Abstract
Soil moisture assessment on production land is gaining more attention as one of the critical factors and had a remarkable impact on agriculture production, life as well as global warming. Bibliometric analysis is performed by extracting datasets from SCOPUS from 2000 to 2020 to analyse soil moisture using remote sensing study and progress in the last two decades. The outcome indicates that study on the development of soil moisture monitoring tools using remote sensing has been increasing especially for international cooperation articles. International Geoscience and Remote Sensing Symposium (IGARSS) recorded the most productive journal published articles in this field. Among the top active countries that produce most articles were the USA followed by China. The current keywords search on soil mechanism and satellite technology frequently searched in this field. Global issues that focus on the relationship between soil moisture and environmental forecast such as drought, climate change and global warming by using remote sensing technology needed more high impact research outputs in the future.
Similar content being viewed by others
Data Availability
Not applicable.
Code Availability
Not applicable.
References
Ares, J., & Bertiller, M. (2001). Functional and structural landscape indicators of intensification, resilience and resistance in agroecosystems in southern Argentina based on remotely sensed data. Landscape Ecology, 16(3), 221–234.
Bell, J. M., Schwartz, R. C., McInnes, K. J., Howell, T. A., & Morgan, C. L. S. (2020). Effects of irrigation level and timing on profile soil water use by grain sorghum. Agricultural Water Management, 232, 106030. https://doi.org/10.1016/j.agwat.2020.106030
Berg, A., & Sheffield, J. (2018). Climate change and drought: The soil moisture perspective. Current Climate Change Reports, 4(2), 180–191. https://doi.org/10.1007/s40641-018-0095-0
Bodner, G., Nakhforoosh, A., and Kaul, H. (2015). Management of Crop Water under Drought: A Review. Agronomy for Sustainable Development, 35(2), 401–42. https://doi.org/10.1007/s13593-015-0283-4.
Cheema, M. J. M., Bastiaanssen, W. G. M., & Rutten, M. M. (2011). Validation of surface soil moisture from AMSR-E using auxiliary spatial data in the transboundary Indus Basin. Journal of Hydrology, 405(1–2), 137–149. https://doi.org/10.1016/j.jhydrol.2011.05.016
Chen, J. M., Chen, X., Ju, W., & Geng, X. (2005). Distributed hydrological model for mapping evapotranspiration using remote sensing inputs. Journal of Hydrology, 305(1–4), 15–39. https://doi.org/10.1016/j.jhydrol.2004.08.029
Cui, Y., Zeng, C., Zhou, J., Xie, H., Wan, W., Hu, L., Xiong, W., Chen, X., Fan, W., & Hong, Y. (2019). A spatio-temporal continuous soil moisture dataset over the Tibet Plateau from 2002 to 2015. Scientific Data, 6(1), 247. https://doi.org/10.1038/s41597-019-0228-x
Forbes, B. C., Stammler, F., Kumpula, T., Meschtyb, N., & Pajunen, A. (2009). High resilience in the Yamal-Nenets social– ecological system, West Siberian Arctic, Russia. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22041–22048. https://doi.org/10.1073/pnas.0908286106
Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S., Lawrence, D. M., & Gentine, P. (2019). Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 565, 476–479. https://doi.org/10.1038/s41586-018-0848-x
Guo, Y., Peng, C., Zhu, Q., Wang, M., Wang, H., Peng, S., & He, H. (2019). Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations and future challenges. Journal of Environmental Management, 250, 109403. https://doi.org/10.1016/j.jenvman.2019.109403
Haile, G. G., Tang, Q., Li, W., Liu, X., & Zhang, X. (2020). Drought: Progress in broadening its understanding. Wiley Interdisciplinary Reviews: Water. https://doi.org/10.1002/wat2.1407
Hengl, T., Minasny, B., & Gould, M. (2009). A geostatistical analysis of geostatistics. Scientometrics, 80(2), 491–514. https://doi.org/10.1007/s11192-009-0073-3
Jensen, C. R. (1982). Effect of Soil Water Osmotic Potential on Growth and Water Relationships in Barley during soil water depletion. Irrigation Science, 3(2), 111–21. https://doi.org/10.1007/BF00264854
Karthikeyan, L., Pan, M., Wanders, N., Kumar, D. N., & Wood, E. F. (2017). Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms. Advances in Water Resources, 109, 106–120. https://doi.org/10.1016/j.advwatres.2017.09.006
Leuven, R. S. E., & Poudevigne, I. (2002). Riverine landscape dynamics and ecological risk assessment. Freshwater Biology, 47(4), 845–865. https://doi.org/10.1046/j.1365-2427.2002.00918.x
Li, S., Zhou, D., Luan, Z., Pan, Y., & Jiao, C. (2011). Quantitative simulation on soil moisture contents of two typical vegetation communities in Sanjiang Plain, China. Chinese Geographical Science, 21(6), 723–733. https://doi.org/10.1007/s11769-011-0507-8
Maina, J., Venus, V., McClanahan, T. R., & Ateweberhan, M. (2008). Modelling susceptibility of coral reefs to environmental stress using remote sensing data and GIS models. Ecological Modelling, 218(3–4), 403. https://doi.org/10.1016/j.ecolmodel.2007.10.033
Marryanna, L., Aisah, S.S., Iskandar, S.K., Ghazali, H.M., and Rahman, K.A. (2012). Accumulated suspended sediment yield due to commercial timber harvesting at Upper Hills Dipterocarp forest, Malaysia.. International Proceedings of Chemical, Biological and Environmental Engineering (IPCBEE), 32, 146-350. http://www.ipcbee.com/vol32/026-ICESE2012-D30008.pdf
McColl, K. A., Alemohammad, S. H., Akbar, R., Konings, A. G., Yueh, S., & Entekhabi, D. (2017). The global distribution and dynamics of surface soil moisture. Nature Geoscience, 10(2), 100–104. https://doi.org/10.1038/ngeo2868
Medrano, H., Tomás, M., Martorell, S., Escalona, J.-M., Pou, A., Fuentes, S., Flexas, J., & Bota, J. (2015). Improving water use efficiency of vineyards in semi-arid regions. A review. Agronomy for Sustainable Development, 35(2), 499–517. https://doi.org/10.1007/s13593-014-0280-z
Noguchi, S, Kosugi, Y., Takanashi, S., Tani, M., Niiyama, K., Siti Aisah, S., & Lion, M. (2016). Long-term variation in soil moisture in Pasoh forest reserve, a lowland tropical rainforest in Malaysia. Journal of Tropical Forest Science, 28(5), 324–333. https://www.researchgate.net/publication/306479268
Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M., & Bloodworth, H. (2003). Effect of soil organic carbon on soil water retention. Geoderma, 116(1–2), 61–76. https://doi.org/10.1016/S0016-7061(03)00094-6
Reichle, R. H. (2008). Data assimilation methods in the Earth sciences. Advances in Water Resources, 31(11), 1411–1418. https://doi.org/10.1016/j.advwatres.2008.01.001
Sawatsky, N., & Li, X. (1997). Importance of soil-water relations in assessing the endpoint of bioremediated soils. Plant and Soil, 192, 227–236. https://doi.org/10.1023/A:1004232711046
Subbaiah, R. (2013). A review of models for predicting soil water dynamics during trickle irrigation. Irrigation Science, 31(3), 225–258. https://doi.org/10.1007/s00271-011-0309-x
Tang, X., Bullock, E. L., Olofsson, P., & Woodcock, C. E. (2020). Can VIIRS continue the legacy of MODIS for near real-time monitoring of tropical forest disturbance? Remote Sensing of Environment, 249, 112024. https://doi.org/10.1016/j.rse.2020.112024
Vermote, E. F., Saleous, N. Z. E., & Justice, C. O. (2002). Atmospheric correction of MODIS data in the visible to middle infrared: First results. Remote Sensing of Environment, 83(1–2), 97–111. https://doi.org/10.1016/S0034-4257(02)00089-5
Wang, M. (2015). Global trends in soil monitoring research from 1999–2013: A bibliometric analysis. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 65(6), 483–495. https://doi.org/10.1080/09064710.2015.1030443
Wang, H., He, Q., Liu, X., Zhuang, Y., & Hong, S. (2012). Global urbanization research from 1991 to 2009: A systematic research review. Landscape and Urban Planning, 104(3–4), 299–309. https://doi.org/10.1016/j.landurbplan.2011.11.006
Wolfe, R. E., Nishihama, M., Fleig, A. J., Kuyper, J. A., Roy, D. P., Storey, J. C., & Patt, F. S. (2002). Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sensing of Environment, 83(1–2), 31–49. https://doi.org/10.1016/S0034-4257(02)00085-8
Yamashita, T., Kasuya, N., Kadir, W. R., Chik, S. W., Seng, Q. E., & Okuda, T. (2003). Soil and Belowground Characteristics of Pasoh Forest Reserve. Pasoh (pp. 89–109). Springer Japan. https://doi.org/10.1007/978-4-431-67008-7_7
Zhang, H., Liu, X., Yi, J., Yang, X., Wu, T., He, Y., Duan, H., Liu, M., & Tian, P. (2020). Bibliometric analysis of research on soil water from 1934 to 2019. Water, 12(6), 1631. https://doi.org/10.3390/w12061631
Funding
This study was supported by the Fundamental Research Grant Scheme (FRGS) by Ministry of Higher Education, Malaysia (FRGS/1/2019/WAB07/NRE//2).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Badaluddin, N.A., Lion, M., Razali, S.M. et al. Bibliometric Analysis of Global Trends on Soil Moisture Assessment Using the Remote Sensing Research Study from 2000 to 2020. Water Air Soil Pollut 232, 271 (2021). https://doi.org/10.1007/s11270-021-05218-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11270-021-05218-9