Skip to main content
Log in

Post-treatment of Anaerobically Digested Hydrothermal Liquefaction Wastewater Using UV Photodegradation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biocrude oil generation from microalgae and cyanobacteria through hydrothermal liquefaction generates an aqueous by-product (post-hydrothermal liquefaction wastewater (PHWW)) rich in organic matter and aromatic compounds. Although anaerobic digestion has been used with promising results, the process is insufficient to reduce the remaining recalcitrant compounds. Photodegradation using UV/TiO2 was investigated as a post-treatment system of anaerobically digested-PHWW (AD-PHWW). The effects of initial pH and addition of H2O2 on the photodegradation efficiency in terms of chemical oxygen demand (COD), total phenolic content (TPh), and color removal were studied using a face-centered central composite design. Initial pH was highly influential for COD (\(p=0.045)\) and TPh (\(p=0.049)\) removal, whereas the addition of H2O2 had a higher impact on color removal (\(p=0.000)\). Optimum conditions at pH of 9.6 and H2O2 concentration of 3.55 g L−1 reached values of 50% for COD, 83% for TPh, and 95% for color after 240 min of irradiation. AD-PHWW photodegradation followed a pseudo-first-order kinetic. Energy recovery, including the biocrude oil from Spirulina, resulted in 41%. Results of ecotoxicity assays with Daphania similis and Eruca sativa Mill indicated that PHWW-treated samples were not negatively influenced by TiO2/UV treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ABNT. (2016) Aquatic ecotoxicology-Acute toxicity-Test with Daphnia spp (Cladocera, Crustacea) Ecotoxicologia aquática-Toxicidade aguda-Método de ensaio com Daphnia spp (Crustacea, Cladocera). ABNT NBR 12713. Associação Brasileira de Normas Técnicas

  • Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., & Hashib, M. A. (2010). Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination, 261, 3–18. https://doi.org/10.1016/J.DESAL.2010.04.062.

    Article  CAS  Google Scholar 

  • AkzoNobel. (2014). Hydrogen peroxide environmental product declaration. Gothenburg: AkzoNobel Sustainability.

  • Alimoradi, S., Stohr, H., Stagg-Williams, S., & Sturm, B. (2019). Effect of temperature on toxicity and biodegradability of dissolved organic nitrogen formed during hydrothermal liquefaction of biomass. Chemosphere, 124573. https://doi.org/10.1016/J.CHEMOSPHERE.2019.124573.

  • APHA. (1998). Standard methods for the examination of water and wastewater. American Public Health Association.

    Google Scholar 

  • Apollo, S., Onyango, M. S., & Ochieng, A. (2014). Integrated UV photodegradation and anaerobic digestion of textile dye for efficient biogas production using zeolite. Chemical Engineering Journal, 245, 241–247. https://doi.org/10.1016/j.cej.2014.02.027.

    Article  CAS  Google Scholar 

  • Barakat, M. A., Schaeffer, H., Hayes, G., & Ismat-Shah, S. (2005). Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Applied Catalysis b: Environmental, 57(1), 23–30. https://doi.org/10.1016/j.apcatb.2004.10.001.

    Article  CAS  Google Scholar 

  • Bizani, E., Fytianos, K., Poulios, I., & Tsiridis, V. (2006). Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. Journal of Hazardous Materials, 136, 85–94. https://doi.org/10.1016/j.jhazmat.2005.11.017.

    Article  CAS  Google Scholar 

  • Boyd, S. A., Shelton, D. R., Berry, D., & Tiedje, J. M. (1983). Anaerobic biodegradation of phenolic compounds in digested sludge. Applied and Environmental Microbiology, 46(1), 50–54.

    Article  CAS  Google Scholar 

  • Bueno, B., Américo Soares, L., Quispe-Arpasi, D., Kimiko Sakamoto, I., Zhang, Y., Amancio Varesche, M. B., et al. (2020). Anaerobic digestion of aqueous phase from hydrothermal liquefaction of Spirulina using biostimulated sludge. Bioresource Technology, 312, 123552. https://doi.org/10.1016/j.biortech.2020.123552.

    Article  CAS  Google Scholar 

  • Bueno, B., Quispe-Arpasi, D., Soares, L. A., Sakamoto, I. K., Varesche, M. B. A., Ribeiro, R., & Tommaso, G. (2021). Continuous anaerobic treatment of the aqueous phase of hydrothermal liquefaction from Spirulina using a horizontal-flow anaerobic immobilized biomass (HAIB) reactor. Water, Air, and Soil Pollution, 232(3), 1–16. https://doi.org/10.1007/s11270-021-05025-2.

    Article  CAS  Google Scholar 

  • Chaparro, T. R., & Pires, E. C. (2015). Post-treatment of anaerobic effluent by ozone and ozone/UV of a kraft cellulose pulp mill. Water Science and Technology, 71(3), 382–389. https://doi.org/10.2166/wst.2014.527.

    Article  Google Scholar 

  • Chatzisymeon, E., Xekoukoulotakis, N., & Mantzavinos, D. (2009). Determination of key operating conditions for the photocatalytic treatment of olive mill wastewaters. Catalysis Today, 144(1–2), 143–148. https://doi.org/10.1016/j.cattod.2009.01.037.

    Article  CAS  Google Scholar 

  • Chen, H., Wan, J., Chen, K., Luo, G., Fan, J., Clark, J., & Zhang, S. (2016). Biogas production from hydrothermal liquefaction wastewater (HTLWW): Focusing on the microbial communities as revealed by high-throughput sequencing of full-length 16S rRNA genes. Water Research, 106, 98–107. https://doi.org/10.1016/j.watres.2016.09.052.

    Article  CAS  Google Scholar 

  • Costa, J. C., & Alves, M. M. (2013). Posttreatment of olive mill wastewater by immobilized TiO2 photocatalysis. Photochemistry and Photobiology, 89(3), 545–551. https://doi.org/10.1111/php.12023.

    Article  CAS  Google Scholar 

  • Einaga, H., Futamura, S., & Ibusuki, T. (2002). Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: Comparison of decomposition behavior on photoirradiated TiO2 catalyst. Applied Catalysis b: Environmental, 38, 215–225.

    Article  CAS  Google Scholar 

  • Gai, C., Zhang, Y., Chen, W.-T., Zhang, P., & Dong, Y. (2015). An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa and Spirulina platensis. Energy Conversion and Management, 96, 330–339. https://doi.org/10.1016/j.enconman.2015.02.056.

    Article  CAS  Google Scholar 

  • Gomes, T. M., Rossi, F., Tommaso, G., Ribeiro, R., Kushida, M. M., Stablein, M. J., et al. (2017). Supplementation of nutrients for table beets by irrigation with treated dairy effluent. Engenharia Agrícola, 37(6), 1137–1147. https://doi.org/10.1590/1809-4430-eng.agric.v37n6p1137-1147/2017.

    Article  Google Scholar 

  • Gvozdenac, S., Indic, D., Vukovie, S., Grahovac, M., Vrhovac, M., Bogkovie, Z., & Marinkovie, N. (2011). Germination, root and shoot length as indicators of water quality. Acta Agriculturae Serbica, 16(31), 33–41.

    Google Scholar 

  • Ioannou, L. A., Puma, G. L., & Fatta-Kassinos, D. (2015). Treatment of winery wastewater by physicochemical, biological and advanced processes: A review. Journal of Hazardous Materials, 286, 343–368. https://doi.org/10.1016/J.JHAZMAT.2014.12.043.

    Article  CAS  Google Scholar 

  • Jing, J., Liu, M., Colvin, V. L., Li, W., & Yu, W. W. (2011). Photocatalytic degradation of nitrogen-containing organic compounds over TiO2. Journal of Molecular Catalysis a: Chemical, 351, 17–28. https://doi.org/10.1016/j.molcata.2011.10.002.

    Article  CAS  Google Scholar 

  • Kaur, J., & Pal, B. (2013). Photocatalytic degradation of N-heterocyclic aromatics—Effects of number and position of nitrogen atoms in the ring. Environmental Science and Pollution Research, 20, 3956–3964. https://doi.org/10.1007/s11356-012-1313-2.

    Article  CAS  Google Scholar 

  • Khodja, A. A., Sehili, T., Pilichowski, J. F., & Boule, P. (2001). Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. Journal of Photochemistry and Photobiology a: Chemistry, 141, 231–239. https://doi.org/10.1016/S1010-6030(01)00423-3.

    Article  CAS  Google Scholar 

  • Kumar, K. V., Porkodi, K., & Rocha, F. (2008). Langmuir-Hinshelwood kinetics–A theoretical study. Catalysis Communications, 9(1), 82–84. https://doi.org/10.1016/J.CATCOM.2007.05.019.

    Article  CAS  Google Scholar 

  • Leow, S., Witter, J., Vardon, D., Sharma, B., Guest, J., & Strathmann, T. (2015). Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition. Green Chemistry, 17(6), 3584–3599. https://doi.org/10.1039/C5GC00574D.

    Article  CAS  Google Scholar 

  • Liu, S., Wu, C.-H., & Huang, H.-J. (1998). Toxicity and anaerobic biodegradability of pyridine and its derivatives under sulfidogenic conditions. Chemosphere, 36(10), 2345–2357. https://doi.org/10.1016/S0045-6535(97)10203-X.

    Article  CAS  Google Scholar 

  • Mabuza, J., Otieno, B., Apollo, S., Matshediso, B., & Ochieng, A. (2017). Investigating the synergy of integrated anaerobic digestion and photodegradation using hybrid photocatalyst for molasses wastewater treatment. Euro-Mediterranean Journal for Environmental Integration, 2(1), 17. https://doi.org/10.1007/s41207-017-0029-6.

    Article  Google Scholar 

  • Menegassi, L. C., Rossi, F., Dominical, L. D., Tommaso, G., Montes, C. R., Gomide, C. A., & Gomes, T. M. (2020). Reuse in the agro-industrial: Irrigation with treated slaughterhouse effluent in grass. Journal of Cleaner Production, 251, 119698. https://doi.org/10.1016/j.jclepro.2019.119698.

    Article  CAS  Google Scholar 

  • Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review. Water Research, 139, 118–131. https://doi.org/10.1016/j.watres.2018.03.042.

    Article  CAS  Google Scholar 

  • Montgomery, D. C. (2013). Design and analysis of experiments (8th ed.). John Wiley & Sons.

    Google Scholar 

  • Pekakis, P., Xekoukoulotakis, N., & Mantzavinos, D. (2006). Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Research, 40(6), 1276–1286. https://doi.org/10.1016/j.watres.2006.01.019.

    Article  CAS  Google Scholar 

  • Pham, M., Schideman, L. C., Scott, J., Rajagopalan, N., & Plewa, M. J. (2013). Chemical and biological characterization of wastewater generated from hydrothermal liquefaction of Spirulina. Environmental Science & Technology, 47, 2131–2138. https://doi.org/10.1021/es304532c.

    Article  CAS  Google Scholar 

  • Pinheiro, H. M., Touraud, E., & Thomas, O. (2004). Aromatic amines from azo dye reduction: Status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and Pigments, 61(2), 121–139. https://doi.org/10.1016/J.DYEPIG.2003.10.009.

    Article  CAS  Google Scholar 

  • Posmanik, R., Labatut, R. A., Kim, A. H., Usack, J. G., Tester, J. W., & Angenent, L. T. (2017). Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresource Technology, 233, 134–143. https://doi.org/10.1016/j.biortech.2017.02.095.

    Article  CAS  Google Scholar 

  • Quispe-Arpasi, D., de Souza, R., Stablein, M., Liu, Z., Duan, N., Lu, H., et al. (2018). Anaerobic and photocatalytic treatments of post-hydrothermal liquefaction wastewater using H2O2. Bioresource Technology Reports, 3, 247–255. https://doi.org/10.1016/J.BITEB.2018.08.003.

    Article  Google Scholar 

  • Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 45(15), 4311–4340. https://doi.org/10.1016/j.watres.2011.05.035.

    Article  CAS  Google Scholar 

  • Roberts, G. W., Fortier, M. O. P., Sturm, B. S. M., & Stagg-Williams, S. M. (2013). Promising pathway for algal biofuels through wastewater cultivation and hydrothermal conversion. Energy and Fuels, 27, 857–867. https://doi.org/10.1021/ef3020603.

    Article  CAS  Google Scholar 

  • Ruirui, L., Xia, R., Na, D., Zhang, Y., Zhidan, L., & Haifeng, L. (2017). Application of zeolite adsorption and biological anaerobic digestion technology on hydrothermal liquefaction wastewater. Int J Agric & Biol Eng Open Access at Int J Agric & Biol Eng, 10(101), 163–168. https://doi.org/10.3965/j.ijabe.20171001.2704.

    Article  Google Scholar 

  • Si, B., Li, J., Zhu, Z., Shen, M., Lu, J., Duan, N., et al. (2018). Inhibitors degradation and microbial response during continuous anaerobic conversion of hydrothermal liquefaction wastewater. Science of the Total Environment, 630, 1124–1132. https://doi.org/10.1016/J.SCITOTENV.2018.02.310.

    Article  CAS  Google Scholar 

  • Si, B., Yang, L., Zhou, X., Watson, J., Tommaso, G., Chen, W.-T., et al. (2019). Anaerobic conversion of the hydrothermal liquefaction aqueous phase: Fate of organics and intensification with granule activated carbon/ozone pretreatment. Green Chemistry, 21(6), 1305–1318. https://doi.org/10.1039/C8GC02907E.

    Article  CAS  Google Scholar 

  • Sierra-Alvarez, R., & Lettinga, G. (1991). The effect of aromatic structure on the inhibition of acetoclastic methanogenesis in granular sludge. Appl Microbiol Biotechnol, 34, 544–550.

  • Singleton, V., Orthofer, R., & Lamuela-Raventós, R. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Methods in Enzymology, 299, 152–178.

    Article  CAS  Google Scholar 

  • Souza, R. P., Freitas, T. K. F. S., Domingues, F. S., Pezoti, O., Ambrosio, E., Ferrari-Lima, A. M., & Garcia, J. C. (2016). Photocatalytic activity of TiO2, ZnO and Nb2O5 applied to degradation of textile wastewater. Journal of Photochemistry and Photobiology a: Chemistry, 329, 9–17. https://doi.org/10.1016/J.JPHOTOCHEM.2016.06.013.

    Article  CAS  Google Scholar 

  • Tian, W., Liu, R., Wang, W., Yin, Z., & Yi, X. (2018). Effect of operating conditions on hydrothermal liquefaction of Spirulina over Ni/TiO2 catalyst. Bioresource Technology, 263, 569–575. https://doi.org/10.1016/j.biortech.2018.05.014.

    Article  CAS  Google Scholar 

  • Tommaso, G., Chen, W.-T., Li, P., Schideman, L. C., & Zhang, Y. (2015). Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae. Bioresource Technology, 178, 139–146. https://doi.org/10.1016/j.biortech.2014.10.011.

    Article  CAS  Google Scholar 

  • US EPA. 40 CFR § 419.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT) (1982). US: Environmental Protection Agency.

  • US EPA. Ecological Effects Test Guidelines. OPPTS 850.4200. Seed Germination/Root elongation Toxicity Test (1996). US: Environmental Protection Agency.

  • Vardon, D., Sharma, B., Scott, J., Yu, G., Wang, Z., Schideman, L. C., et al. (2011). Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresource Technology, 102(17), 8295–8303. https://doi.org/10.1016/j.biortech.2011.06.041.

    Article  CAS  Google Scholar 

  • Yang, L., Si, B., Tan, X., Chu, H., Zhou, X., Zhang, Y., et al. (2018). Integrated anaerobic digestion and algae cultivation for energy recovery and nutrient supply from post-hydrothermal liquefaction wastewater. Bioresource Technology, 266, 349–356. https://doi.org/10.1016/j.biortech.2018.06.083.

    Article  CAS  Google Scholar 

  • Yeber, M. C., Rodrı́guez, J., Freer, J., Durán, N., & Mansilla, H. D. (2000). Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere, 41(8), 1193–1197. https://doi.org/10.1016/S0045-6535(99)00551-2.

    Article  CAS  Google Scholar 

  • Zhu, Z., Si, B., Lu, J., Watson, J., Zhang, Y., & Liu, Z. (2017). Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk. Bioresource Technology, 243, 9–16. https://doi.org/10.1016/J.BIORTECH.2017.06.085.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first and second authors would like to thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the PhD fellowships (Finance Code 001).

Funding

This study was supported by FAPESP (Fundação para o Amparo à Pesquisa do Estado de São Paulo) (Process No. 2017–112486/6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovana Tommaso.

Ethics declarations

Competing of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 218 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quispe-Arpasi, D., Bueno, B.E., Espíndola, E.L.G. et al. Post-treatment of Anaerobically Digested Hydrothermal Liquefaction Wastewater Using UV Photodegradation. Water Air Soil Pollut 232, 347 (2021). https://doi.org/10.1007/s11270-021-05263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05263-4

Keywords

Navigation