Skip to main content

Use of Complex Network Modelling to Assess the Influence of the Parameters on Water Quality of Rivers

Abstract

The purpose of this study is to evaluate the influence of parameters, used in the monitoring and classification of the rivers water quality, for the analysis of environmental impacts in two important water resources in the interior of São Paulo State. Based on the complex networks theory for modelling, the used data refer to collections and laboratory analyses of water samples, carried out from 2006 to 2017, by a research team. The collections took place at strategic points on the rivers, in a densely populated and industrialized place, therefore of great economic importance for the country. The region bathed by the rivers presents evidence of anthropogenic actions due to domestic, industrial, and agricultural effluents, the main effluents from oil refining, representing a challenge for government agencies regarding the quality of water resources. For the analysis, a database was created containing information from the evaluations of thirteen monitoring parameters: pH, dissolved oxygen, biochemical oxygen demand, total nitrogen, total phosphorus, turbidity, Escherichia coli quantity, total solids, temperature, chemical oxygen demand, electrical conductivity, chlorides, and precipitation. The relationships among sampled parameters were analyzed applying Spearman correlations. The developed model sought to identify the most impacting variables on river pollution during the mentioned period, supported by the water quality index of the São Paulo State Environmental Company (CETESB). According to results, electrical conductivity and chlorides were the most influential network parameters in rivers pollution. Besides, the correlation among parameters is greater when more polluted the rivers are.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    Samples achievement and analyses were performed by team led by Dejanira de Franceschi de Angelis,Ph.D., from São Paulo State University “Julio de Mesquita Filho” - UNESP, Rio Claro-SP

References

  1. Albert, R., & Barabási, A.L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47. https://doi.org/10.1103/RevModPhys.74.47.

    Article  Google Scholar 

  2. APHA. (2005). Standard methods of examination of water and wastewater. Washington, 20th edn.

  3. Appleton, J., Tyson, J., & Mounce, R. (1986). The rapid determination of chemical oxygen demand in waste waters and effluents by flow injection analysis. Analytica Chimica Acta, 179, 267–278. https://doi.org/10.1016/S0003-2670(00)84471-2.

    Article  Google Scholar 

  4. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4-5), 175–308. https://doi.org/10.1016/j.physrep.2005.10.009.

    Article  Google Scholar 

  5. Brasil. (2020). Portaria PR-254 de 25 de Agosto de 2020. divulga a Estimativa da População de Estados e Municípios com data de Referência em 1 de Julho de 2020 Realizada pela Fundação Instituto Brasileiro de Geografia e Estatística (IBGE). Publicado no D.O.U. de 27 de agosto de 2020.

  6. Brown, R.M., Mcclland, N.I., Deininger, R.A., & GTozer, R. (1970). A water quality index - do we dare? Water and Sewage Works, 117(10), 339–373.

    Google Scholar 

  7. Bucci, M.M.H.S., Delgado, F.E.F., Santos, C.S., & Oliveira, L.F.C. (2015). Análise de metais, agrotóxicos, parâmetros físico-químicos e microbiológicos nas águas da Represa Dr. João Penido, Juiz de Fora, MG. Ambiente & Água-An Interdisciplinary Journal of Applied Science, 10(4), 804–824. https://doi.org/10.4136/ambi-agua.1534.

    Google Scholar 

  8. Caissie, D. (2006). The thermal regime of rivers: a review. Freshwater Biology, 51(8), 1389–1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x.

    Article  Google Scholar 

  9. CETESB. (2017). Relatório de Qualidade das Águas Interiores do Estado de São Paulo - Apêndice D: Índice de Qualidade das Águas São Paulo pp 34.

  10. Chen, X., Tan, M., Zhao, J., Yang, T., Wu, D., & Zhao, R. (2019). Identifying influential nodes in complex networks based on a spreading influence related centrality. Physica A: Statistical Mechanics and its Applications, 536, 122481. https://doi.org/10.1016/j.physa.2019.122481.

    Article  Google Scholar 

  11. CIIAGRO. (2019). Portal Agrometeorológico e Hidrológico do Estado de São Paulo. http://www.ciiagro.org.br/, Accessed 18 Jan 2019.

  12. CONAMA. (2005). Resolução CONAMA 357/2005. dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento Diá,rio Oficial da União 53.

  13. DAAE. (2021). Departamento de Água e Energia Elétrica (DAAE): Hidrologia. http://www.hidrologia.daee.sp.gov.br/. Accessed 14 June 2021.

  14. Demanboro, A.C., Laurentis, G.L., & Bettine, S.C. (2013). Cenários ambientais na bacia do rio Atibaia. Engenharia Sanitária e Ambiental, 18(1), 27–37. https://doi.org/10.1590/S1413-41522013000100004.

    Article  Google Scholar 

  15. Du, X., Shao, F., Wu, S., Sun, R., & Wang, C. (2017). Complex network modeling for mechanisms of red tide occurrence: a case study in Bohai sea and North Yellow Sea of China. Ecological Modelling, 361, 41–48. https://doi.org/10.1016/j.ecolmodel.2017.07.025.

    Article  Google Scholar 

  16. Edberg, S.C.L., Rice, E.W., Karlin, R.J., & Allen, M.J. (2000). Escherichia coli: the Best Biological Drinking Water Indicator for Public Health Protection. Journal of Applied Microbiology, 88 (S1), 106S–116S. https://doi.org/10.1111/j.1365-2672.2000.tb05338.x.

    Article  Google Scholar 

  17. Ghorbani, M.A., Karimi, V., Ruskeepää, H., Sivakumar, B., Pham, Q.B., Mohammadi, F., & Yasmin, N. (2021). Aapplication of complex networks for monthly rainfall dynamics over central vietnam. Stochastic Environmental Research and Risk Assessment, 35(3), 535– 548.

    Article  Google Scholar 

  18. Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., & et al (2019). Mapping the world’s free-flowing rivers. Nature, 569(7755), 215–221. https://doi.org/10.1038/s41586-019-1111-9.

    CAS  Article  Google Scholar 

  19. Groppo, J.D., Moraes, J.M., Genovez, A.M., & Martinelli, L.A. (2006). Estudo de tendência de parâmetros de qualidade de água na Bacia do Rio Piracicaba. Revista Brasileira de Recursos Hídricos, 11(3), 79–87.

    Article  Google Scholar 

  20. Hoeffel, J.L., Fadini, A.A., Machado, M.K., & CReis, J. (2008). Trajetórias do Jaguary unidades de conservação, percepção ambiental e turismo: um estudo na APA do Sistema Cantareira, São Paulo. Ambiente & Sociedade, 11(1), 131–148.

    Article  Google Scholar 

  21. Hong, S.H., Huang, W., Misue, K., & Quan, W. (2014). A framework for visual analytics of massive complex networks. In 2014 international conference on big data and smart computing. https://doi.org/10.1109/BIGCOMP.2014.6741399 (pp. 22–28). IEEE.

  22. Horton, R. (1965). An index number system for rating water quality. Journal of Water Pollution Control Federation, 37(3), 300–306.

    Google Scholar 

  23. IBGE. (2019). Censo Agropecuário: Resultados Definitivos 2017. https://biblioteca.ibge.gov.br/visualizacao/periodicos/3096/agro_2017_resultados_definitivos.pdf. Accessed 04 June 2021.

  24. IBGE. (2020a). Produção Agrícola Municipal 2019. https://biblioteca.ibge.gov.br/visualizacao/periodicos/66/pam_2019_v46_br_informativo.pdf. Accessed 14 June 2021.

  25. IBGE. (2020b). Produto Interno Bruto dos Municípios 2018. https://biblioteca.ibge.gov.br/visualizacao/livros/liv101776_informativo.pdf. Accessed 14 June 2021. ISBN: 978-65-87201-39-9.

  26. Ibrahim, E.M.E., El-Liethy, M.A., Abia, A.L.K., Hemdan, B.A., & Shaheen, M.N. (2019). Survival of e. coli O157: H7, salmonella typhimurium, HAdv2 and MNV-1 in river water under dark conditions and varying storage temperatures. Science of the Total Environment, 648, 1297–1304. https://doi.org/10.1016/j.scitotenv.2018.08.275.

    CAS  Article  Google Scholar 

  27. Iglesias, C., Torres, J.M., Nieto, P.J.G., Fernández, J.R.A., Muñiz, C.D., Piñeiro, J.I., & Taboada, J. (2014). Turbidity prediction in a river basin by using artificial nneural networks: a case study in northern Spain. Water Resources Management, 28(2), 319–331. https://doi.org/10.1007/s11269-013-0487-9.

    Article  Google Scholar 

  28. Mansor, M.T.C., Filho, J.T., & Roton, D.M. (2006). Avaliação preliminar das cargas difusas de origem rural, em uma sub-bacia do Rio Jaguari, SP. Revista Brasileira de Engenharia Agrícola e Ambiental, 10(3), 715–723. https://doi.org/10.1590/S1415-43662006000300026.

    Article  Google Scholar 

  29. Marandi, A., Polikarpus, M., & Jõeleht, A. (2013). A new approach for describing the relationship between electrical conductivity and major anion concentration in natural waters. Applied Geochemistry, 38, 103–109.

    CAS  Article  Google Scholar 

  30. Mariano, A.P., da Silva, A.J., de Oliveira, V.J.A., & de F de Angelis, D. (2010). Avaliação da Dispersão de Efluente Líquido de Refinaria de Petróleo. Engenharia Sanitaria e Ambiental, 15(3), 251–256. https://doi.org/10.1590/s1413-41522010000300008.

    Article  Google Scholar 

  31. Mortatti, B.C., Mendes, L.C., & Enzweiler, J. (2019). Rare earth element distribution in main lithologies of the Atibaia and Jaguari Rivers’ subbasins (Southeast Brazil). Journal of South American Earth Sciences, 91, 239–252.

    CAS  Article  Google Scholar 

  32. Nazempour, R., MAS, M., & Zio, E. (2018). A complex network theory approach for optimizing contamination wwarning sensor location in water distribution networks. International Journal of Disaster Risk Reduction, 30, 225–234. https://doi.org/10.1016/j.ijdrr.2018.04.029.

    Article  Google Scholar 

  33. Newman, M. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256. https://doi.org/10.1137/S003614450342480.

    Article  Google Scholar 

  34. Ning, L., Zhou, Y., Ye, C.C.S., & Shen, S. (2019). Using a complex network to analyze the effects of the three gorges dam on water level fluctuation in Poyang lake. ISPRS International Journal of Geo-Information, 8(11), 470.

    Article  Google Scholar 

  35. Nistor, M.S., Pickl, S.W., & Zsifkovits. M. (2015). Visual analytics of complex networks: A review from the computational perspective. In Proceedings of the international conference on modeling, simulation and visualization methods, computer engineering and applied computing (p. 10).

  36. Paulínia. (2018). Plano municipal de saneamento Básico. www.paulinia.sp.gov.br/downloads/seddemaseddema_Plano_Saneamento_Basico_Paulinia_11.10.18.pdf. Accessed 14 June 2021.

  37. PCJ, C.H.B. (2019). Report of situation of water resources, UGRHI 05 - PCJ Basins. Tech. rep. PCJ Basins Agency Foundation Piracicaba-SP, Brazil.

  38. Piratoba, A.R.A., Ribeiro, H.M.C., Morales, G.P., & Gonçalves, E.W.G. (2017). Characterization of water qualitypparameters in the port area of Barcarena, PA, Brazil. Ambiente e Agua-An Interdisciplinary Journal of Applied Science, 12(3), 435–456. https://doi.org/10.4136/ambi-agua.1910.

    CAS  Article  Google Scholar 

  39. PNUD. (2020). Atlas de Desenvolvimento Humano no Brasil. http://www.atlasbrasil.org.br. Accessed 14 June 2021.

  40. Ramos, M.A.G., de Oliveira, E.S.B., Pião, A.C.S., de O Leite, D.A.N., & de F de Angelis, D. (2016). Water quality index (WQI) of Jaguari and Atibaia Rivers in the region of Paulínia, São Paulo, Brazil. Environmental Monitoring and Assessment, 188(5), 263–267. https://doi.org/10.1007/s10661-016-5261-z.

    Article  Google Scholar 

  41. Ribeiro, G.M., Maia, C.E., & de Medeiros, J.F. (2005). Uso da regressão linear para estimativa da relação entre a condutividade elétrica e a composição iônica da água de irrigação. Revista Brasileira de Engenharia Agrícola e Ambiental, 9(1), 15–22. https://doi.org/10.1590/S1415-43662005000100003.

    Article  Google Scholar 

  42. Rusydi, A.F. (2018). Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conference Series: Earth and Environmental Science, 118, 012019. https://doi.org/10.1088/1755-1315/118/1/012019.

    Article  Google Scholar 

  43. Segundo, E.H.V., & Froehner, S.J. (2016). Modelo condutométrico para determinação da concentração de dióxido de carbono dissolvido no Reservatório Vossoroca, Brasil. Engenharia Sanitária e Ambiental, 21(3), 479–487. https://doi.org/10.1590/S1413-41522016120490.

    Article  Google Scholar 

  44. Shrestha, A.K., & Basnet, N. (2018). The correlation and regression analysis of physicochemical parameters of river water for the evaluation of percentage contribution to electrical conductivity. Journal of Chemistry pp 2018. https://doi.org/10.1155/2018/8369613.

  45. Sigrh. (2018). Situation of water resources in the state of são paulo: 2017. Tech. rep. São Paulo Brazil.

  46. São Paulo. (1977). Decreto 10.755, de Novembro de 1977. Dispõe sobre o enquadramento dos corpos de água receptores na classificação prevista no Decreto 8.468, de 8 de setembro de 1976, e dá providências correlatas. Diário Oficial Governo do Estado de São Paulo 221, Accessed 14 June 2021.

  47. Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology, 15(1), 72–101.

    Article  Google Scholar 

  48. Sundaray, S., Panda, U., Nayak, B., & Bhatta, D. (2006). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of the mahanadi river–estuarine system (India)–A case Study. Environmental Geochemistry and Health, 28(4), 317–330. https://doi.org/10.1007/s10653-005-9001-5.

    CAS  Article  Google Scholar 

  49. Wetzel, R.G., & Likens, G.E. (2013). Limnological analyses. New York: Springer.

    Google Scholar 

  50. WHO. (2017). Guidelines for drinking-water quality: Fourth edition incorporating the first addendum world health organization, Geneva, Switzerland, ISBN: 978-92-4-154995-0.

  51. WHO. (2018). A global overview of national regulations and standards for drinking-water quality World Health Organization, Geneva, Switzerland.

  52. Zhang, Z., Xu, E., & Zhang, H. (2021). Complex network and redundancy analysis of spatial–temporal dynamic changes and driving forces behind changes in oases within the Tarim Basin in northwestern china. Catena, 201, 105216. https://doi.org/10.1016/j.catena.2021.105216.

    Article  Google Scholar 

  53. Zhao, Z., Liu, G., Liu, Q., Huang, C., & Li, H. (2018). Studies on the spatiotemporal variability of river water quality and its relationships with soil and precipitation: A case study of the Mun River Basin in Thailand. International Journal of Environmental Research and Public Health, 15(11), 2466. https://doi.org/10.3390/ijerph15112466.

    CAS  Article  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fernanda Almeida Marchini Gayer.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gayer, F.A.M., de Angelis, D., de Angelis, A. et al. Use of Complex Network Modelling to Assess the Influence of the Parameters on Water Quality of Rivers. Water Air Soil Pollut 232, 324 (2021). https://doi.org/10.1007/s11270-021-05270-5

Download citation

Keywords

  • Water pollution
  • Water quality index
  • Complex network