Characteristics and Assessment of Trace Elements (Hg, As, Sb, Se, and Bi) in Mire Surface Water from the Changbai Mountains, Northeastern China

Abstract

Knowledge about trace elements such as mercury (Hg), arsenic (As), antimony (Sb), selenium (Se), and bismuth (Bi) in mire surface water is limited. We studied 105 surface water samples collected from 50 mires in the Changbai Mountains (CBM), northeastern China, investigated the characteristics of these five elements, and assessed the quality of the mire surface water. Hg and Sb in all investigated mires exceeded the guideline values (level V) for surface water set by the State Environmental Protection Administration of China by 92% and 2%, respectively. Inputs of Hg and Sb into surface water were predominantly derived from atmospheric wet deposition and following surface runoff at a regional scale. Concentrations of Sb were influenced by the acidity of mire water and were positively linked with As. Concentrations of As, Se, and Bi were within their allowable ranges (level I), and were not related to any investigated factors at a regional scale. At a local scale, As was influenced by redox conditions; Se was predominantly input from surface runoff; and concentrations of Bi decreased along with strong water table fluctuations and surface runoff. The water quality index (WQI) and the metal index (MI) indicated that 56% of mire surface water was poor for drinking, and 40% was moderately affected for agriculture and general landscape purposes. Early detection of potential risks from these trace elements to organisms is important, and attention should be predominantly paid to Hg and Sb in surface water of mires connected to principal local rivers and streams in these regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Arimoto, R., Duce, R. A., Ray, B. J., Ellis, W. G., Cullen, J. D., & Merrill, J. T. (1995). Trace elements in the atmosphere over the North Atlantic. Journal of Geophysical Research, 100(D1), 1199–1213.

    CAS  Article  Google Scholar 

  2. Asaoka, S., Takahashi, Y., Araki, Y., & Tanimizu, M. (2012). Comparison of antimony and arsenic behavior in an Ichinokawa River water–sediment system. Chemical Geology, 334, 1–8. https://doi.org/10.1016/j.chemgeo.2012.09.047

    CAS  Article  Google Scholar 

  3. Azevedo, B. F., Furieri, L. B., Peҫanham, F. M., Wiggers, G. A., Vassallo, P. F., Simões, M. R., et al. (2012). Toxic effects of mercury on the cardiovascular and central nervous systems. Journal of Biomedicine and Biotechnology, 2012, 1–11. https://doi.org/10.1155/2012/949048

    CAS  Article  Google Scholar 

  4. Berg, T., Fjeld, E., & Steinnes, E. (2006). Atmospheric mercury in Norway: Contributions from different sources. Science of the Total Environment, 368(1), 3–9. https://doi.org/10.1016/j.scitotenv.2005.09.059

    CAS  Article  Google Scholar 

  5. Bourbonniere, R. A. (2009). Review of water chemistry research in natural and disturbed peatlands. Canadian Water Resources Journal, 34(4), 393–414.

    Article  Google Scholar 

  6. Bragazza, L. (2006). Heavy metals in bog waters, an alternative way to assess atmospheric precipitation quality. Global and Planetary Change, 53(4), 290–298. https://doi.org/10.1016/j.gloplacha.2006.03.011

    Article  Google Scholar 

  7. Branfireun, B. A., Heyes, A., & Roulet, N. T. (1996). The hydrology and methylmercury dynamics of a Precambrian shield headwater peatland. Water Resources Research, 32(6), 1785–1794. https://doi.org/10.1029/96WR00790

    CAS  Article  Google Scholar 

  8. Branfireun, B. A., Bishop, K., Roulet, N. T., Granberg, G., & Nilsson, M. (2001). Mercury cycling in boreal ecosystems: The long-term effect of acid rain constituents on peatland pore water methylmercury concentrations. Geophysical Research Letters, 28(7), 1227–1230. https://doi.org/10.1029/2000GL011867

    CAS  Article  Google Scholar 

  9. Branfireun, B. A., Krabbenhoft, D. P., Hintelmann, H., Hunt, R. J., Hurley, J. P., & Rudd, J. W. M. (2005). Speciation and transport of newly deposited mercury in a boreal forest wetland: A stable mercury isotope approach. Water Resources Research, 41, W01016. https://doi.org/10.1029/2004WR003219

    CAS  Article  Google Scholar 

  10. Bu, Z. J., Rydin, H., & Chen, X. (2011). Direct and interaction-mediated effects of environmental changes on peatland bryophytes. Oecologia, 166(2), 555–563. https://doi.org/10.1007/s00442-010-1880-1

    Article  Google Scholar 

  11. Chang, H. (2005). Spatial and temporal variations of water quality in the Han River and its tributaries, Seoul, Korea, 1993–2002. Water, Air, and Soil Pollution, 161(1–4), 267–284. https://doi.org/10.1007/s11270-005-4286-7

    CAS  Article  Google Scholar 

  12. CSEPA. (2002). Environmental quality standard for surface water (GB3838-2002). China Environmental Science Press. (in Chinese).

    Google Scholar 

  13. CSEPA. (2009). Water quality—Technical regulation of the preservation and handling of samples. China Environmental Science Press. (in Chinese).

    Google Scholar 

  14. Dellwig, O., Böttcher, M. E., Lipinski, M., & Brumsack, H. J. (2002). Trace metals in Holocene coastal peats and their relation to pyrite formation (NW Germany). Chemical Geology, 182(2–4), 423–442. https://doi.org/10.1016/S0009-2541(01)00335-7

    CAS  Article  Google Scholar 

  15. Depledge, M. H., & Billinghurst, Z. (1999). Ecological significance of endocrine disruption in marine invertebrates. Marine Pollution Bulletin, 39(1–12), 32–38. https://doi.org/10.1016/S0025-326X(99)00115-0

    CAS  Article  Google Scholar 

  16. Ferdous, F., Rafiq, M. R., & Mahmud, M. I. (2016). Aquifer geometry and water quality in relation to occurrence and distribution of peat in Baghia-Chanda Beel Bangladesh. Journal of Scientific Research, 8(3), 355–370. https://doi.org/10.3329/jsr.v8i3.25360

    CAS  Article  Google Scholar 

  17. Ferguson, J. F., & Gavis, J. (1972). A review of the arsenic cycle in natural waters. Water Research, 6(11), 1259–1274. https://doi.org/10.1016/0043-1354(72)90052-8

    CAS  Article  Google Scholar 

  18. Filella, M. (2010). How reliable are environmental data on ‘orphan’ elements? The case of bismuth concentrations in surface waters. Journal of Environmental Monitoring, 12(1), 90–109. https://doi.org/10.1039/b914307f

    CAS  Article  Google Scholar 

  19. Filella, M., Belzile, N., & Chen, Y. W. (2002). Antimony in the environment: A review focused on natural waters I Occurrence. Earth-Science Reviews, 57(1–2), 125–176. https://doi.org/10.1016/S0012-8252(01)00070-8

    CAS  Article  Google Scholar 

  20. Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., & Nater, E. A. (1998). The case for atmospheric mercury contamination in remote areas. Environmental Science & Technology, 32(1), 1–7. https://doi.org/10.1021/es970284w

    CAS  Article  Google Scholar 

  21. Fu, B. (2006). The study on vegetation succession of Hanlongwan swamp, with Chinese in English abstract. Northeast Normal University master’s thesis, 10–41. Northeast Normal University. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=2006098924.nh&DbName=CMFD2006

  22. Fu, Z. Y., Wu, F. C., Amarasiriwardena, D., Mo, C. L., Liu, B. J., Zhu, J., et al. (2010). Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan China. Science of the Total Environment, 408(16), 3403–3410. https://doi.org/10.1016/j.scitotenv.2010.04.031

    CAS  Article  Google Scholar 

  23. Gallego, J. L. R., Ortiz, J. E., Sierra, C., Torres, T., & Llamas, J. F. (2013). Multivariate study of trace element distribution in the geological record of Roñanzas Peat Bog (Asturias, N. Spain). Paleoenvironmental evolution and human activities over the last 8000 cal yr BP. Science of the Total Environment, 454–455, 16–29. https://doi.org/10.1016/j.scitotenv.2013.02.083

    CAS  Article  Google Scholar 

  24. Galloway, M. E., & Branfireun, B. A. (2004). Mercury dynamics of a temperate forested wetland. Science of the Total Environment, 325(1–3), 239–254. https://doi.org/10.1016/j.scitotenv.2003.11.010

    CAS  Article  Google Scholar 

  25. González, Z. I., Krachler, M., Cheburkin, A. K., & Shotyk, W. (2006). Spatial distribution of natural enrichments of arsenic, selenium, and uranium in a minerotrophic peatland, Gola di Lago, Canton Ticino Switzerland. Environmental Science & Technology, 40(21), 6568–6574. https://doi.org/10.1021/es061080v

    CAS  Article  Google Scholar 

  26. Grigal, D. F. (2003). Mercury sequestration in forests and peatlands. Journal of Environmental Quality, 32(2), 393–405. https://doi.org/10.2134/jeq2003.3930

    CAS  Article  Google Scholar 

  27. Grigal, D. F., Kolka, R. K., Fleck, J. A., & Nater, E. A. (2000). Mercury budget of an upland-peatland watershed. Biogeochemistry, 50(1), 95–109. https://doi.org/10.1023/A:1006322705566

    CAS  Article  Google Scholar 

  28. Hamilton, S. J. (2004). Review of selenium toxicity in the aquatic food chain. Science of the Total Environment, 326(1–3), 1–31. https://doi.org/10.1016/j.scitotenv.2004.01.019

    CAS  Article  Google Scholar 

  29. Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298(5598), 1602–1606. https://doi.org/10.1126/science.1076978

    CAS  Article  Google Scholar 

  30. He, M. C., Wang, X. Q., Wu, F. C., & Fu, Z. Y. (2012). Antimony pollution in China. Science of the Total Environment, 421–422, 41–50. https://doi.org/10.1016/j.scitotenv.2011.06.009

    CAS  Article  Google Scholar 

  31. He, Y. Z., Xiang, Y. J., Zhou, Y. Y., Yang, Y., Zhang, J. C., Huang, H. L., et al. (2018). Selenium contamination, consequences and remediation techniques in water and soils: A review. Environmental Research, 164, 288–301. https://doi.org/10.1016/j.envres.2018.02.037

    CAS  Article  Google Scholar 

  32. Hines, N. A., & Brezonik, P. L. (2007). Mercury inputs and outputs at a small lake in northern Minnesota. Biogeochemistry, 84(3), 265–284. https://doi.org/10.1007/s10533-007-9114-2

    CAS  Article  Google Scholar 

  33. Huang, J. H., & Matzner, E. (2006). Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochimica Et Cosmochimica Acta, 70(8), 2023–2033. https://doi.org/10.1016/j.gca.2006.01.021

  34. Islam, M. D. R., Salminen, R., & Lahermo, P. W. (2000). Arsenic and other toxic elemental contamination of groundwater, surface water and soil in Bangladesh and its possible effects on human health. Environmental Geochemistry and Health, 22(1), 33–53. https://doi.org/10.1023/A:1006787405626

    CAS  Article  Google Scholar 

  35. Kalbitz, K., & Wennrich, R. (1998). Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Science of the Total Environment, 209(1), 27–39. https://doi.org/10.1016/S0048-9697(97)00302-1

    CAS  Article  Google Scholar 

  36. Khaska, M., Corinne, L. G. L. S., Sassine, L., Cary, L., Bruguier, O., & Verdoux, P. (2018). Arsenic and metallic trace elements cycling in the surface water-groundwater-soil continuum down-gradient from a reclaimed mine area: Isotopic imprints. Journal of Hydrology, 558, 341–355. https://doi.org/10.1016/j.jhydrol.2018.01.031

    CAS  Article  Google Scholar 

  37. Kolka, R. K., Mitchell, C. P. J., Jeremiason, J. D., Hines, N. A., Grigal, D. F., Engstrom, D. R., et al. (2011). Mercury cycling in peatland watersheds. In R. K. Kolka, S. D. Sebestyen, & E. S. Verry (Eds.), Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest (pp. 349–366). Taylor and Francis Group LLC.

    Chapter  Google Scholar 

  38. Krachler, M., Zheng, J., Koerner, R., Zdanowicz, C., Fisher, D., & Shotyk, W. (2005). Increasing atmospheric antimony contamination in the northern hemisphere: Snow and ice evidence from Devon Island, Arctic Canada. Journal of Environmental Monitoring, 7(12), 1169–1176. https://doi.org/10.1039/b509373b

    CAS  Article  Google Scholar 

  39. Kumkrong, P., LeBlanc, K. L., Patrick, H. J., & Zoltán, M. (2018). Selenium analysis in waters. Part 1. Regulations and standard methods. Science of the Total Environment, 640–641, 1611–1634.

    Article  Google Scholar 

  40. Lemly, A. D. (2004). Aquatic selenium pollution is a global environmental safety issue. Ecotoxicology and Environmental Safety, 59(1), 44–56. https://doi.org/10.1016/S0147-6513(03)00095-2

    CAS  Article  Google Scholar 

  41. Lidman, F., Mörth, C. M., Björkvald, L., & Laudon, H. (2011). Selenium dynamics in boreal streams: The role of wetlands and changing groundwater tables. Environmental Science & Technology, 45(7), 2677–2683. https://doi.org/10.1021/es102885z

    CAS  Article  Google Scholar 

  42. Liu, J., Wang, Z. C., Zhao, H. Y., Matthew, P., Yang, Q. N., Liu, S. S., et al. (2018). Mercury and arsenic in the surface peat soils of the Changbai Mountains, northeastern China: Distribution, environmental controls, sources, and ecological risk assessment. Environmental Science and Pollution Research International, 25(34), 34595–34609. https://doi.org/10.1007/s11356-018-3380-5

    CAS  Article  Google Scholar 

  43. Liu, R. H., Wang, Q. C., Lv, X. G., Fang, F. M., & Wang, Y. (2003). Distribution and speciation of mercury in the peat bog of Xiaoxing’an Mountain, northeastern China. Environmental Pollution, 124(1), 39–46. https://doi.org/10.1016/S0269-7491(02)00432-3

    CAS  Article  Google Scholar 

  44. Loon, L. V., Mader, E., & Scott, S. L. (2000). Reduction of the aqueous mercuric ion by sulfite: UV spectrum of HgSO3 and its intramolecular redox reaction. Journal of Physical Chemistry A, 104(8), 1621–1626. https://doi.org/10.1002/chin.200021019

    Article  Google Scholar 

  45. Mariussen, E., Johnsen, I. V., & Strømseng, A. E. (2017). Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires. Environmental Science and Pollution Research, 24, 10182–10196. https://doi.org/10.1007/s11356-017-8647-8

  46. Meng, Q. P., Zhang, J., Zhang, Z. Y., & Wu, T. R. (2016). Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): Distribution, sources, and water quality assessment. Environmental Science and Pollution Research, 23(8), 8091–8103. https://doi.org/10.1007/s11356-016-6074-x

  47. Ministry of Environmental Protection of the People’s Republic of China (2014). Water quality— Determination of mercury, arsenic, selenium, bismuth and antimony—atomic fluorescence spectrometry. Beijing, National Environmental Protection Standard of the People’s Republic of China (in Chinese)

  48. Ministry of Health of the People’s Republic of China (CMH) (2007). Standards for drinking water quality (GB5749–2006). City and Town Water Supply, (4), 27–37. (in Chinese)

    Google Scholar 

  49. Mitsch, W.J., Gosselink, J.G. (2015). Wetlands. John Wiley & Sons, Ltd.

  50. Miyazaki, A., Kimura, A., & Tao, H. (2012). Distribution of indium, thallium and bismuth in the environmental water of Japan. Bulletin of Environmental Contamination and Toxicology, 89(6), 1211–1215. https://doi.org/10.1007/s00128-012-0851-0

    CAS  Article  Google Scholar 

  51. Nriagu, J. O. (1989). A global assessment of natural sources of atmospheric trace metals. Nature, 338(6210), 47–49. https://doi.org/10.1038/338047a0

    CAS  Article  Google Scholar 

  52. Obrist, D., Johnson, D. W., Lindberg, S. E., Luo, Y., Hararuk, O., Bracho, R., et al. (2011). Mercury distribution across 14 U.S Forests. Part I. Spatial patterns of concentrations in biomass, litter, and soils. Environmental Science & Technology, 45(9), 3974–3981. https://doi.org/10.1021/es104384m

    CAS  Article  Google Scholar 

  53. Oswald, C. J., & Carey, S. K. (2016). Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region. Environmental Pollution, 213, 628–637. https://doi.org/10.1016/j.envpol.2016.03.002

    CAS  Article  Google Scholar 

  54. Palmer, K., Ronkanen, A. K., & Kløve, B. (2015). Efficient removal of arsenic, antimony and nickel from mine wastewaters in northern treatment peatlands and potential risks in their long-term use. Ecological Engineering, 75, 350–364. https://doi.org/10.1016/j.ecoleng.2014.11.045

    Article  Google Scholar 

  55. Rahman, M. A., & Hasegawa, H. (2012). Arsenic in freshwater systems: Influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation. Applied Geochemistry, 27(1), 304–314. https://doi.org/10.1016/j.apgeochem.2011.09.020

    CAS  Article  Google Scholar 

  56. Razavi, N. R., Arts, M. T., Qu, M., Jin, B., Ren, W., Wang, Y., et al. (2014). Effect of eutrophication on mercury, selenium, and essential fatty acids in bighead carp (Hypophthalmichthys nobilis) from reservoirs of eastern China. Science of the Total Environment, 499, 36–46. https://doi.org/10.1016/j.scitotenv.2014.08.019

    CAS  Article  Google Scholar 

  57. Roos-Barraclough, F., Givelet, N., Cheburkin, A. K., Shotyk, W., & Norton, S. A. (2006). Use of Br and Se in peat to reconstruct the natural and anthropogenic fluxes of atmospheric Hg: A 10000-year record from Caribou Bog Maine. Environmental Science & Technology, 40(10), 3188–3194. https://doi.org/10.1021/es051945p

    CAS  Article  Google Scholar 

  58. Rothwell, J. J., Taylor, K. G., Ander, E. L., Evans, M. G., Daniels, S. M., & Allott, T. E. H. (2009). Arsenic retention and release in ombrotrophic peatlands. Science of the Total Environment, 407(4), 1405–1417. https://doi.org/10.1016/j.scitotenv.2008.10.015

    CAS  Article  Google Scholar 

  59. Rothwell, J. J., Taylor, K. G., Chenery, S. R. N., Cundy, A. B., Evans, M. G., & Allott, T. H. E. (2010). Storage and behavior of As, Sb, Pb, and Cu in ombrotrophic peat bogs under contrasting water table conditions. Environmental Science & Technology, 44(22), 8497–8502. https://doi.org/10.1021/es101150w

    CAS  Article  Google Scholar 

  60. Santos, M. D., Rodrigues, F. M., Zurdo, D. V., Baisch, P. R. M., Muccillo-Baisch, L. A., & Madrid, Y. (2019). Selenium and mercury concentration in drinking water and food samples from a coal mining area in Brazil. Environmental Science and Pollution Research, 26(15), 15510–15517. https://doi.org/10.1007/s11356-019-04942-4

    CAS  Article  Google Scholar 

  61. Schröder, C., Thiele, A., Wang, S. Z., Bu, Z. J., & Joosten, H. (2007). Hani-mire – A percolation mire in Northeast China. Peatlands International, 2, 21–24.

    Google Scholar 

  62. Selvendiran, P., Driscoll, C. T., Bushey, J. T., & Montesdeoca, M. R. (2008). Wetland influence on mercury fate and transport in a temperate forested watershed. Environmental Pollution, 154(1), 46–55. https://doi.org/10.1016/j.envpol.2007.12.005

    CAS  Article  Google Scholar 

  63. Shotyk, W. (1988). Review of the inorganic geochemistry of peats and peatland waters. Earth-Science Reviews, 25(2), 95–176. https://doi.org/10.1016/0012-8252(88)90067-0

    CAS  Article  Google Scholar 

  64. Shotyk, W., Bicalho, B., Cuss, C. W., Donner, M. W., Grant-Weaver, I., Haas-Neill, S., et al. (2016). Trace metals in the dissolved fraction (<0.45 μm) of the lower Athabasca River: Analytical challenges and environmental implications. Science of the Total Environment, 580, 660–669. https://doi.org/10.1016/j.scitotenv.2016.12.012

    CAS  Article  Google Scholar 

  65. Shotyk, W., Cheburkin, A. K., Appleby, P. G., Fankhauser, A., & Kramers, J. D. (1996). Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland. Earth and Planetary Science Letters, 145(1–4), E1–E7. https://doi.org/10.1016/S0012-821X(96)00197-5

    Article  Google Scholar 

  66. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568. https://doi.org/10.1016/S0883-2927(02)00018-5

    CAS  Article  Google Scholar 

  67. Tahvanainen, T., Sallantus, T., & Heikkilä, R. (2003). Seasonal variation of water chemical gradients in three boreal fens. Annales Botanici Fennici, 40(5), 345–355. https://doi.org/10.1055/s-0028-1088372

    CAS  Article  Google Scholar 

  68. Tan, J. A., Zhu, W. Y., Wang, W. Y., Li, R. B., Hou, S. F., Wang, D. C., et al. (2002). Selenium in soil and endemic diseases in China. Science of the Total Environment, 284(1–3), 227–235. https://doi.org/10.1016/S0048-9697(01)00889-0

    CAS  Article  Google Scholar 

  69. Tang, S. L., Huang, Z. W., & Liu, J. (2012). Atmospheric mercury deposition recorded in an ombrotrophic peat core from Xiaoxing’an Mountain, Northeast China. Environmental Research, 118, 145–148. https://doi.org/10.1016/j.envres.2011.12.009

    CAS  Article  Google Scholar 

  70. Tipping, E., Smith, E. J., Lawlor, A. J., Hughes, S., & Stevens, P. A. (2003). Predicting the release of metals from ombrotrophic peat due to drought-induced acidification. Environmental Pollution, 123(2), 239–253. https://doi.org/10.1016/S0269-7491(02)00375-5

    CAS  Article  Google Scholar 

  71. Ullah, H., Liu, G. J., Yousaf, B., Ali, M. U., Irshad, S., & Abbas, Q. (2019). A comprehensive review on environmental transformation of selenium: Recent advances and research perspectives. Environmental Geochemistry and Health, 41(2), 1003–1035. https://doi.org/10.1007/s10653-018-0195-8

    CAS  Article  Google Scholar 

  72. Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: A review of factors affecting methylation. Critical Reviews in Environmental Sciences and Technology, 31(3), 241–293. https://doi.org/10.1080/20016491089226

    CAS  Article  Google Scholar 

  73. USEPA (2012). Ground water and drinking water. Retrieved from https://www.epa.gov/ground-water-and-drinking-water

  74. Vitt, D. H., Bayley, S. E., & Jin, T. L. (1995). Seasonal variation in water chemistry over a bog–rich fen gradients in continental western Canada. Canadian Journal of Fisheries and Aquatic Sciences, 52(3), 587–606. https://doi.org/10.1139/f95-059

    CAS  Article  Google Scholar 

  75. Wan, Q., Feng, X. B., Lu, J. L., Zheng, W., Song, X. J., Han, S. J., et al. (2009). Atmospheric mercury in Changbai Mountain area, northeastern China. I. The seasonal distribution pattern of total gaseous mercury and its potential sources. Environmental Research, 109(3), 201–206. https://doi.org/10.1016/j.envres.2008.12.001

    CAS  Article  Google Scholar 

  76. Wang, H., Nie, L., Xu, Y., & Lv, Y. (2017a). The effect of highway on heavy metal accumulation in soil in turfy swamps, Northeastern China. Water, Air, and Soil Pollution, 228(8), 292–305. https://doi.org/10.1007/s11270-017-3486-2

    CAS  Article  Google Scholar 

  77. Wang, J., Liu, G. J., Liu, H. Q., & Lam, P. K. S. (2017b). Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. Science of the Total Environment, 583, 421–431. https://doi.org/10.1016/j.scitotenv.2017.01.088

    CAS  Article  Google Scholar 

  78. Wang, T., Driscoll, C. T., Hwang, K., Chandler, D., & Montesdeoca, M. (2020). Total and methylmercury concentrations in ground and surface waters in natural and restored freshwater wetlands in northern New York. Ecotoxicology, 29(10), 1602–1613. https://doi.org/10.1007/s10646-019-02155-6

    CAS  Article  Google Scholar 

  79. Watras, C. J., Morrison, K. A., & Bloom, N. S. (1995). Chemical correlates of Hg and methyl-Hg in northern Wisconsin lake waters under ice-cover. Water, Air, and Soil Pollution, 84(3–4), 253–267. https://doi.org/10.1007/BF00475343

    CAS  Article  Google Scholar 

  80. Wilson, N. J., Craw, D., & Hunter, K. (2004). Antimony distribution and environmental mobility at an historic antimony smelter site New Zealand. Environment Pollution, 129(2), 257–266. https://doi.org/10.1016/j.envpol.2003.10.014

    CAS  Article  Google Scholar 

  81. Withanachchi, S. S., Ghambashidze, G., Kunchulia, I., Urushadze, T., & Ploeger, A. (2018). Water quality in surface water: A preliminary assessment of heavy metal contamination of the Mashavera River, Georgia. International Journal of Environmental Research and Public Health, 15(4), 621. https://doi.org/10.3390/ijerph15040621

    CAS  Article  Google Scholar 

  82. Xiao, J., Wang, L. Q., Deng, L., & Jin, Z. D. (2019). Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Science of the Total Environment, 650(Pt2), 2004–2012. https://doi.org/10.1016/j.scitotenv.2018.09.322

    CAS  Article  Google Scholar 

  83. Xu, N., Dong, Y. M., Zhao, H. Y., Liu, S. S., Li, H. K., Wang, M., et al. (2016). Trophic status of the mires in Changbai Mountains, Northeast China. In L. Melling (Eds.), Proceedings of 15th International Peat Congress (pp. 149–153). International Peatland Society.

  84. Yafa, C., & Farmer, J. G. (2006). A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry. Analytica Chimica Acta, 557(1–2), 296–303. https://doi.org/10.1016/j.aca.2005.10.043

    CAS  Article  Google Scholar 

  85. Yan, R., Gauthier, D., & Flamant, G. (2000). Possible interactions between As, Se, and Hg during coal combustion. Combustion and Flame, 120(1–2), 49–60. https://doi.org/10.1016/S0010-2180(99)00079-6

    CAS  Article  Google Scholar 

  86. Yang, Q. N., Zhao, H. Y., Li, H. C., Bu, Z. J., Wang, S. Z., & Wang, A. X. (2017). Distributions of “bomb 14C”, biogeochemistry and elemental concentration in Hani mire peat profiles, NE China: Implications of environmental change. Quaternary International, 447, 128–143. https://doi.org/10.1016/j.quaint.2017.06.033

    Article  Google Scholar 

  87. Zhang, M. Y., Cui, L. J., Sheng, L. X., & Wang, Y. F. (2009). Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China. Ecological Engineering, 35(4), 563–569. https://doi.org/10.1016/j.ecoleng.2008.05.012

    CAS  Article  Google Scholar 

  88. Zhu, J. M., Wang, N., Li, S. H., Su, H. C., & Liu, C. X. (2008). Distribution and transport of selenium in Yutangba, China: Impact of human activities. Science of the Total Environment, 392(2–3), 252–261.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jia Liu, Qiannan Yang, Xing’an Wang, Ming Wang, Zhiwei Xu, Chuantao Song, Sipeng Zhang, Hanxiang Liu, Fangyuan Chen, Zheng Han, Chenxi Duan, Xiaokang Zhou, Xuanqi Zhao, Yiwen Cao, and Cong Xu for their help in the fieldwork, and Xinhua Zhou, Jia Liu, Qiannan Yang, Jingjing Sun, Yangyang Xia, Jie Wang, and Yufang Liu for their assistance during the laboratory chemical analysis.

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 41471165) and the Science and Technology Department of Jilin Province (No. 20180101002JC).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongyan Zhao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 92.4 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Wang, Z., Zhao, H. et al. Characteristics and Assessment of Trace Elements (Hg, As, Sb, Se, and Bi) in Mire Surface Water from the Changbai Mountains, Northeastern China. Water Air Soil Pollut 232, 246 (2021). https://doi.org/10.1007/s11270-021-05173-5

Download citation

Keywords

  • Mercury
  • Arsenic
  • Antimony
  • Selenium
  • Mire
  • Surface water