from Mediterranean soils: UV–vis and fl uorescence spectroscopy approaches. Geoderma, 160(3–4), 434–443. https://doi.org/10.1016/j.geoderma.2010.10.014

    CAS  Article  Google Scholar 

  43. Vieira, R. F., Berenguel, A. T., Silva, M. A., Vilaça, J. S., Domingues, V. F., & Figueiredo, S. A. (2012). Natural organic matter fractionation along the treatment of water for human consumption. Global Nest Journal, 14(4), 399–406. https://doi.org/10.30955/gnj.000828

    Article  Google Scholar 

  44. Wang, Y., Zhu, G., & Engel, B. (2019). Health risk assessment of trihalomethanes in water treatment plants in Jiangsu Province , China. Ecotoxicology and Environmental Safety, 170(December 2018), 346–354. https://doi.org/10.1016/j.ecoenv.2018.12.004

  45. Xie, Y. (2001). Analyzing haloacetic acids using gas chromatography/mass spectrometry. Water Research, 35(6), 1599–1602. https://doi.org/10.1016/S0043-1354(00)00397-3

    CAS  Article  Google Scholar 

  46. Yan, M., Korshin, G., Wang, D., & Cai, Z. (2012). Characterization of dissolved organic matter using high-performance liquid chromatography ( HPLC )– size exclusion chromatography ( SEC ) with a multiple wavelength absorbance detector. Chemosphere, 87(8), 879–885. https://doi.org/10.1016/j.chemosphere.2012.01.029

    CAS  Article  Google Scholar 

  47. Yu, H. W., Oh, S. G., Kim, I. S., Pepper, I., Snyder, S., & Jang, A. (2015). Formation and speciation of haloacetic acids in seawater desalination using chlorine dioxide as disinfectant. Journal of Industrial and Engineering Chemistry, 26, 193–201. https://doi.org/10.1016/j.jiec.2014.10.046

    CAS  Article  Google Scholar 

  48. Zhang, C., Han, X., Korshin, G. V., Kuznetsov, A. M., & Yan, M. (2021a). Interpretation of the differential UV-visible absorbance spectra of metal-NOM complexes based on the quantum chemical simulations for the model compound esculetin. Chemosphere, 276, 130043. https://doi.org/10.1016/j.chemosphere.2021.130043

    CAS  Article  Google Scholar 

  49. Zhang, C., Roccaro, P., Yan, M., & Korshin, G. V. (2021b). Interpretation of the formation of unstable halogen-containing disinfection by-products based on the differential absorbance spectroscopy approach. Chemosphere, 268, 129241. https://doi.org/10.1016/j.chemosphere.2020.129241

    CAS  Article  Google Scholar 

  50. Zhang, H., Qu, J., Liu, H., & Zhao, X. (2009). Characterization of isolated fractions of dissolved organic matter from sewage treatment plant and the related disinfection by-products formation potential. Journal of Hazardous Materials, 164(2–3), 1433–1438. https://doi.org/10.1016/j.jhazmat.2008.09.057

    CAS  Article  Google Scholar 

  51. Zhang, M., & He, Z. (2015). Characteristics of dissolved organic carbon revealed by ultraviolet – visible absorbance and fluorescence spectroscopy : The current status and future exploration. In SSSA Special Publications (Vol. 62, pp. 1–22). https://doi.org/10.2136/sssaspecpub62.2014.0032

  52. Zhong, X., Cui, C., & Yu, S. (2017a). Formation of aldehydes and carboxylic acids in humic acid ozonation. Water, Air, and Soil Pollution, 228(6), 1–11. https://doi.org/10.1007/s11270-017-3418-1

    CAS  Article  Google Scholar 

  53. Zhong, X., Cui, C., & Yu, S. (2017b). The determination and fate of disinfection by-products from ozonation-chlorination of fulvic acid. Environmental Science and Pollution Research, 24(7), 6472–6480. https://doi.org/10.1007/s11356-016-8350-1

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the Integrated Laboratory, Poltekkes Kemenkes Bandung, for providing a laboratory analysis facility.

Funding

This research was funded by The Indonesia Endowment Fund for Education (Lembaga Pengelola Dana Pendidikan/LPDP), Ministry of Finance Indonesia, Grant No. 201705210110920.

Author information

Affiliations

Authors

Contributions

Muammar Qadafi: conceptualization, methodology, investigation, data analysis, writing—original draft, project administration.

Suprihanto Notodarmojo: Supervision, conceptualization.

Yuniati Zevi: Supervision, validation, investigation.

Corresponding author

Correspondence to Muammar Qadafi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qadafi, M., Notodarmojo, S. & Zevi, Y. Haloacetic Acids Formation Potential of Tropical Peat Water DOM Fractions and Its Correlation with Spectral Parameters. Water Air Soil Pollut 232, 319 (2021). https://doi.org/10.1007/s11270-021-05271-4

Download citation

Keywords

  • Haloacetic acids
  • Dissolved organic matter fractions
  • Spectral parameters
  • Tropical peat water