Skip to main content

Opportunities and Challenges for Sustainable Bioremediation of Natural and Synthetic Estrogens as Emerging Water Contaminants Using Bacteria, Fungi, and Algae

Abstract

The occurrence of newly emerging contaminants such as estrogens in water environment has the potential negative effects to human health as well as the surrounding wildlife. This demands efficient approaches for their removals from the water environment. Among all feasible solutions, biodegradation shows promising prospects to remediate estrogens from the environment since it is relatively economical and environmentally friendly compared to chemical and physical treatment approaches. To offer coverage on the present advances of this technology, this paper critically reviews the opportunities and challenges for bioremediation of estrogens using bacteria, fungi, and algae. In general, the capabilities to remove estrogens from water environments by bacteria, fungi, and algae have been highlighted and discussed. Additionally, several advantages and disadvantages are recognized before they are implemented widely in full-scale treatments. Moreover, a comprehensive discussion on the transformation of estrogens using these organisms is also presented, showing vividly that estrogens can be transformed into less toxic chemicals. The review ends by offering several prospective areas for expansion in the future specifically in focusing on the evaluation of other available microorganisms that can survive under numerous hostile environmental conditions, since, in the real application, complex mixtures and extreme environmental conditions are commonly observed particularly in the wastewater treatment systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abou-Zeid, L. A., & El-Mowafy, A. M. (2002). Molecular dynamics simulation characteristics of resveratrol interaction with human estrogen receptor-α: Distinct recognition from diethylstilbestrol. Journal of Molecular Structure: THEOCHEM, 593, 39–48.

    CAS  Google Scholar 

  2. Adeel, M., Song, X., Wang, Y., Francis, D., & Yang, Y. (2017). Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International, 99, 107–119.

    CAS  Google Scholar 

  3. Al Farraj, D. A., Elshikh, M. S., Al Khulaifi, M. M., Hadibarata, T., Yuniarto, A., & Syafiuddin, A. (2019a). Biotransformation and detoxification of antraquione dye green 3 using halophilic Hortaea sp. International Biodeterioration & Biodegradation, 140, 72–77.

    CAS  Google Scholar 

  4. Al Farraj, D. A., Hadibarata, T., Yuniarto, A., Syafiuddin, A., Surtikanti, H. K., Elshikh, M. S., Al Khulaifi, M. M., & Al-Kufaidy, R. (2019b). Characterization of pyrene and chrysene degradation by halophilic Hortaea sp. B15. Bioprocess and Biosystems Engineering, 42, 963–969.

    CAS  Google Scholar 

  5. Al Farraj, D. A., Hadibarata, T., Yuniarto, A., Alkufeidy, R. M., Alshammari, M. K., & Syafiuddin, A. (2020). Exploring the potential of halotolerant bacteria for biodegradation of polycyclic aromatic hydrocarbon. Bioprocess and Biosystems Engineering, 43, 2305–2314.

    CAS  Google Scholar 

  6. Al-Zuhair, S., & El-Naas, M. (2011). Immobilization of Pseudomonas putida in PVA gel particles for the biodegradation of phenol at high concentrations. Biochemical Engineering Journal, 56, 46–50.

    CAS  Google Scholar 

  7. Auriol, M., Filali-Meknassi, Y., Adams, C. D., Tyagi, R. D., Noguerol, T.-N., & Piña, B. (2008). Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: Efficiency of horseradish peroxidase and laccase from Trametes versicolor. Chemosphere, 70, 445–452.

    CAS  Google Scholar 

  8. Badia-Fabregat, M., Lucas, D., Gros, M., Rodríguez-Mozaz, S., Barceló, D., Caminal, G., & Vicent, T. (2015). Identification of some factors affecting pharmaceutical active compounds (PhACs) removal in real wastewater. Case study of fungal treatment of reverse osmosis concentrate. Journal of Hazardous Materials, 283, 663–671.

    CAS  Google Scholar 

  9. Bai, X., & Acharya, K. (2019). Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga. Environmental Pollution, 247, 534–540.

    CAS  Google Scholar 

  10. Bai, L., Cao, C., Wang, C., Zhang, H., Deng, J., & Jiang, H. (2019). Response of bloom-forming cyanobacterium Microcystis aeruginosa to 17β-estradiol at different nitrogen levels. Chemosphere, 219, 174–182.

    CAS  Google Scholar 

  11. Ben Fredj, S., Nobbs, J., Tizaoui, C., & Monser, L. (2015). Removal of estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) from wastewater by liquid–liquid extraction. Chemical Engineering Journal, 262, 417–426.

    CAS  Google Scholar 

  12. Bronikowski, A., Hagedoorn, P.-L., Koschorreck, K., & Urlacher, V. B. (2017). Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation. AMB Express, 7, 1–13.

    CAS  Google Scholar 

  13. Carr, D. L., Morse, A. N., Zak, J. C. & Anderson, T. A. (2011). Microbially mediated degradation of common pharmaceuticals and personal care products in soil under aerobic and reduced oxygen conditions. Water, Air, and Soil Pollution, 216, 633–642.

  14. Chen, Y., Zhang, C., & Li, Y. (2017a). Ultrasonic-assisted biodegradation of endocrine disrupting compounds by Pseudomonas putida the importance of rhamnolipid for intermediate product degradation. Chemical Research in Chinese Universities, 33, 179–186.

    CAS  Google Scholar 

  15. Chen, Y.-L., Yu, C.-P., Lee, T.-H., Goh, K.-S., Chu, K.-H., Wang, P.-H., Ismail, W., Shih, C.-J., & Chiang, Y.-R. (2017b). Biochemical mechanisms and catabolic enzymes involved in bacterial estrogen degradation pathways. Cell Chemical Biology, 24, 712–724.

    CAS  Google Scholar 

  16. Cumming, H., & Rücker, C. (2017). Octanol–water partition coefficient measurement by a simple 1h nmr method. ACS Omega, 2, 6244–6249.

    CAS  Google Scholar 

  17. Daâssi, D., Prieto, A., Zouari-Mechichi, H., Martínez, M. J., Nasri, M., & Mechichi, T. (2016). Degradation of bisphenol A by different fungal laccases and identification of its degradation products. International Biodeterioration & Biodegradation, 110, 181–188.

    Google Scholar 

  18. Dai, H., Gao, S., Lai, C., He, H., Han, F., & Pan, X. (2019). Biochar enhanced microbial degradation of 17β-estradiol. Environmental Science: Processes & Impacts, 21, 1736–1744.

    CAS  Google Scholar 

  19. de Freitas, E. N., Bubna, G. A., Brugnari, T., Kato, C. G., Nolli, M., Rauen, T. G., Peralta Muniz Moreira, Rd. F., Peralta, R. A., Bracht, A., de Souza, C. G. M., & Peralta, R. M. (2017). Removal of bisphenol A by laccases from Pleurotus ostreatus and Pleurotus pulmonarius and evaluation of ecotoxicity of degradation products. Chemical Engineering Journal, 330, 1361–1369.

    Google Scholar 

  20. Della Greca, M., Pinto, G., Pistillo, P., Pollio, A., Previtera, L., & Temussi, F. (2008). Biotransformation of ethinylestradiol by microalgae. Chemosphere, 70, 2047–2053.

    CAS  Google Scholar 

  21. Dzieweczynski, T. L., & Kane, J. L. (2017). The bachelorette: Female Siamese fighting fish avoid males exposed to an estrogen mimic. Behavioural Processes, 140, 169–173.

    Google Scholar 

  22. Dzionek, A., Wojcieszyńska, D., Hupert-Kocurek, K., Adamczyk-Habrajska, M., & Guzik, U. (2018). Immobilization of Planococcus sp. S5 strain on the loofah sponge and its application in naproxen removal. Catalysts, 8, 1–17.

    Google Scholar 

  23. Eibes, G., Debernardi, G., Feijoo, G., Moreira, M. T., & Lema, J. M. (2011). Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation, 22, 539–550.

    CAS  Google Scholar 

  24. Eltoukhy, A., Jia, Y., Nahurira, R., Abo-Kadoum, M. A., Khokhar, I., Wang, J., & Yan, Y. (2020). Biodegradation of endocrine disruptor bisphenol A by Pseudomonas putida strain YC-AE1 isolated from polluted soil, Guangdong, China. BMC Microbiology, 20, 1–14.

    Google Scholar 

  25. Fan, Z., Hu, J., An, W., & Yang, M. (2013). Detection and occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China: Comparison to the parent compounds. Environmental Science & Technology, 47, 10841–10850.

    CAS  Google Scholar 

  26. Fernández, L., Louvado, A., Esteves, V. I., Gomes, N. C. M., Almeida, A., & Cunha, Â. (2017). Biodegradation of 17β-estradiol by bacteria isolated from deep sea sediments in aerobic and anaerobic media. Journal of Hazardous Materials, 323, 359–366.

    Google Scholar 

  27. Fonseca, A. P., Lima, D. L. D., & Esteves, V. I. (2011). Degradation by solar radiation of estrogenic hormones monitored by uv–visible spectroscopy and capillary electrophoresis. Water, Air, and Soil Pollution, 215, 441–447.

    CAS  Google Scholar 

  28. Golveia, J. C. S., Santiago, M. F., Sales, P. T. F., Sartoratto, A., Ponezi, A. N., Thomaz, D. V., Gil, Ed. S., & Bara, M. T. F. (2018). Cupuaçu (Theobroma grandiflorum) residue and its potential application in the bioremediation of 17-Α-ethinylestradiol as a Pycnoporus sanguineus laccase inducer. Preparative Biochemistry and Biotechnology, 48, 541–548.

    CAS  Google Scholar 

  29. Hadibarata, T., Syafiuddin, A., Al-Dhabaan, F. A., Elshikh, M. S., & Rubiyatno. (2018). Biodegradation of Mordant orange-1 using newly isolated strain Trichoderma harzianum RY44 and its metabolite appraisal. Bioprocess and Biosystems Engineering, 41, 621–632.

    CAS  Google Scholar 

  30. Hallgren, P., Nicolle, A., Hansson, L.-A., Brönmark, C., Nikoleris, L., Hyder, M., & Persson, A. (2014). Synthetic estrogen directly affects fish biomass and may indirectly disrupt aquatic food webs. Environmental Toxicology and Chemistry, 33, 930–936.

    CAS  Google Scholar 

  31. Hitzfeld, B. C., Höger, S. J., & Dietrich, D. R. (2000). Cyanobacterial toxins: Removal during drinking water treatment, and human risk assessment. Environmental Health Perspectives, 108, 113–122.

    CAS  Google Scholar 

  32. Hom-Diaz, A., Llorca, M., Rodríguez-Mozaz, S., Vicent, T., Barceló, D., & Blánquez, P. (2015). Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. Journal of Environmental Management, 155, 106–113.

    CAS  Google Scholar 

  33. Huang, B., Tang, J., He, H., Gu, L., & Pan, X. (2019). Ecotoxicological effects and removal of 17β-estradiol in chlorella algae. Ecotoxicology and Environmental Safety, 174, 377–383.

    CAS  Google Scholar 

  34. Ivanov, V., Lim, J.J.-W., Stabnikova, O., & Gin, K.Y.-H. (2010). Biodegradation of estrogens by facultative anaerobic iron-reducing bacteria. Process Biochemistry, 45, 284–287.

    CAS  Google Scholar 

  35. Ji, M.-K., Kabra, A. N., Choi, J., Hwang, J.-H., Kim, J. R., Abou-Shanab, R. A. I., Oh, Y.-K., & Jeon, B.-H. (2014). Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecological Engineering, 73, 260–269.

    Google Scholar 

  36. Jiang, B., Li, A., Cui, D., Cai, R., Ma, F., & Wang, Y. (2014). Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium. Applied Microbiology and Biotechnology, 98, 4671–4681.

    CAS  Google Scholar 

  37. Jiang, L., Gu, Y., Guo, H., Liu, L., & Chen, J. (2017). Efficient removal of 17α-ethinylestradiol (EE2) from water using freshly formed Fe–Mn binary oxide. RSC Advances, 7, 23802–23811.

    Google Scholar 

  38. Ke, J., Zhuang, W., Gin, K.Y.-H., Reinhard, M., Hoon, L. T., & Tay, J.-H. (2007). Characterization of estrogen-degrading bacteria isolated from an artificial sandy aquifer with ultrafiltered secondary effluent as the medium. Applied Microbiology and Biotechnology, 75, 1163–1171.

    CAS  Google Scholar 

  39. Khunjar, W. O., Mackintosh, S. A., Skotnicka-Pitak, J., Baik, S., Aga, D. S., & Love, N. G. (2011). Elucidating the relative roles of ammonia oxidizing and heterotrophic bacteria during the biotransformation of 17α-ethinylestradiol and trimethoprim. Environmental Science & Technology, 45, 3605–3612.

    CAS  Google Scholar 

  40. Kozlova, T. A., Hardy, B. P., & Levin, D. B. (2020). Effect of fish steroids 17β-estradiol and 17,20β-dihydroxy-4-pregnen-3-one on growth, accumulation of pigments, and fatty acid profiles in the microalgae Scenedesmus quadricauda (CPCC-158). Renewable Energy, 148, 798–806.

    CAS  Google Scholar 

  41. Křesinová, Z., Moeder, M., Ezechiáš, M., Svobodová, K., & Cajthaml, T. (2012a). Mechanistic study of 17α-ethinylestradiol biodegradation by Pleurotus ostreatus: Tracking of extracelullar and intracelullar degradation mechanisms. Environmental Science & Technology, 46, 13377–13385.

    Google Scholar 

  42. Křesinová, Z., Moeder, M., Ezechiáš, M., Svobodová, K., & Cajthaml, T. (2012b). Mechanistic study of 17α-ethinylestradiol biodegradation by pleurotus ostreatus: Tracking of extracelullar and intracelullar degradation mechanisms. Environmental Science and Technology, 46, 13377–13385.

    Google Scholar 

  43. Křesinová, Z., Linhartová, L., Filipová, A., Ezechiáš, M., Mašín, P., & Cajthaml, T. (2018). Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor. New Biotechnology, 43, 53–61.

    Google Scholar 

  44. Kurisu, F., Ogura, M., Saitoh, S., Yamazoe, A., & Yagi, O. (2010). Degradation of natural estrogen and identification of the metabolites produced by soil isolates of Rhodococcus sp. and Sphingomonas sp. Journal of Bioscience and Bioengineering, 109, 576–582.

    CAS  Google Scholar 

  45. Kwarciak-Kozłowska, A. (2019) Pharmaceuticals and personal care products: Waste management and treatment technology. In Prasad, M. N. V., Vithanage, M. and Kapley, A. (Eds.), pp. 151–171. Butterworth-Heinemann.

  46. Lai, K. M., Johnson, K. L., Scrimshaw, M. D., & Lester, J. N. (2000). Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environmental Science & Technology, 34, 3890–3894.

    CAS  Google Scholar 

  47. Larcher, S., & Yargeau, V. (2013a). Biodegradation of 17α-ethinylestradiol by heterotrophic bacteria. Environmental Pollution, 173, 17–22.

    CAS  Google Scholar 

  48. Larcher, S., & Yargeau, V. (2013b). The effect of ozone on the biodegradation of 17α-ethinylestradiol and sulfamethoxazole by mixed bacterial cultures. Applied Microbiology and Biotechnology, 97, 2201–2210.

    CAS  Google Scholar 

  49. Lei, B., Wen, Y., Wang, X., Zha, J., Li, W., Wang, Z., Sun, Y., Kang, J., & Wang, Y. (2013). Effects of estrone on the early life stages and expression of vitellogenin and estrogen receptor genes of Japanese medaka (Oryzias latipes). Chemosphere, 93, 1104–1110.

    CAS  Google Scholar 

  50. Li, Y., & Zhang, A. (2014). Removal of steroid estrogens from waste activated sludge using Fenton oxidation: Influencing factors and degradation intermediates. Chemosphere, 105, 24–30.

    CAS  Google Scholar 

  51. Li, G., Zu, L., Wong, P.-K., Hui, X., Lu, Y., Xiong, J., & An, T. (2012a). Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp. GZB: Kinetics, mechanism and estrogenic transition. Bioresource Technology, 114, 224–230.

    CAS  Google Scholar 

  52. Li, Z., Nandakumar, R., Madayiputhiya, N., & Li, X. (2012b). Proteomic analysis of 17β-estradiol degradation by Stenotrophomonas maltophilia. Environmental Science & Technology, 46, 5947–5955.

    CAS  Google Scholar 

  53. Li, S., Liu, J., Sun, M., Ling, W., & Zhu, X. (2017). Isolation, characterization, and degradation performance of the 17β-estradiol-degrading bacterium Novosphingobium sp. E2S. International Journal of Environmental Research and Public Health, 14, 1–13.

    Google Scholar 

  54. Li, M., Zhao, X., Zhang, X., Wu, D., & Leng, S. (2018). Biodegradation of 17β-estradiol by bacterial co-culture isolated from manure. Scientific Reports, 8, 1–8.

    Google Scholar 

  55. Li, S., Liu, J., Sun, K., Yang, Z., & Ling, W. (2020). Degradation of 17β-estradiol by Novosphingobium sp. ES2-1 in aqueous solution contaminated with tetracyclines. Environmental Pollution, 260, 1–11.

    Google Scholar 

  56. Ling, W. T., Xu, R. F., Liu, J., Sun, M. X., Li, S. Y., Zhu, X. Z., & Gao, Y. Z. (2016). Immobilization and degradation performance of diethylstilbestrol-degrading bacteria S (Serratia sp.). Zhongguo Huanjing Kexue/china Environmental Science, 36, 1514–1519.

    CAS  Google Scholar 

  57. Liu, J., Liu, J., Xu, D., Ling, W., Li, S., & Chen, M. (2016a). Isolation, immobilization, and degradation performance of the 17β-estradiol-degrading bacterium Rhodococcus sp. JX-2. Water, Air, and Soil Pollution, 227, 1–13.

    Google Scholar 

  58. Liu, J., Luo, Q., & Huang, Q. (2016b). Removal of 17 β-estradiol from poultry litter via solid state cultivation of lignolytic fungi. Journal of Cleaner Production, 139, 1400–1407.

    CAS  Google Scholar 

  59. Liu, J., Li, S., Li, X., Gao, Y., & Ling, W. (2018a). Removal of estrone, 17β-estradiol, and estriol from sewage and cow dung by immobilized Novosphingobium sp. ARI-1. Environmental Technology, 39, 2423–2433.

    CAS  Google Scholar 

  60. Liu, W., Chen, Q., He, N., Sun, K., Sun, D., Wu, X., & Duan, S. (2018b). Removal and biodegradation of 17β-estradiol and diethylstilbestrol by the freshwater microalgae Raphidocelis subcapitata. International Journal of Environmental Research and Public Health, 15, 452.

    Google Scholar 

  61. Liu, N., Shi, Y.-E., Li, J., Zhu, M., & Zhang, T. (2020). Isolation and characterization of a new highly effective 17β-estradiol-degrading Gordonia sp. strain R9. 3 Biotech, 10, 1–10.

    Google Scholar 

  62. Lloret, L., Eibes, G., Lú-Chau, T. A., Moreira, M. T., Feijoo, G., & Lema, J. M. (2010). Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochemical Engineering Journal, 51, 124–131.

    CAS  Google Scholar 

  63. Lloret, L., Eibes, G., Feijoo, G., Moreira, M. T., & Lema, J. M. (2012). Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors. Journal of Hazardous Materials, 213–214, 175–183.

    Google Scholar 

  64. Loffredo, E., Castellana, G., & Taskin, E. (2016). A two-step approach to eliminate pesticides and estrogens from a wastewater and reduce its phytotoxicity: Adsorption onto plant-derived materials and fungal degradation. Water, Air, and Soil Pollution, 227, 188.

    Google Scholar 

  65. Ma, L., & Yates, S. R. (2017). Degradation and metabolite formation of estrogen conjugates in an agricultural soil. Journal of Pharmaceutical and Biomedical Analysis, 145, 634–640.

    CAS  Google Scholar 

  66. Ma, C., Qin, D., Sun, Q., Zhang, F., Liu, H., & Yu, C.-P. (2016). Removal of environmental estrogens by bacterial cell immobilization technique. Chemosphere, 144, 607–614.

    CAS  Google Scholar 

  67. Ma, W., Sun, J., Li, Y., Lun, X., Shan, D., Nie, C., & Liu, M. (2018). 17α-Ethynylestradiol biodegradation in different river-based groundwater recharge modes with reclaimed water and degradation-associated community structure of bacteria and archaea. Journal of Environmental Sciences, 64, 51–61.

    Google Scholar 

  68. Maes, H. M., Maletz, S. X., Ratte, H. T., Hollender, J., & Schaeffer, A. (2014). Uptake, elimination, and biotransformation of 17α-ethinylestradiol by the freshwater alga Desmodesmus subspicatus. Environmental Science & Technology, 48, 12354–12361.

    CAS  Google Scholar 

  69. Mao, L., Huang, Q., Luo, Q., Lu, J., Yang, X., & Gao, S. (2010). Ligninase-mediated removal of 17β-estradiol from water in the presence of natural organic matter: Efficiency and pathways. Chemosphere, 80, 469–473.

    CAS  Google Scholar 

  70. Menk, Jd. J., do Nascimento, A. I. S., Leite, F. G., de Oliveira, R. A., Jozala, A. F., de Oliveira Junior, J. M., Chaud, M. V., & Grotto, D. (2019). Biosorption of pharmaceutical products by mushroom stem waste. Chemosphere, 237, 124515.

    CAS  Google Scholar 

  71. Morishima, F., Inokuchi, Y., & Ebata, T. (2013). Structure and hydrogen-bonding ability of estrogens studied in the gas phase. The Journal of Physical Chemistry A, 117, 13543–13555.

    CAS  Google Scholar 

  72. Muller, M., Patureau, D., Godon, J.-J., Delgenès, J.-P., & Hernandez-Raquet, G. (2010). Molecular and kinetic characterization of mixed cultures degrading natural and synthetic estrogens. Applied Microbiology and Biotechnology, 85, 691–701.

    CAS  Google Scholar 

  73. Nakai, S., Yamamura, A., Tanaka, S., Shi, J., Nishikawa, M., Nakashimada, Y., & Hosomi, M. (2011). Pathway of 17β-estradiol degradation by Nitrosomonas europaea and reduction in 17β-estradiol-derived estrogenic activity. Environmental Chemistry Letters, 9, 1–6.

    CAS  Google Scholar 

  74. Pauwels, B., Wille, K., Noppe, H., De Brabander, H., Van de Wiele, T., Verstraete, W., & Boon, N. (2008). 17α-ethinylestradiol cometabolism by bacteria degrading estrone, 17β-estradiol and estriol. Biodegradation, 19, 683–693.

    CAS  Google Scholar 

  75. Pratush, A., Yang, Q., Peng, T., Huang, T., & Hu, Z. (2020). Identification of non-accumulating intermediate compounds during estrone (E1) metabolism by a newly isolated microbial strain BH2-1 from mangrove sediments of the South China Sea. Environmental Science and Pollution Research, 27, 5097–5107.

    CAS  Google Scholar 

  76. Rodríguez-Rodríguez, C. E., Marco-Urrea, E., & Caminal, G. (2010). Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. Bioresource Technology, 101, 2259–2266.

    Google Scholar 

  77. Roh, H., & Chu, K.-H. (2010). A 17β-estradiol-utilizing bacterium, Sphingomonas strain KC8: Part I - characterization and abundance in wastewater treatment plants. Environmental Science & Technology, 44, 4943–4950.

    CAS  Google Scholar 

  78. Różalska, S., Bernat, P., Michnicki, P., & Długoński, J. (2015). Fungal transformation of 17α-ethinylestradiol in the presence of various concentrations of sodium chloride. International Biodeterioration & Biodegradation, 103, 77–84.

    Google Scholar 

  79. Ruksrithong, C., & Phattarapattamawong, S. (2019). Removals of estrone and 17β-estradiol by microalgae cultivation: Kinetics and removal mechanisms. Environmental Technology, 40, 163–170.

    CAS  Google Scholar 

  80. Rzymski, P., Niedzielski, P., Karczewski, J., & Poniedziałek, B. (2014). Biosorption of toxic metals using freely suspended Microcystis aeruginosa biomass. Central European Journal of Chemistry, 12, 1232–1238.

    CAS  Google Scholar 

  81. Sami, N., & Fatma, T. (2019). Studies on estrone biodegradation potential of cyanobacterial species. Biocatalysis and Agricultural Biotechnology, 17, 576–582.

    Google Scholar 

  82. Sami, N., Ansari, S., Yasin, D., & Fatma, T. (2020). Estrone degrading enzymes of Spirulina CPCC-695 and synthesis of bioplastic precursor as a by-product. Biotechnology Reports, 26, 1–8.

    Google Scholar 

  83. Schäfer, A. I., Akanyeti, I., & Semião, A. J. C. (2011). Micropollutant sorption to membrane polymers: A review of mechanisms for estrogens. Advances in Colloid and Interface Science, 164, 100–117.

    Google Scholar 

  84. Sedighi, M., Nasseri, S., & Ghotbi-Ravandi, A. A. (2019). Degradation of 17α-ethinylestradiol by Enterobacter tabaci isolate and kinetic characterization. Environmental Processes, 6, 741–755.

    CAS  Google Scholar 

  85. Selcer, K. W., & Verbanic, J. D. (2014). Vitellogenin of the northern leopard frog (Rana pipiens): Development of an ELISA assay and evaluation of induction after immersion in xenobiotic estrogens. Chemosphere, 112, 348–354.

    CAS  Google Scholar 

  86. Shareef, A., Angove, M. J., Wells, J. D., & Johnson, B. B. (2006). Aqueous solubilities of estrone, 17β-estradiol, 17α-ethynylestradiol, and bisphenol A. Journal of Chemical and Engineering Data, 51, 879–881.

    CAS  Google Scholar 

  87. Shi, W., Wang, L., Rousseau, D. P. L., & Lens, P. N. L. (2010). Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based wastewater treatment systems. Environmental Science and Pollution Research, 17, 824–833.

    CAS  Google Scholar 

  88. Simpson, E. R. (2003). Sources of estrogen and their importance. The Journal of Steroid Biochemistry and Molecular Biology, 86, 225–230.

    CAS  Google Scholar 

  89. Solé, A., & Matamoros, V. (2016). Removal of endocrine disrupting compounds from wastewater by microalgae co-immobilized in alginate beads. Chemosphere, 164, 516–523.

    Google Scholar 

  90. Sun, K., Chen, H., Zhang, Q., Li, S., Liu, Q., & Si, Y. (2020a). Influence of humic acids on fungal laccase-initiated 17α-ethynylestradiol oligomerization: Transformation kinetics and products distribution. Chemosphere, 258, 127371.

    CAS  Google Scholar 

  91. Sun, K., Cheng, X., Yu, J., Chen, L., Wei, J., Chen, W., Wang, J., Li, S., Liu, Q., & Si, Y. (2020b). Isolation of Trametes hirsuta La-7 with high laccase-productivity and its application in metabolism of 17β-estradiol. Environmental Pollution, 263, 114381.

    CAS  Google Scholar 

  92. Sun, S.-X., Wu, J.-L., Lv, H.-B., Zhang, H.-Y., Zhang, J., Limbu, S. M., Qiao, F., Chen, L.-Q., Yang, Y., Zhang, M.-L., & Du, Z.-Y. (2020c). Environmental estrogen exposure converts lipid metabolism in male fish to a female pattern mediated by AMPK and mTOR signaling pathways. Journal of Hazardous Materials, 394, 122537.

    CAS  Google Scholar 

  93. Suri, R. P. S., Singh, T. S., & Abburi, S. (2010). Influence of alkalinity and salinity on the sonochemical degradation of estrogen hormones in aqueous solution. Environmental Science & Technology, 44, 1373–1379.

    CAS  Google Scholar 

  94. Syafiuddin, A., & Fulazzaky, M. A. (2021). Decolorization kinetics and mass transfer mechanisms of Remazol Brilliant Blue R dye mediated by different fungi. Biotechnology Reports, 29, e00573.

    Google Scholar 

  95. Syafiuddin, A., Salmiati, S., Hadibarata, T., Kueh, A. B. H., Salim, M. R., & Zaini, M. A. A. (2018). Silver nanoparticles in the water environment in Malaysia: Inspection, characterization, removal, modeling, and future perspective. Scientific Reports, 8, 1–15.

    CAS  Google Scholar 

  96. Syafiuddin, A., Salmiati, S., Hadibarata, T., Salim, M. R., Kueh, A. B. H., & Suhartono, S. (2019). Removal of silver nanoparticles from water environment: Experimental, mathematical formulation, and cost analysis. Water, Air, and Soil Pollution, 230, 102–117.

    Google Scholar 

  97. Syafiuddin, A., Fulazzaky, M. A., Salmiati, S., Kueh, A. B. H., Fulazzaky, M., & Salim, M. R. (2020). Silver nanoparticles adsorption by the synthetic and natural adsorbent materials: An exclusive review. Nanotechnology for Environmental Engineering, 5, 1–18.

    CAS  Google Scholar 

  98. Vasiliadou, I. A., Sánchez-Vázquez, R., Molina, R., Martínez, F., Melero, J. A., Bautista, L. F., Iglesias, J., & Morales, G. (2016). Biological removal of pharmaceutical compounds using white-rot fungi with concomitant FAME production of the residual biomass. Journal of Environmental Management, 180, 228–237.

    CAS  Google Scholar 

  99. Vo, H. N. P., Ngo, H. H., Guo, W., Nguyen, K. H., Chang, S. W., Nguyen, D. D., Liu, Y., Liu, Y., Ding, A., & Bui, X. T. (2020). Micropollutants cometabolism of microalgae for wastewater remediation: Effect of carbon sources to cometabolism and degradation products. Water Research, 183, 115974.

    CAS  Google Scholar 

  100. Vymazal, J., Březinová, T., & Koželuh, M. (2015). Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic. Science of the Total Environment, 536, 625–631.

    CAS  Google Scholar 

  101. Wang, P., Wong, Y.-S., & Tam, N.F.-Y. (2017). Green microalgae in removal and biotransformation of estradiol and ethinylestradiol. Journal of Applied Phycology, 29, 263–273.

    CAS  Google Scholar 

  102. Wang, P., Zheng, D., & Liang, R. (2019a). Isolation and characterization of an estrogen-degrading Pseudomonas putida strain SJTE-1. 3 Biotech, 9, 61.

    Google Scholar 

  103. Wang, Y., Sun, Q., Li, Y., Wang, H., Wu, K., & Yu, C.-P. (2019b). Biotransformation of estrone, 17β-estradiol and 17α-ethynylestradiol by four species of microalgae. Ecotoxicology and Environmental Safety, 180, 723–732.

    CAS  Google Scholar 

  104. Wang, R., Li, F., Ruan, W., Tai, Y., Cai, H., & Yang, Y. (2020a). Removal and degradation pathway analysis of 17β-estradiol from raw domestic wastewater using immobilised functional microalgae under repeated loading. Biochemical Engineering Journal, 161, 107700.

    CAS  Google Scholar 

  105. Wang, Y., Zhao, X., Tian, K., Meng, F., Zhou, D., Xu, X., Zhang, H., & Huo, H. (2020b). Identification and genome analysis of a novel 17β-estradiol degradation bacterium, Lysinibacillus sphaericus DH-B01. 3 Biotech, 10, 166.

    CAS  Google Scholar 

  106. Wu, M. L., Zhu, C. C., Qi, Y. Y., Shi, Y. X., Xu, H. N., & Yang, J. R. (2018). Isolation, identification and degradation characteristics of a 17β-estradiol degrading strain Fusarium sp. KY123915. Huanjing Kexue/environmental Science, 39, 4802–4808.

    Google Scholar 

  107. Xiong, W., Peng, W., & Liang, R. (2018). Identification and genome analysis of Deinococcus actinosclerus SJTR1, a novel 17β-estradiol degradation bacterium. 3 Biotech, 8, 433.

    Google Scholar 

  108. Xiong, W., Yin, C., Peng, W., Deng, Z., Lin, S., & Liang, R. (2020a). Characterization of an 17β-estradiol-degrading bacterium Stenotrophomonas maltophilia SJTL3 tolerant to adverse environmental factors. Applied Microbiology and Biotechnology, 104, 1291–1305.

    CAS  Google Scholar 

  109. Xiong, W., Yin, C., Wang, Y., Lin, S., Deng, Z., & Liang, R. (2020b). Characterization of an efficient estrogen-degrading bacterium Stenotrophomonas maltophilia SJTH1 in saline-, alkaline-, heavy metal-contained environments or solid soil and identification of four 17β-estradiol-oxidizing dehydrogenases. Journal of Hazardous Materials, 385, 121616.

    CAS  Google Scholar 

  110. Ye, X., Wang, H., Kan, J., Li, J., Huang, T., Xiong, G., & Hu, Z. (2017). A novel 17β-hydroxysteroid dehydrogenase in Rhodococcus sp. P14 for transforming 17β-estradiol to estrone. Chemico-Biological Interactions, 276, 105–112.

    CAS  Google Scholar 

  111. Ye, X., Peng, T., Feng, J., Yang, Q., Pratush, A., Xiong, G., Huang, T., & Hu, Z. (2019). A novel dehydrogenase 17β-HSDx from Rhodococcus sp. P14 with potential application in bioremediation of steroids contaminated environment. Journal of Hazardous Materials, 362, 170–177.

    CAS  Google Scholar 

  112. Yu, W., Du, B., Yang, L., Zhang, Z., Yang, C., Yuan, S., & Zhang, M. (2019). Occurrence, sorption, and transformation of free and conjugated natural steroid estrogens in the environment. Environmental Science and Pollution Research, 26, 9443–9468.

    CAS  Google Scholar 

  113. Zhang, J., Zheng, J.-W., Liang, B., Wang, C.-H., Cai, S., Ni, Y.-Y., He, J., & Li, S.-P. (2011). Biodegradation of chloroacetamide herbicides by Paracoccus sp. FLY-8 in vitro. Journal of Agricultural and Food Chemistry, 59, 4614–4621.

    CAS  Google Scholar 

  114. Zhang, W., Niu, Z., Liao, C., & Chen, L. (2013). Isolation and characterization of Pseudomonas sp. strain capable of degrading diethylstilbestrol. Applied Microbiology and Biotechnology, 97, 4095–4104.

    CAS  Google Scholar 

  115. Zhang, Y., Habteselassie, M. Y., Resurreccion, E. P., Mantripragada, V., Peng, S., Bauer, S., & Colosi, L. M. (2014). Evaluating removal of steroid estrogens by a model alga as a possible sustainability benefit of hypothetical integrated algae cultivation and wastewater treatment systems. ACS Sustainable Chemistry & Engineering, 2, 2544–2553.

    CAS  Google Scholar 

  116. Zhao, X., Wang, Y., Xu, X., Tian, K., Zhou, D., Meng, F., Zhang, H., & Huo, H. (2020). Genomics analysis of the steroid estrogen-degrading bacterium Serratia nematodiphila DH-S01. Biotechnology & Biotechnological Equipment, 34, 430–440.

    Google Scholar 

  117. Zhou, L., Luo, Q., Lu, J., & Huang, Q. (2015). Transformation of 17β-estradiol by Phanerochaete chrysosporium in different culture media. Bulletin of Environmental Contamination and Toxicology, 95, 265–271.

Download references

Acknowledgements

The authors thank the Universitas Nahdlatul Ulama Surabaya for facilitating the present work. A great collaborative effort from the Institut Teknologi Sepuluh Nopember, Curtin University Malaysia, and Universiti Malaysia Sarawak in realizing the current review is highly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Achmad Syafiuddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ratnasari, A., Syafiuddin, A., Kueh, A.B.H. et al. Opportunities and Challenges for Sustainable Bioremediation of Natural and Synthetic Estrogens as Emerging Water Contaminants Using Bacteria, Fungi, and Algae. Water Air Soil Pollut 232, 242 (2021). https://doi.org/10.1007/s11270-021-05183-3

Download citation

Keywords

  • Estrogens
  • Bioremediation
  • Biodegradation
  • Biotransformation