Skip to main content
Log in

Perfluorooctane sulfonate decomposition by a high photon flux UV/SO32−/N2 system: kinetics and influence factors

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Hydrated electron (eaq) induced reduction processes are promising for reductive decomposition of recalcitrant organic pollutants, such as perfluorooctane sulfonate (PFOS). In this work, effective defluorination of PFOS by eaq was conducted in sulfite solution under UV irradiation. Results show that the defluorination efficiency of PFOS followed the order of UV/SO32−/N2 > UV/SO32−/air > UV/SO32−/O2 > UV/N2 > SO32−/N2, which agreed well with the trend of eaq generation measured by using resazurin as a fluorogenic probe. Under the conditions of pH 9.0, 20 μM PFOS, 10 mM SO32−, 25 °C, and 150 min of reaction time, the decomposition and defluorination efficiencies of PFOS were 98.6 and 45.3%, respectively. The defluorination of PFOS was enhanced by increasing sulfite concentration (5–40 mM), reaction temperature (20–40 °C), or solution pH (pH 7.0–11.0). PFOS defluorination followed the parallel exponential kinetics model, wherein the fast and slow exponential processes were assigned to the decomposition of branched and linear PFOS, respectively. Accompanying PFOS reduction, short-chain perfluorocarboxylic acids were detected and identified. This suggests that eaq-induced decomposition pathway of PFOS involved defluorination, desulfonation, and centermost C–C bond scission in the UV/SO32−/N2 photolysis system. Humic acid slightly inhibited PFOS defluorination, whereas Cl and HCO3 showed negligible effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andoy, N. M., Zhou, X., Choudhary, E., Shen, H., Liu, G., & Chen, P. (2013). Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. Journal of the American Chemical Society, 135, 1845–1852.

    Article  CAS  Google Scholar 

  • Andreia, A., Griet, J., Guido, V., Adrian, C., & Stefan, V. (2015). New approach for assessing human perfluoroalkyl exposure via hair. Talanta, 144, 574–583.

    Article  Google Scholar 

  • Arias Espana, V. A., Mallavarapu, M., & Naidu, R. (2015). Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): a critical review with an emphasis on field testing. Environmental Technology and Innovation, 4, 168–181.

    Article  Google Scholar 

  • Bao, Y., Deng, S., Jiang, X., Qu, Y., He, Y., Liu, L., Chai, Q., Mumtaz, M., Huang, J., Cagnetta, G., & Yu, G. (2018). Degradation of PFOA substitute: genx (HFPO-DA ammonium salt): oxidation with UV/persulfate or reduction with UV/sulfite? Environmental Science and Technology, 52, 11728–11734.

    Article  CAS  Google Scholar 

  • Bentel, M. J., Yu, Y., Xu, L., Li, Z., Wong, B. M., Men, Y., & Liu, J. (2019). Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: structural dependence and implications to PFAS remediation and management. Environmental Science & Technology, 53, 3718–3728.

    Article  CAS  Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. Journal of Physical and Chemical Reference Data, 17, 513–886.

    Article  CAS  Google Scholar 

  • Chen, S., Jiao, X. C., Gai, N., Li, X. J., Wang, X. C., Lu, G. H., Piao, H., Rao, Z., & Yang, Y. L. (2016). Perfluorinated compounds in soil, surface water, and groundwater from rural areas in Eastern China. Environmental Pollution, 211, 124–131.

    Article  CAS  Google Scholar 

  • Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Research, 44, 2997–3027.

    Article  CAS  Google Scholar 

  • Dwivedi, A. H. (2012). Photochemical degradation of halo-organic compounds. LAP LAMBERT Academic Publishing.

  • Gonzalez, M. G., Oliveros, E., Worner, M., & Braun, A. M. (2004). Vacuum-ultraviolet photolysis of aqueous reaction systems. Journal of Photochemistry and Photobiology C, 225–246.

  • Gu, Y., Dong, W., Luo, C., & Liu, T. (2016). Efficient reductive decomposition of perfluorooctanesulfonate in a high photon flux UV/sulfite system. Environmental Science & Technology, 50, 10554–10561.

    Article  CAS  Google Scholar 

  • Gu, Y., Liu, T., Wang, H., Han, H., & Dong, W. (2017). Hydrated electron based decomposition of perfluorooctane sulfonate (PFOS) in the UV/sulfite system. Science of the Total Environment, 607–608, 541–548.

    Article  Google Scholar 

  • He, X., Dai, K., Li, A., & Chen, H. (2015). Occurrence and assessment of perfluorinated compounds in fish from the Danjiangkou Reservoir and Hanjiang River in China. Food Chemistry, 174, 180–187.

    Article  CAS  Google Scholar 

  • Jin, L., & Zhang, P. (2015). Photochemical decomposition of perfluorooctane sulfonate (PFOS) in an anoxic alkaline solution by 185 nm vacuum ultraviolet. Chemical Engineering Journal, 280, 241–247.

    Article  CAS  Google Scholar 

  • Jin, L., Zhang, P., Shao, T., & Zhao, S. (2014). Ferric ion mediated photodecomposition of aqueous perfluorooctanesulfonate (PFOS) under UV irradiation and its mechanism. Journal of Hazardous Materials, 271, 9–15.

    Article  CAS  Google Scholar 

  • Kirsch, P. (2004). Modern fluoroorganic chemistry, synthesis, reactivity, applications. Wiley-VCH.

  • Lee, S., & Lueptow, R. M. (2001). Reverse osmosis filtration for space mission wastewater: membrane properties and operating conditions. Journal of Membrane Science, 182, 77–90.

    Article  CAS  Google Scholar 

  • Li, X., Ma, J., Liu, G., Fang, J., Yue, S., Guan, Y., Chen, L., & Liu, X. (2012a). Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process. Environmental Science & Technology, 46, 7342–7349.

    Article  CAS  Google Scholar 

  • Li, X., Ma, J., Liu, G., Fang, J., Yue, S., Guan, Y., Chen, L., & Liu, X. (2012b). Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process. Environmental Science & Technology, 46, 7342–7349.

    Article  CAS  Google Scholar 

  • Li, W., Batchelor, B., Pillai, S. D., & Botlaguduru, V. S. V. (2016). Electron beam treatment for potable water reuse: removal of bromate and perfluorooctanoic acid. Chemical Engineering Journal, 302, 58–68.

    Article  Google Scholar 

  • Li, G., Wang, C., Yan, Y., Yan, X., & Yin, H. (2020). Highly enhanced degradation of organic pollutants in hematite/sulfite/photo system. Chemical Engineering Journal, 386, 124007.

    Article  CAS  Google Scholar 

  • Liu, X., Vellanki, B. P., Batchelor, B., & Abdel-Wahab, A. (2014). Degradation of 1,2-dichloroethane with advanced reduction processes (ARPs): effects of process variables and mechanisms. Chemical Engineering Journal, 237, 300–307.

    Article  CAS  Google Scholar 

  • Lyu, X. J., Li, W. W., Lam, P. K. S., & Yu, H. Q. (2015a). Photodegradation of perfluorooctanesulfonate in environmental matrices. Separation and Purification Technology, 151, 172–176.

    Article  CAS  Google Scholar 

  • Lyu, X. J., Li, W. W., Lam, P. K. S., & Yu, H. Q. (2015b). Boiling significantly promotes photodegradation of perfluorooctane sulfonate. Chemosphere, 138, 324–327.

    Article  CAS  Google Scholar 

  • Madsen, D., Thomsen, C. L., ThØgersen, J., & Keiding, S. R. (2000). Temperature dependent relaxation and recombination dynamics of the hydrated electron. Journal of Chemical Physics, 113, 1126–1134.

    Article  CAS  Google Scholar 

  • Ochoa-Heerera, V., Sierra-Alvarez, R., Somogyi, A., Jacobsen, N. E., Wysocki, V. H., & Field, J. A. (2008). Reductive defluorination of perfluorooctane sulfonate. Environmental Science & Technology, 42, 3260–3264.

    Article  Google Scholar 

  • Panchangam, S. C., Lin, Y. C., Shaik, K. L., & Lin, C. F. (2009). Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium. Chemosphere, 77, 242–248.

    Article  CAS  Google Scholar 

  • Park, H., Vecitis, C. D., Cheng, J., Dalleska, N. F., Mader, B. T., & Hoffmann, M. R. (2011). Reductive degradation of perfluoroalkyl compounds with aquated electrons generated from iodide photolysis at 254 nm. Photochemical & Photobiological Sciences, 10, 1945–1953.

    Article  CAS  Google Scholar 

  • Sun, Z., Zhang, C., Chen, P., Zhou, Q., & Hoffmann, M. R. (2017). Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (pfos) by uv/iodide process. Water Research, 127, 50–58.

    Article  CAS  Google Scholar 

  • Takashi, Y., Yukio, N., Shin-Ichi, S., & Yasuyuki, S. (2007). Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol. Environmental Science & Technology, 41, 5660–5665.

    Article  Google Scholar 

  • Trojanowicz, M., Bojanowska-Czajka, A., Bartosiewicz, I., & Kulisa, K. (2018). Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS)–a review of recent advances. Chemical Engineering Journal, 336, 170–199.

    Article  CAS  Google Scholar 

  • Wenk, J., Von Gunten, U., & Canonica, S. (2011). Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical. Environmental Science & Technology, 45, 1334–1340.

    Article  CAS  Google Scholar 

  • Wu, Z., Shang, C., Wang, D., Zheng, S., & Fang, J. (2020). Rapid degradation of dichloroacetonitrile by hydrated electron (eaq-) produced in vacuum ultraviolet photolysis. Chemosphere, 256, 126994.

    Article  CAS  Google Scholar 

  • Yu, K., Li, X., Chen, L., Fang, J., Chen, H., Li, Q., Chi, N., & Ma, J. (2018). Mechanism and efficiency of contaminant reduction by hydrated electron in the sulfite/iodide/UV process. Water Research, 129, 357–364.

    Article  CAS  Google Scholar 

  • Zhang, T., Pan, G., & Zhou, Q. (2016). Temperature effect on photolysis decomposing of perfluorooctanoic acid. Journal of Environmental Sciences, 42, 126–133.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Bao Gong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, XB., He, ZW. Perfluorooctane sulfonate decomposition by a high photon flux UV/SO32−/N2 system: kinetics and influence factors. Water Air Soil Pollut 232, 215 (2021). https://doi.org/10.1007/s11270-021-05144-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05144-w

Keywords

Navigation