Skip to main content
Log in

Microalgae Technique for Bioremediation Treatment of Cassava Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The present work aims to evaluate the potential for bioremediation and CO2 fixation by cultivating the microalgae of the genus Chlorella minutissima in cassava wastewater. Experimental work investigated the growth of microalgae in the effluent and determined its growth rate based on different dilutions. Four culture media scenarios were created. The values measured in the laboratory were compared with a mathematical model adjusted based on the kinetic growth. The efficiency of the process was evaluated in terms of the reduction of the organic load, nutrient consumption, and cell count in the initial state (time 0) and complete growth (after the seventh day) using microscopy analysis. After biological treatment, a percentage of reduction of COD (chemical oxygen demand) of around 30%, TS (total solids) 75%, nutrient removal 92%, cyanide near 99%, and average CO2 biofixation 0.19 g L−1 d−1 were observed. The reduction percentages are close to those found in the literature for other cultivation media. It was observed in this study that the biomass productivity and CO2 fixation agree with those obtained in other studies and confirm the efficiency of the very tiny Chlorella microalgae with high photosynthetic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CO2 :

Carbon dioxide

COD:

Chemical oxygen demand

BOD:

Biochemical oxygen demand

As + 5:

Arsenic

N:

Nitrate

P:

Phosphate

W:

Watts

TS:

Total solids

STF:

Total fixed solids

TVS:

Total volatile solids

SS:

Sedimentable solids

TOC:

Total organic carbon

ANOVA:

Analysis of variance

CONAMA:

National Environment Council

INEA-RJ:

State Environment Institute-RJ

References

  • APHA (American Public Health Association). . (2005). Standard methods for the examination for water and wastewater (19th ed.). Byrd Press.

    Google Scholar 

  • Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., & Perales, J. A. (2014). Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO2 bio-fixation and low-cost biofuels production. Water Research, 49, 465–474.

    Article  CAS  Google Scholar 

  • Ashwaniy, V. R., & Perumalsamy, M. (2017). Reduction of organic compounds in petrochemical industry effluent and desalination using Scenedesmus abundant algal microbial desalination cell. Journal of Environmental and Chemistry., 5, 5961–5967.

    Article  CAS  Google Scholar 

  • Barana, A. C., & Cereda, M. P. (2000). Cassava wastewater (Manipueira) treatment using a twophase anaerobic biodigestor. Ciência. e Tecnologia. De Alimentos, 20, 1–9.

    Article  Google Scholar 

  • Bertoldi, F., & Ernani Sant’Anna, E & Oliveira, J.L.B. . (2008). Chlorophyll content and minerals profile in the microalgae Chlorella vulgaris cultivated in hydroponic wastewater. Ciencia Rural, 38, 54–58.

    Article  CAS  Google Scholar 

  • Cabanelas, I. T. D., Arbib, Z., Chinalia, F. A., Souza, C. O., Perales, J. A., Almeida, P. F., et al. (2013). From waste to energy: Microalgae production in wastewater and glycerol. Applied Energy, 109, 283–290.

    Article  CAS  Google Scholar 

  • Camara, M., Jamil, N. R., & Abdullah, A. F. B. (2019). Impact of land uses on water quality in Malaysia: A review. Ecological Processes, 8, 10.

    Article  Google Scholar 

  • Chavalparit, O., & Ongwandee, M. (2009). Clean technology for the tapioca starch industry in Thailand. Journal of Cleaner Production, 17, 105–110.

    Article  CAS  Google Scholar 

  • Chen, H., Wang, J., Zheng, Y., Zhan, J., He, C., & Wang, Q. (2018). Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation. Applied Energy., 211, 296–305.

    Article  CAS  Google Scholar 

  • Costa, J. A. V., Linde, G. A., Atala, D. I. P., Mibielli, G. M., & KruEger, R. T. (2000). Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World Journal of Microbiology & Biotechnology, 16, 15–18.

    Article  Google Scholar 

  • Diniz, G. S., Silva, A. F., Araújo, O. Q. F., & Chaloub, R. M. (2017). The potential of microalgal biomass production for biotechnological purposes using wastewater resources. Journal of Applied Phycology, 29, 821–832.

    Article  CAS  Google Scholar 

  • Dunoyer, A. T., Cuello, R. E. C., & Salinas, R. P. (2020). Biodegradation of a dairy waste using Yarrowia lipolytica ATCC 9773. Revista Ambiente & Água, 15, 2448. https://doi.org/10.4136/ambi-agua.2448.

  • Evers, E. G. (1991). A model for light-limited continuous cultures: Growth, shading, and maintenance. Biotechnology and Bioengineering, 38, 254–259.

    Article  CAS  Google Scholar 

  • Fernández, F. G. A., Garcia Camacho, F., Pérez, J. A. S., Fernández Sevilha, J., & Grima, E. M. (1998). A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for microalgal mass culture. Effects of dilution rate, tube diameter and solar irradiance. Biotechnology and Bioengineering, 58, 605–611.

    Article  Google Scholar 

  • Ferreira, A., Marques, P., Ribeiro, B., Asseamany, P., De Mendonça, H. V., Barata, A., et al. (2018). Combining biotechnology with circular bioeconomy: From poultry, swine, cattle, brewery, dairy and urban wastewaters to biohydrogen. Environmental Research, 164, 32–38.

    Article  CAS  Google Scholar 

  • Goldman, J. C., & Ryther, J. H. (1976). Temperature-influenced species competition in mass cultures of marine phytoplankton. Biotechnology and Bioengineering., 18, 1125–1144.

    Article  Google Scholar 

  • Gonçalves, A. L., Simões, M., & Pires, J. C. M. (2014). The effect of light supply on microalgal growth, CO2 uptake and nutrient removal from wastewater. Energy Conversion and Management, 85, 530–536.

    Article  Google Scholar 

  • Grima, E. M., Camacho, F. G., Pérez, J. A. S., Sevilla, J. M. F., Fernandez, F. G., & Contreras Gomez, A. (1994). A mathematical model of microalgal growth in light–limited chemostat culture. Journal of Chemical Technology and Biotechnology, 61, 167–173.

    Article  Google Scholar 

  • Haritash, A. K., Dutta, S., & Sharma, A. (2017). Phosphate uptake and translocation in a tropical Canna-based constructed wetland. Ecological Processes, 6, 12.

    Article  Google Scholar 

  • Kee, M., et al. (2017). Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renewable Energy, 103, 197–207.

    Article  Google Scholar 

  • Lam, M. K., & Lee, K. T. (2013). Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production. Internaional Jpurnal of Green Gas and Control Medicine, 14, 169–176.

    Article  CAS  Google Scholar 

  • Liu, G., Liao, Y., Wu, Y., Ma, X., & Chen, L. (2017). Characteristics of microalgae gasification through chemical looping in the presence of steam. International Journal of Hydrogen Energy, 42, 22730–22742. https://doi.org/10.1016/j.ijhydene.2017.07.173.

  • MEJ (Ministry of the Environment – Government of Japan). (1974). - Launch standards of effluents -363/1974.

  • Mofijur, M., Rasul, M. G., Hyde, J., Azad, A. K., Mamat, R., & Bhuiya, M. M. K. (2016). Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) bends on internal combustion engines emission reduction. Renewable and Sustainable Energy Reviews, 53, 265–278.

    Article  CAS  Google Scholar 

  • Mohammadi, M., Mowla, D., Esmaeilzadeh, F., & Ghasemi, Y. (2018). Cultivation of microalgae in a power plant wastewater for sulfate removal and biomass production: A batch study. Journal of Environmental Chemistry, 6, 2812–2820.

    Article  CAS  Google Scholar 

  • Mohd Udaiyppan, A. F., Hasan, H. A., Takriff, M. S., Abdullah, R. S., Maeda, T., Mustapha, N. A., Yasin, N. H. M., & Hakimi, N. I. N. M. (2020). Microalgae-bacteria interaction in palm oil mill effluent treatment. Journal of Water Process Engineering, 35, 101203. https://doi.org/10.1016/j.jwpe.2020.101203.

  • Mohd Yunos, F. H., Nasir, N. M., Wan Jusoh, H. H., Khatoon, H., Lam, S. S., & Jusoh, A. (2017). Harvesting of microalgae (Chlorella sp.) from aquaculture bioflocs using an environmental-friendly chitosan-based bio-coagulant. International Biodeterioration & Biodegradation, 124, 243–249.

    Article  CAS  Google Scholar 

  • Molazadeh, et al. (2019). Influence of CO2 concentration and N: P ratio on Chlorella vulgaris-assisted nutrient bioremediation, CO2 biofixation and biomass production in a lagoon treatment plant. Journal of the Taiwan Institute of Chemical Engineers., 96, 114–120.

    Article  CAS  Google Scholar 

  • Mujtaba, G., & Lee, K. (2017). Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge. Water Research., 120, 174–184.

    Article  CAS  Google Scholar 

  • Nascimento, I. A., Cabanelas, I. T. D., Santos, J. N., Nascimento, M. A., Sousa, L., & Sansone, G. (2015). Biodiesel yields and fuel quality as criteria for algal-feedstock selection: Effects of CO2-supplementation and nutrient levels in cultures. Algal Research, 8, 53–60.

    Article  Google Scholar 

  • NEC (National Environment Council). (2008). Effluent release patterns. Resolution 397/2008.

  • Oliveira, D. A., Mezzomo, N., Gomes, C., & Ferreira, S. R. S. (2017a). Encapsulation of passion fruit seed oil by means of supercritical antisolovent process. The Journal of Supercritical Fluids., 129, 96–105.

    Article  CAS  Google Scholar 

  • Oliveira, O., Giansella, S., Silva, V., Mata, T., & Caetano, N. S. (2017b). Lipid and carbohydrate profile of a microalgae isolated from mastemater. Energy Procedia., 136, 468–473.

    Article  CAS  Google Scholar 

  • PEC (Parliaments and European Council). (1991). Water framework directive. Directive 91/271 / ECC.

  • Pérez, B. E., Pina, C. I., & Rodriguez, L. P. (2008). Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor. Biochemical Engineering Journal., 40, 520–525.

    Article  Google Scholar 

  • Pohndorf, R. S., Camara, A. S., Larrosa, A. P. Q., Pinheiro, C. P., Strieder, M. M., & Pinto, L. A. A. (2016). Production of lipids from microalgae Spirulina sp.: Influence of drying, cell disruption and extraction methods. Biomass and Bioenergy., 93, 25–32.

    Article  CAS  Google Scholar 

  • Rammirez, J. A., Meraz, M., & Vermon-Carter, E. J. (2019). A theoretical derivation of the monod equation with a kinetics sense. Biochemical Engineering Journal, 150, 15015. https://doi.org/10.1016/j.bej.2019.107305.

  • Roels, J. A. (1983). Energetics and kinetics in biotechnology. Elsevier.

    Google Scholar 

  • Samorì, G., Samorì, C., Guerrini, F., & Pistocchi, R. (2013). Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I. Water Research, 47, 791–801.

    Article  Google Scholar 

  • Santana, H., Cereijo, C. R., Teles, V. C., Nascimento, R. C., Fernandes, M. S., Brunale, P., et al. (2017). Microalgae cultivation in sugarcane vinasse: Selection, growth and biochemical characterization. Bioresource Technology, 228, 133–140.

    Article  CAS  Google Scholar 

  • SEI (State environment institute – RJ) (1986) Technical Note 202/R-10. Criteria and standards for launching fluid fluids.

  • Tagliaferro, G. V., Izário Filho, H. J., Chandel, A. K., Silva, S. S., Silva, M. B., & Santos, J. C. (2019). Continuous cultivation of Chlorella minutissima 26a landfill leachate-based medium using concentric tube airlift photobioreactor. Algal Research, 41, 101549. https://doi.org/10.1016/j.algal.2019.101549.

  • USEPA (United States Environmental Protection Agency). (2013). Technical support document: Cost estimate of phosphorus removal at wastewater treatment plants.

  • Yang, J., Rasa, E., Tantayotai, P., Scow, K. M., Yuan, H., & Hristova, K. R. (2016). Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresource Technology, Medicine, 102, 3077–3082.

    Article  Google Scholar 

  • Zhang, M., Xie, L., Yin, Z., Khanal, S. K., & Zhou, Q. (2016). Biorefinery approach for cassava-based industrial wastes: Current status and opportunities. Bioresource Technology, 215, 50–62.

    Article  CAS  Google Scholar 

  • Zhao, Y., Chen, J. C., Shen, Y., Wang, L., & Xu, X. M. (2014). Microalgal culture for CO2 fixation and manure wastewater treatment. Chinese Jounal of Environmental Engineering, 8, 3353–3358.

    Google Scholar 

  • Zheng, Z., Xu, Y., Wang, J., Li, Y., & Gu, B. (2019). Environmental stress and eutrophication in freshwater wetlands: evidence from carbon and nitrogen stable isotopes in cattail (Typha domingensis Pers.). Ecological Processes, 8, 31. https://doi.org/10.1186/s13717-019-0186-4.

Download references

Acknowledgements

The authors thank the Metallurgical Engineering graduate program of the Fluminense Federal University for the scientific-technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cintia de Faria Ferreira Carraro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Faria Ferreira Carraro, C., Loures, C.C.A. & de Castro, J.A. Microalgae Technique for Bioremediation Treatment of Cassava Wastewater. Water Air Soil Pollut 232, 281 (2021). https://doi.org/10.1007/s11270-021-05199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05199-9

Keywords

Navigation