Skip to main content

Enzyme Activities as Indicators of Soil Quality: Response to Intensive Soybean and Rice Crops

Abstract

Soil enzyme activities are often used as indicators of soil contamination. The responses of the activities of specific soil enzymes, dehydrogenase, acid phosphatase, β-glucosidase, carboxylesterase, and urease to different land uses (soybean and rice crops, and a reference site) were analyzed. Changes in activity at the start and end of each crop cycle were quantified. In general, the catalytic activity of all enzymes was lower in both crops than in the reference site. Regarding the soybean crop, all the enzyme activities decreased at the start of the crop cycle (27.5–53%, with respect to reference site values), whereas only acid phosphatase, β-glucosidase and carboxylesterase were lower at the end of the cycle (70.3%, 29.44%, and 45.79%; respectively). In the rice crop, dehydrogenase, acid phosphatase, and β-glucosidase activities were lower at the start of the cycle (27.88%, 50.32%, and 23.21%; respectively), with respect to reference site. However, the enzyme activity was lower at the end of the cycle compared to the reference site (dehydrogenase 20.47%, acid phosphatase 72.72%, β-glucosidase 57.77%, carboxylesterase 27.59%), except for urease activity. Current results suggested that the use of enzyme activities as indicators of soil quality is a viable approach to assess the pesticide impact in agricultural soils of Argentina.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Supporting data of the study are available in this published article [supplementary information]. In addition, data sets generated and analyzed during the study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. ACPA (2015). Asociación Correntina de Plantadores de Arroz. Relevamientos arrocero Nacional. Informe de campaña 2014/15: fin de siembra

  2. Alonso, L. L., Demetrio, P. M., Etchegoyen, M., & Marino, D. J. (2018). Glyphosate and atrazine in rainfall and soils in agroproductive areas of the pampas region in Argentina. The Science of Total Environmental, 645, 89–96. https://doi.org/10.1016/j.scitotenv.2018.07.134

    CAS  Article  Google Scholar 

  3. Alvear, M., Rosas, A., Rouanet, J. L., & Borine, F. (2006). Effects of three soil tillage systems on some biological activities in an Ultisol from southern Chile. Soil & Tillage Research, 82, 195–202. https://doi.org/10.1016/j.still.2004.06.002

    Article  Google Scholar 

  4. Anastassiades, M., Lehotay, S., Stajnbaher, D., & Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86(2), 412–431. https://doi.org/10.1093/jaoac/86.2.412

    CAS  Article  Google Scholar 

  5. Attademo, A. M., Peltzer, P. M., Lajmanovich, R. C., Cabagna-Zenklusen, M., Junges, C. M., Lorenzatti, E., & Grenón, P. (2015). Biochemical changes in certain enzymes of Lysapsus limellium (Anura: Hylidae) exposed to chlorpyrifos. Ecotoxicology and Environmental Safety, 113, 287–294. https://doi.org/10.1016/j.ecoenv.2014.12.021

    CAS  Article  Google Scholar 

  6. Baćmaga, M., Boros, E., Kucharski, J., & Wyszkowska, J. (2012). Enzymatic activity in soil contaminated with the Aurora 40 Wg herbicide. Environmetal Protection Engeneering, 38, 91–102.

    Google Scholar 

  7. Baćmaga, M., Kucharski, J., Wyszkowska, J., Borowik, A., & Tomkiel, M. (2014). Responses of microorganisms and enzymes to soil contamination with metazachlor. Environmental Earth Science, 72, 2251–2262.

    Article  Google Scholar 

  8. Begenesic, F. (1998). Rice. Agricultural Panorama. Secretary Ship of Agriculture, Livestock, Fisheries and Food, 2, 1–47.

    Google Scholar 

  9. Błońska, E., Kacprzyk, M., & Spólnik, A. (2017). Effect of deadwood of different tree species in various stages of decomposition on biochemical soil properties and carbon storage. Ecological Research, 32, 193–203. https://doi.org/10.1007/s11284-016-1430-3

    CAS  Article  Google Scholar 

  10. Bollag, J. M., & Liu,S. Y. (1990). Biological transformation processes of pesticides. In: Cheng, H.H (Ed.), Pesticides in the Soil Environment: Processes, Impact and Modelling. (pp 169–2011). Soil Science Society of America, Madison, WIS, USA.

  11. Borowik, A., Wyszkowska, J., Kucharski, J., Baćmaga, M., & Tomkiel, M. (2017). Response of microorganisms and enzymes to soil contamination with a mixture of terbuthylazine, mesotrione, and S-metolachlor. Environmental Science and. Pollution Research, 24(2), 1910–1925. https://doi.org/10.1007/s11356-016-7919-z

    CAS  Article  Google Scholar 

  12. Bouza, M. E., et al. (2016). Economics of land degradation in Argentina. In E. Nkonya, A. Mirzabaev, & J. von Braun (Eds.), Economics of land degradation and improvement – A global assessment for sustainable development. Springer. https://doi.org/10.1007/978-3-319-19168-3_11

    Chapter  Google Scholar 

  13. Castignani, H. (2011). Zonas agroeconómicas homogéneas de Santa Fe. Estudios socioeconómicos de la sustentabilidad de los sistemas de producción y recursos naturales. Áreas Estratégica de Economía y Sociología (AEES-INTA). Ciudad Autónoma de Buenos Aires, Argentina, pp 61.

  14. Conn, C., & Dighton, J. (2000). Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biology & Biochemistry, 32, 489–496. https://doi.org/10.1016/S0038-0717(99)00178-9

    CAS  Article  Google Scholar 

  15. Cycoń, M., Piotrowska-Seget, Z., & Kozdrój, J. (2010). Microbial characteristics of sandy soils exposed to diazinon underlaboratory conditions. World Journal Microbiology Biotechnology, 26, 409–418. https://doi.org/10.1007/s11274-009-0183-3

    CAS  Article  Google Scholar 

  16. Demonte, L. D., Michlig, N., Gaggiotti, M., Adam, C. G., Beldoménico, H. R., & Repetti, M. R. (2018). Determination of glyphosate, AMPA and glufosinate in dairy farm water from Argentina using a simplified UHPLC-MS/MS method. The Science of Total Environmental, 645, 34–43. https://doi.org/10.1016/j.scitotenv.2018.06.340

    CAS  Article  Google Scholar 

  17. Dong, W., Liu, E., Yan, C., Tian, J., Zhang, H., & Zhang, Y. (2017). Impact of no tillage vs. conventional tillage on the soil bacterial community structure in a winter wheat cropping succession in northern China. European Journal of Soil Biology, 80, 35–42. https://doi.org/10.1016/j.ejsobi.2017.03.001

    Article  Google Scholar 

  18. Du, Z., Zhu, Y., Zhu, L., Zhang, J., Li, B., Wang, J., Wang, J., Zhang, C., & Cheng, C. (2018). Effects of the herbicide mesotrione on soil enzyme activity and microbial communities. Ecotoxicology and Environmental Safety, 164, 571–578. https://doi.org/10.1016/j.ecoenv.2018.08.075

    CAS  Article  Google Scholar 

  19. EL-Saeid, M. H., & Alghamdi, A. G. (2020). Identification of pesticide residues and prediction of their fate in agricultural soil. Water, Air, & Soil Pollution, 231, 284.

    CAS  Article  Google Scholar 

  20. Floch, C., Chevremont, A. C., Joanico, K., Capowiez, Y., & Criquet, S. (2011). Indicators of pesticide contamination: Soil enzyme compared to functional diversity of bacterial communities via Biolog®Ecoplates. European Journal of Soil Biology, 47, 256–263. https://doi.org/10.1016/j.ejsobi.2011.05.007

    CAS  Article  Google Scholar 

  21. FAO-UNESCO (1971–1981). United Nations Educational, Scientific and Cultural Organization (UNESCO), Food and Agriculture Organization of the United Nations (FAO), Soil Map of the World: Vol. 1 -10. UNESCO: Paris, France.

  22. Gamboa, A. M., & Galicia, L. (2011). Differential influence of land use/cover change on topsoil carbon and microbial activity in low-latitude temperate forests. Agriculture, Ecosystems & Environmental, 142, 280–290. https://doi.org/10.1016/j.agee.2011.05.025

    Article  Google Scholar 

  23. Gianfreda, L., & Rao, M. A. (2008). Interactions between xenobiotics and microbial andenzymatic soil activity. Critical Reviews Environmental Science & Technology, 38, 269–310. https://doi.org/10.1080/10643380701413526

    CAS  Article  Google Scholar 

  24. Hai-Ming, T., Xiao-Ping, X., Wen-Guang, T., Ye-Chun, L., Ke, W., & Guang-Li, Y. (2014). Effects of winter cover crops residue returning on soil enzyme activities and soil microbial community in double-cropping rice Fields. PLoSone, 9(6), e100443. https://doi.org/10.1371/journal.pone.0100443

    CAS  Article  Google Scholar 

  25. INTA (2019). Instituto Nacional de Tecnología Agropecuaria. Mapa de suelo de la provincial de Santa Fe. http://www.geointa.inta.gob.ar/2014/05/22/mapa-de-suelos-de-la-provincia-de-santa-fe/. Accessed 10 Apr 2020

  26. Kong, C. H., Wang, P., Zhao, H., Xu, X. H., & Zhu, Y. D. (2008a). Impact of allele chemical exuded from allelopathic rice on soil microbial community. Soil Biology & Biochemistry, 40(7), 1862–1869. https://doi.org/10.1016/j.soilbio.2008.03.009

    CAS  Article  Google Scholar 

  27. Kong, C. H., Wang, P., Gu, Y., Xu, X. H., & Wang, M. L. (2008b). The fate and impact on microorganisms of rice allele chemicals in paddy soil. Journal of Agriculture Food Chemistry, 56(13), 5043–5049. https://doi.org/10.1021/jf8004096

    CAS  Article  Google Scholar 

  28. Kuhur, M., Gartia, S. K., & Patel, A. K. (2012). Quantifying the contribution of different soil properties on enzyme activities in dry tropical ecosystems. Journal of Agriculture & Biology Science, 7(9), 763–773. https://doi.org/10.6088/ijes.00202030109

    CAS  Article  Google Scholar 

  29. Lalitha, S., & Santhaguru, K. (2012). Improving soil physical properties and effect on tree legume seedlings growth under barren soil. Agricultural Science Research Journal, 2, 126–130.

    Google Scholar 

  30. Lessard, I., Sauvé, S., & Deschênes, L. (2014). Toxicity response of a new enzyme based functional diversity methodology for Zn contaminated field collected soils. Soil Biology & Biochemistry, 71, 87–94. https://doi.org/10.1016/j.soilbio.2014.01.002

    CAS  Article  Google Scholar 

  31. Liu, X. L., He, Y. Q., Zhang, H. L., Schroder, J. K., Li, C. L., Zhou, J., & Zhang, Z. Y. (2010). Impact of land use and soil fertility on distributions of soil aggregate fractions and some nutrients. Pedosphere, 20(5), 666–673. https://doi.org/10.1016/S1002-0160(10)60056-2

    CAS  Article  Google Scholar 

  32. López-Lanús, B., & Marino, G.D. (2010). Aportes al conocimiento de la ecología del charlatán y su estado actual en la provincia de Santa Fe, Argentina. Temas de Naturaleza y Conservación, Monografía de Aves Argentinas No 7. Buenos Aires.

  33. Lupi, L., Miglioranza, K. S. B., Aparicio, V. C., Marino, D., Bedmar, F., & Wunderlin, D. A. (2015). Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Science of Total Environmental, 536, 687–694. https://doi.org/10.1016/j.scitotenv.2015.07.090

    CAS  Article  Google Scholar 

  34. Nannipieri, P., Kandeler, E., & Ruggiero, P. (2002). Enzyme activities and microbiological and biochemical processes in soil. In R. G. Burns & R. P. Dick (Eds.), Enzymes in the Environment: Activity, Ecology, and Applications. Marcel (pp. 1–33). Dekker Inc.

    Google Scholar 

  35. Nannipieri, P., Trasar-Cepeda, C., & Dick, R. P. (2018). Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretation and meta-analysis. Biology Fertil Soils, 54, 11–19. https://doi.org/10.1007/s00374-017-1245-6

    CAS  Article  Google Scholar 

  36. Makoi, J. H. J. R., & Ndakidemi, P. A. (2008). Soil enzymes: Examples of their potential roles in the ecosystem. African Journal of Biotechnology, 7, 181–191.

    CAS  Google Scholar 

  37. Maurya, B. R., Singh, V., & Dhyani, P. P. (2011). Enzymatic activities and microbial population in agric soils of Almora District of Central Himalaya as influenced by altitudes. International Journal of Soil Science, 6, 238–248. https://doi.org/10.3923/ijss.2011.238.248

    CAS  Article  Google Scholar 

  38. Monkiedje, A., Ilori, M. O., & Spiteller, M. (2002). Soil quality changes resulting from the application of the fungicides mefenoxam and metalaxyl to a sandy loam soil. Soil Biology & Biochemistry, 34, 1939–1948. https://doi.org/10.1016/S0038-0717(02)00211-0

    CAS  Article  Google Scholar 

  39. Ochoa, V., Hinojosa, B., Gómez, B., & García, R. (2007). Actividades enzimáticas como indicadores de calidad del suelo en agroecosistemas ecológicos. Iniciación a la Investigación, (2). https://revistaselectronicas.ujaen.es/index.php/ininv/article/view/251. Accessed 07 Apr 2020

  40. Paz-Ferreiro, J., & Fu, S. (2013). Biological indices for soil quality evaluation: perspectives and limitations. Land Degradation & Development, 27, 14–25. https://doi.org/10.1002/ldr.2262

    Article  Google Scholar 

  41. Popova, I. E., & Deng, S. (2010). A high throughput microplate assay for simultaneous colorimetric quantification of multiple enzyme activities in soil. Applied Soil Ecology, 45, 315–318. https://doi.org/10.1016/j.apsoil.2010.04.004

    Article  Google Scholar 

  42. Pulford, I. D., & Tabatabai, M. A. (1988). Effect of water logging on enzyme activities in soils. Soil Biology & Biochemistry, 20, 215–219. https://doi.org/10.1016/0038-0717(88)90039-9

    CAS  Article  Google Scholar 

  43. Raiesi, F., & Salek-Gilani, S. (2018). The potential activity of soil extracellular enzyme as an indicator for ecological restoration of rangeland soils after agricultural abandonment. Applied Soil Ecology, 126, 140–147. https://doi.org/10.1016/j.apsoil.2018.02.022

    Article  Google Scholar 

  44. Ramirez Haberkon, N. B., Aparicio, V., & Mendez, M. (2021). First evidence of glyphosate and aminomethyl phosphonic acid (AMPA) in the respirable dust (PM10) emitted from unpaved rural roads of Argentina. Science of the Total Environment, 773, 145055.

    CAS  Article  Google Scholar 

  45. Rasool, N., & Reshi, Z. A. (2010). Effect of the fungicide mancozeb at different application rates on enzyme activities in a silt loam soil of the Kashmir Himalaya, India. Tropical Ecology, 51, 199–205. https://doi.org/10.1155/2014/702909

    CAS  Article  Google Scholar 

  46. Riah, W., Laval, K., Mougin, C., Laroche-Ajzenberg, E., Latour, X., & Trinsoutrot-Gattin, I. (2014). Effects of pesticides on soil enzyme: A review. Environmental Chemistry Letters, 12, 257–273. https://doi.org/10.1007/s10311-014-0458-2

    CAS  Article  Google Scholar 

  47. Rossi, A., Fantón, N., Michligc, M. P., Repetti, M. R., & Cazenave, J. (2020). Fish inhabiting rice fields: Bioaccumulation, oxidative stress and neurotoxic effects after pesticides application. Ecological Indicators, 113, 106186. https://doi.org/10.1016/j.ecolind.2020.106186

    CAS  Article  Google Scholar 

  48. Sanchez-Hernandez, J. C., del Pino, J. N., & Domínguez, J. (2015). Earthworm induced carboxylesterase activity in soil: Assessing the potential for detoxification and monitoring organophosphorus pesticides. Ecotoxicology and Environmetal Safety, 122, 303–312. https://doi.org/10.1016/j.ecoenv.2015.08.012

    CAS  Article  Google Scholar 

  49. Sanchez-Hernandez, J. C., del Pino, J. N., Capowiez, Y., Mazzia, C., & Rault, M. (2018). Soil enzyme dynamics in chlorpyrifos-treated soils under the influence of earthworms. The Science of Total Environmental, 612, 1407–1416. https://doi.org/10.1016/j.scitotenv.2017.09.043

    CAS  Article  Google Scholar 

  50. Schinner, F., Kandeler, E., Ohlinger, R., & Margesin, R. (1996). Methods in Soil Biology. Springer-Verlag.

    Book  Google Scholar 

  51. Sharma, S. K., Ramesh, A., Sharma, M. P., Joshi, O. P., Govaerts, B., Steenwerth, K. L., & Karlen, D. L. (2010). Microbial community structure and diversity as indicators for evaluating soil quality. In E. Lichtfouse (Ed.), Biodiversity, Biofuels, Agroforestry and Conservation Agriculture, (pp 317–358). (Vol. 5). Dordrecht: Springer.

    Google Scholar 

  52. Singh, B. (2014). Review on carboxylesterase: general proprieties and role in organophosphate pesticide degradation. Biochemistry & Molecular Biology, 2, 1–6. https://doi.org/10.12966/bmb.03.01.2014

    Article  Google Scholar 

  53. Sinsabaugh, R. L., Carreiro, M. M., & Repert, D. A. (2002). Allocation of extracellular enzymatic activity in relation to litter composition, N deposition and mass loss. Biogeochemistry, 60, 1–24. https://doi.org/10.1023/A:1016541114786

    CAS  Article  Google Scholar 

  54. Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., et al. (2008). Stoichiometry of soil enzyme activity at global scale. Ecological Letters, 11, 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x

    Article  Google Scholar 

  55. Srilatha, M. (2014). Changes in soil quality, crop productivity and sustainability in rice-rice cropping system under long term fertilizer experiment. Ph.D (Ag) Thesis. Rajendranagar, Hyderabad: Acharya N.G. Ranga Agricultural University.

  56. Steiner, C., Teixeira, W., Lehmann, J., Nehls, T., de Macêdo, J., Blum, W., & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291, 275–290. https://doi.org/10.1007/s11104-007-9193-9

    CAS  Article  Google Scholar 

  57. Tan, X., Xie, B., Wang, J., He, W., Wang, X., & Wei, G. (2014). County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: Implications for soil quality assessment. The Scientific World Journal, 2014, 535768. https://doi.org/10.1155/2014/535768

    Article  Google Scholar 

  58. Tejada, M. (2009). Evolution of soil biological properties after addition of glyphosate, diflufenican, and glyphosate plus diflufenican herbicides. Chemosphere, 76, 365–373. https://doi.org/10.1016/j.chemosphere.2009.03.040

    CAS  Article  Google Scholar 

  59. Trasar-Cepeda, C., Camiña, F., Leirós, C. M., & Gil-Sotres, F. (1999). An improved method to measure catalase activity in soils. Soil Biology & Biochemistry, 31, 1–3. https://doi.org/10.1016/s0038-0717(98)00153-9

    Article  Google Scholar 

  60. Trivedi, P., Anderson, I. C., & Singh, B. K. (2013). Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction. Trends Microbiology, 21, 641–651. https://doi.org/10.1016/j.tim.2013.09.005

    CAS  Article  Google Scholar 

  61. Vandana, L. J., Rao, P. C., & Padmaja, G. (2012). Effect of crop cover on soil enzyme activity. Journal of Research ANGRAU, 40, 1–5.

    Google Scholar 

  62. VeVerka, J. S., Udawatta, R. P., & Kremer, R. J. (2019). Soil health indicator responses on Missouri claypan soils affected by landscape position, depth, and management practices. Journal of Soil Water Conservation, 74, 126–137. https://doi.org/10.2489/jswc.74.2.126

    Article  Google Scholar 

  63. von Mersi, W., & Schinner, F. (1991). An improved and accurate method for determining the dehydrogenaseactivity of soils with iodonitrotetrazolium chloride. Biology Fertil Soils, 11, 216–220.

    Article  Google Scholar 

  64. Walia, A., P. Mehta, S. Guleria, A. Chauhan, C., & Shirkot, K.. (2014). Impact of fungicide mancozeb at different application rates on soil microbial populations, soil biological processes, and enzyme activities in soil. The Science World Journal, 702909. https://doi.org/10.1155/2014/702909

  65. Yan, H., Wang, D. D., Dong, B., Tang, F. F., Wang, B. C., Fang, H., & Yu, Y. L. (2011). Dissipation of carbendazim and chloramphenicol alone and in combination and their effects on soil fungal: Bacterial ratios and soil enzyme activities. Chemosphere, 84, 634–664. https://doi.org/10.1016/j.chemosphere.2011.03.038

    CAS  Article  Google Scholar 

  66. Yu, P. J., Liu, S. W., Xu, Q., Fan, G. H., Huang, Y. X., & Zhou, D. W. (2019a). Response of soil nutrients and stoichiometric ratios to short-term land use conversions in a salt-affected region, northeastern China. Ecological Engineering, 129, 22–28. https://doi.org/10.1016/j.ecoleng.2019.01.005

    Article  Google Scholar 

  67. Yu, P., Tang, X., Zhang, A., Fan, G., & Liu, S. (2019b). Responses of soil specific enzyme activities to short-term land use conversions in a salt-affected region, northeastern China. The Science of Total Environmental, 687, 939–945. https://doi.org/10.1016/j.scitotenv.2019.06.171

    CAS  Article  Google Scholar 

  68. Zhang, Q., Feng, J., Wu, J. J., Zhang, D. D., Chen, Q., Li, Q. X., Long, C. Y., Feyissa, A., & Cheng, X. L. (2019). Variations in carbon-decomposition enzyme activities respond differently to land use change in Central China. Land Degradation & Development, 30, 459–469. https://doi.org/10.1002/ldr.3240

    CAS  Article  Google Scholar 

  69. Zeng, L., Liao, M., Chen, C., & Huang, C. (2005). Variation of soil microbial biomass and enzyme activities at different growth stages of rice (Oryza sativa). Rice Science, 12, 283–288.

    Google Scholar 

Download references

Acknowledgements

We are grateful to the farmers (Cooperativa “El Progreso” and Cooperativa “Villa Elisa”) for the permission to fieldwork in their farms and to Secretaria de Agricultura Familiar de la Nación Argentina by assistance during the fieldwork.

Funding

This work was carried out under the project “Importancia de los bordes de campo de arroz orgánico en el rol de los vertebrados en el control biológico de plagas” supported by Curso de Acción para la Investigación y Desarrollo (Programa de I + D Orientado a Problemas Sociales y Productivos, UNL), l ed by A. M. Attademo and P. M. Peltzer,  and programme of academic mobility (PROMAC, UNL).

Author information

Affiliations

Authors

Contributions

Andres M. Attademo Conception, Design, Execution, Interpretation and Writing.

Juan C. Sanchez-Hernandez: Conception.

Rafael C. Lajmanovich: Design and Interpretation.

Maria Rosa Repetti: Execution and Analyses.

Paola Peltzer: Execution and Interpretation.

Corresponding author

Correspondence to Andrés M. Attademo.

Ethics declarations

Ethics approval and consent to participate

The research has been carried on according to the Ethics Committee of the Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina. http://www.fbcb.unl.edu.ar/pages/investigacion/comite-deetica.php All authors gave their consent to participate.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Attademo, A.M., Sanchez-Hernandez, J.C., Lajmanovich, R.C. et al. Enzyme Activities as Indicators of Soil Quality: Response to Intensive Soybean and Rice Crops. Water Air Soil Pollut 232, 295 (2021). https://doi.org/10.1007/s11270-021-05211-2

Download citation

Keywords

  • Soil pollution
  • Enzyme activity
  • Soybean crop
  • Rice crop