Skip to main content
Log in

Modeling Temporal Variation of Estrogen Levels Due to Interconversion

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Estrogens are known to have an adverse impact on the reproductive functions of aquatic animals in natural waters. However, the estrogen levels are usually below the detection limits and vary drastically in the surface water, making it difficult to assess the environmental exposure in watershed management. While dynamic models are useful to bridge the data gaps on estrogen levels in surface water, the complex interconversion among estrogens hinders the accurate calculation of estrogens levels. To address the issue, we developed a kinetic model consisting of three first-order ordinary differential equations to track the concentration change of three key estrogens, estrone (E1), 17α-estradiol (E2α), and 17β-estradiol (E2β) with time resulting from the complex interconversion process. The model was solved by the matrix method and applied to 15 sets of lab data measured both in anaerobic and aerobic conditions as well as in aqueous solutions and solids with various initial estrogen concentrations from earlier studies. The coefficient of determination (R2) values for those datasets range between 0.842 and 0.989, indicating very good accuracy for the application to the natural environment. This kinetic model can help managers to assess the environmental exposure in watershed management and make determinations on effective solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Code Availability

Code availability is not applicable to this article.

References

  • Bai, X. (2020). Fate and transport of estrogens and estrogen conjugates in manure-amended soils. Animal Manure: Production, Characteristics, Environmental Concerns, and Management, 67, 183–199. https://doi.org/10.2134/asaspecpub67.c14

    Article  Google Scholar 

  • Bai, X., Casey, F. X., Hakk, H., DeSutter, T. M., Oduor, P. G., & Khan, E. (2015). Sorption and degradation of 17β-estradiol-17-sulfate in sterilized soil–water systems. Chemosphere, 119, 1322–1328. https://doi.org/10.1016/j.chemosphere.2014.02.016

    Article  CAS  Google Scholar 

  • Bartelt-Hunt, S. L., Snow, D. D., Kranz, W. L., Mader, T. L., Shapiro, C. A., Donk, S. J. V., ... & Zhang, T. C (2012) Effect of growth promotants on the occurrence of endogenous and synthetic steroid hormones on feedlot soils and in runoff from beef cattle feeding operations. Environmental Science & Technology46(3), 1352-1360. https://doi.org/10.1021/es202680q

  • Bartelt-Hunt, S. L., DeVivo, S., Johnson, L., Snow, D. D., Kranz, W. L., Mader, T. L., ... & Zhang, T. C. (2013). Effect of composting on the fate of steroids in beef cattle manure. Journal of Environmental Quality42(4), 1159-1166. https://doi.org/10.2134/jeq2013.01.0024

  • Bennett, J. L., Mackie, A. L., Park, Y., & Gagnon, G. A. (2018). Advanced oxidation processes for treatment of 17β-Estradiol and its metabolites in aquaculture wastewater. Aquacultural Engineering, 83, 40–46. https://doi.org/10.17219/acem/62217

    Article  Google Scholar 

  • Bircher, S., Card, M. L., Zhai, G., Chin, Y. P., & Schnoor, J. L. (2015). Sorption, uptake, and biotransformation of 17β-estradiol, 17α-ethinylestradiol, zeranol, and trenbolone acetate by hybrid poplar. Environmental Toxicology and Chemistry, 34(12), 2906–2913. https://doi.org/10.1002/etc.3166

    Article  CAS  Google Scholar 

  • Borah, D. K., Ahmadisharaf, E., Padmanabhan, G., Imen, S., & Mohamoud, Y. M. (2019). Watershed models for development and implementation of total maximum daily loads. Journal of Hydrologic Engineering, 24(1), 03118001. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001724

    Article  Google Scholar 

  • Casey, F. X., Hakk, H., & DeSutter, T. M (2020) Free and conjugated estrogens detections in drainage tiles and wells beneath fields receiving swine manure slurry. Environmental Pollution256, 113384. https://doi.org/10.1016/j.envpol.2019.113384

  • Colucci, M. S., & Topp, E. (2002). Dissipation of part per trillion concentrations of estrogenic hormones from agricultural soils. Canadian Journal of Soil Science, 82(3), 335–340. https://doi.org/10.4141/S01-079

    Article  CAS  Google Scholar 

  • D’Alessio, M., Vasudevan, D., Lichwa, J., Mohanty, S. K., & Ray, C. (2014). Fate and transport of selected estrogen compounds in Hawaii soils: Effect of soil type and macropores. Journal of Contaminant Hydrology, 166, 1–10. https://doi.org/10.1016/j.jconhyd.2014.07.006

    Article  CAS  Google Scholar 

  • Du, B., Fan, G., Yu, W., Yang, S., Zhou, J., & Luo, J (2020) Occurrence and risk assessment of steroid estrogens in environmental water samples: A five-year worldwide perspective. Environmental Pollution, 115405. https://doi.org/10.1016/j.envpol.2020.11540

  • Fan, Z., Casey, F. X., Hakk, H., & Larsen, G. L. (2007). Persistence and fate of 17β-estradiol and testosterone in agricultural soils. Chemosphere, 67(5), 886–895. https://doi.org/10.1016/j.chemosphere.2006.11.040

    Article  CAS  Google Scholar 

  • Fang, T. Y., Praveena, S. M., Aris, A. Z., Ismail, S. N. S., & Rasdi, I. (2019). Quantification of selected steroid hormones (17β-Estradiol and 17α-Ethynylestradiol) in wastewater treatment plants in Klang Valley (Malaysia). Chemosphere, 215, 153–162. https://doi.org/10.1016/j.chemosphere.2018.10.032

    Article  CAS  Google Scholar 

  • Goeppert, N., Dror, I., & Berkowitz, B. (2014). Detection, fate and transport of estrogen family hormones in soil. Chemosphere, 95, 336–345. https://doi.org/10.1016/j.chemosphere.2013.09.039

    Article  CAS  Google Scholar 

  • Hill, D., Morra, M. J., Stalder, T., Jechalke, S., Top, E., Pollard, A. T., & Popova, I. (2021). Dairy manure as a potential source of crop nutrients and environmental contaminants. Journal of Environmental Sciences, 100, 117–130. https://doi.org/10.1016/j.jes.2020.07.016

    Article  Google Scholar 

  • Holt, J. (2012). Linear algebra with applications. York: WH Freeman.

  • Hastie, T., Tibshirani, R., & Friedman, J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media.

  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer.

    Book  Google Scholar 

  • Lan, X., Wang, T., Ewald, F., Chen, Z., Cui, K., Schäffer, A., ... & Ji, R. (2019). 14C-Labelling of the natural steroid estrogens 17α-estradiol, 17β-estradiol, and estrone. Journal of hazardous materials, 375, 26-32. https://doi.org/10.1016/j.jhazmat.2019.04.036

  • Lee, K. E., Barber, L. B., & Schoenfuss, H. L. (2014). Spatial and temporal patterns of endocrine active chemicals in small streams indicate differential exposure to aquatic organisms. JAWRA Journal of the American Water Resources Association, 50(2), 401–419. https://doi.org/10.1021/es301551h

    Article  CAS  Google Scholar 

  • Lei, K., Lin, C. Y., Zhu, Y., Chen, W., Pan, H. Y., Sun, Z., ... & He, M. C (2020) Estrogens in municipal wastewater and receiving waters in the Beijing-Tianjin-Hebei region, China: occurrence and risk assessment of mixtures. Journal of hazardous materials389, 121891. https://doi.org/10.1016/j.jhazmat.2019.121891

  • Lucas, S. D., & Jones, D. L. (2006). Biodegradation of estrone and 17 β-estradiol in grassland soils amended with animal wastes. Soil Biology and Biochemistry, 38(9), 2803–2815. https://doi.org/10.1016/j.soilbio.2006.04.033

    Article  CAS  Google Scholar 

  • Mansell, D. S., Bryson, R. J., Harter, T., Webster, J. P., Kolodziej, E. P., & Sedlak, D. L. (2011). Fate of endogenous steroid hormones in steer feedlots under simulated rainfall-induced runoff. Environmental Science & Technology, 45(20), 8811–8818. https://doi.org/10.1021/es202072f

    Article  CAS  Google Scholar 

  • Mashtare, M. L., Green, D. A., & Lee, L. S. (2013). Biotransformation of 17α-and 17β-estradiol in aerobic soils. Chemosphere, 90(2), 647–652. https://doi.org/10.1016/j.chemosphere.2012.09.032

    Article  CAS  Google Scholar 

  • Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning. MIT press.

  • Qin, G., Zhang, Y., Zhang, B., Zhang, Y., Liu, Y., & Lin, Q. (2020). Environmental estrogens and progestins disturb testis and brood pouch development with modifying transcriptomes in male-pregnancy lined seahorse Hippocampus erectus. Science of The Total Environment, 715, 136840. https://doi.org/10.1016/j.scitotenv.2020.136840

  • Robinson, J. A., Ma, Q., Staveley, J. P., Smolenski, W. J., & Ericson, J. (2017). Degradation and transformation of 17α-estradiol in water-sediment systems under controlled aerobic and anaerobic conditions. Environmental Toxicology and Chemistry, 36(3), 621–629. https://doi.org/10.1002/etc.3383

    Article  CAS  Google Scholar 

  • Steiner, L. D., Bidwell, V. J., Di, H. J., Cameron, K. C., & Northcott, G. L. (2010). Transport and modeling of estrogenic hormones in a dairy farm effluent through undisturbed soil lysimeters. Environmental Science & Technology, 44(7), 2341–2347. https://doi.org/10.1021/es9031216

    Article  CAS  Google Scholar 

  • Sun, S. X., Zhang, Y. N., Lu, D. L., Wang, W. L., Limbu, S. M., Chen, L. Q., ... & Du, Z. Y (2019) Concentration-dependent effects of 17β-estradiol and bisphenol A on lipid deposition, inflammation and antioxidant response in male zebrafish (Danio rerio). Chemosphere, 237, 124422. https://doi.org/10.1016/j.chemosphere.2018.11.092

  • Ting, Y. F., & Praveena, S. M. (2017). Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: A mini review. Environmental Monitoring and Assessment, 189(4), 178. https://doi.org/10.1007/s10661-017-5890-x

    Article  CAS  Google Scholar 

  • Writer, J. H., Ryan, J. N., Keefe, S. H., & Barber, L. B. (2011). Fate of 4-nonylphenol and 17β-estradiol in the Redwood River of Minnesota. Environmental Science & Technology, 46(2), 860–868. https://doi.org/10.1021/es2031664

    Article  CAS  Google Scholar 

  • Yang, Y. Y., Gray, J. L., Furlong, E. T., Davis, J. G., ReVello, R. C., & Borch, T. (2012). Steroid hormone runoff from agricultural test plots applied with municipal biosolids. Environmental Science & Technology, 46(5), 2746–2754. https://doi.org/10.1021/es203896t

    Article  CAS  Google Scholar 

  • Yu, W., Du, B., Fan, G., Yang, S., Yang, L., & Zhang, M. (2020). Spatio-temporal distribution and transformation of 17α-and 17β-estradiol in sterilized soil: A column experiment. Journal of hazardous materials, 389, 122092. https://doi.org/10.1016/j.jhazmat.2020.122092

  • Zhao, X., & Lung, W. S. (2017). Modeling the fate and transport of 17β-estradiol in the South River watershed in Virginia. Chemosphere, 186, 780–789. https://doi.org/10.1016/j.chemosphere.2017.08.058

    Article  CAS  Google Scholar 

  • Zhao, X., Grimes, K. L., Colosi, L. M., & Lung, W. S. (2019). Attenuation, transport, and management of estrogens: A review. Chemosphere, 230, 462–478. https://doi.org/10.1016/j.chemosphere.2019.05.086

    Article  CAS  Google Scholar 

  • Zheng, W., Li, X., Yates, S. R., & Bradford, S. A. (2012). Anaerobic transformation kinetics and mechanism of steroid estrogenic hormones in dairy lagoon water. Environmental Science & Technology, 46(10), 5471–5478. https://doi.org/10.1021/es301551h

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Xiaomin Zhao: conception or design of the work; model development; data collection and analysis; drafting the article; critical revision of the article. Wu-Seng Lung: critical revision of the article; final approval of the version to be published.

Corresponding author

Correspondence to Xiaomin Zhao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Lung, WS. Modeling Temporal Variation of Estrogen Levels Due to Interconversion. Water Air Soil Pollut 232, 279 (2021). https://doi.org/10.1007/s11270-021-05201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05201-4

Keywords

Navigation