Skip to main content

Advertisement

Log in

In Situ Evaluation of Filter Media Modified by Biocidal Nanomaterials to Control Bioaerosols in Internal Environments

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Controlling the bioaerosol present in indoor environments has been evidenced to be extremely necessary. An alternative is to develop filter media for air conditioners that have biocidal properties. This study aimed to verify the biocidal effect of a high-efficiency particulate air (HEPA) filter medium modified with the deposition of nanoparticles on its surface. For this purpose, Ag, TiO2, and Ag/TiO2 nanoparticles were used and the antimicrobial activities of these nanomaterials against Escherichia coli, Staphylococcus aureus, and Candida albicans microorganisms were evaluated, as well as the biocidal efficacy of the modified HEPA filter with these nanomaterials in a real environment. The percentages of elimination obtained for the Ag, TiO2, and Ag/TiO2 nanomaterials, respectively, were 53%, 63%, and 68% (E. coli); 67%, 67%, and 69% (S. aureus); and 68%, 73%, and 75% (C. albicans). The HEPA filter media had their surfaces modified by aspersion and deposition of Ag, TiO2, and Ag/TiO2 nanomaterials. We could conclude that the nanoparticles adhered to the filter medium do not affect its permeability. The modified filters were arranged in an internal environment (bathroom) for the collection of the bioaerosols, and after the collection, the filter cake was plated and arranged to grow in a liquid medium. The results showed that the filters have 100% of biocidal action in passing air, and 55.6%, 72.2%, and 81% of inhibition to microbial growth in their surface for modification with Ag, TiO2, and Ag/TiO2, respectively, compared to unmodified filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmad, T., Wani, I. A., Manzoor, N., Ahmed, J., & Asiri, A. M. (2013). Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids and Surfaces, B: Biointerfaces, 107, 227–234.

    Article  CAS  Google Scholar 

  • Alizadeh, H., Salouti, M., & Shapourib, R. (2013). Intramacrophage antimicrobial effect of silver nanoparticles against Brucella melitensis 16M. Scientia Iranica, 20(3), 1035–1038.

    Google Scholar 

  • Allaker, R. P. (2010). The use of nanoparticles to control oral biofilm formation. Journal of Dental Research, 80(11), 1175–1186.

    Article  Google Scholar 

  • Amooaghaie, R., Saer, R. M., & Azizi, M. (2015). Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicology and Environmental Safety, 120, 400–408.

    Article  CAS  Google Scholar 

  • Arshi, N., Ahmed, F., Kumar, S., Anwar, M. S., Lu, J., Koo, B. H., & Lee, C. G. (2011). Microwave assisted synthesis of gold nanoparticles and their antibacterial activity against Escherichia coli (E. coli). Current Applied Physics, 11, 5360–5363.

    Article  Google Scholar 

  • Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493–496.

    Article  CAS  Google Scholar 

  • Calder, A. J., Dimkpa, C. O., Mclean, J. E., Britt, D. W., Johnson, W., & Anderson, A. J. (2012). Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Science of the Total Environment, 429, 215–222.

    Article  CAS  Google Scholar 

  • Cao, H., Lio, X., Meng, F., & Chu, P. K. (2011). Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials, 32, 693–705.

    Article  CAS  Google Scholar 

  • Catranis, C. M., et al. (2006). A new sub-sampling method for analysis of air samples collected with the Andersen single-stage sampler. Aerobiologia, 22, 177–184.

    Article  Google Scholar 

  • Combarros, R. G., Collado, S., & Díaz, M. (2016). Toxicity of titanium dioxide nanoparticles on Pseudomonas putida. Water Research, 90, 378–386.

    Article  CAS  Google Scholar 

  • Conlon, J. M., Kolodziejek, J., & Nowotny, N. (2004). Antimicrobial peptides from ranid frogs: Taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochimica et Biophysica Acta, 1696, 1–14.

    Article  CAS  Google Scholar 

  • Costa, A. C. F., Vilar, M. A., Lira, H. L., Kiminami, R. H. G. A., & Gama, L. (2006). Síntese e caracterização de nanopartículas de TiO2. Cerâmica, 52(324), 255–259.

    Article  CAS  Google Scholar 

  • Durairaj, B., Xavier, T., & Muthu, S. (2014). Fungal generated titanium dioxide nanoparticles for UV protective and bacterial resistant fabrication. International Journal of Engineering, Science and Technology, 6(9), 621–625.

    Google Scholar 

  • Estruga, M., Domingo, C., & Ayllón, J. A. (2010). Microwave radiation as heating method in the synthesis of titanium dioxide nanoparticles from hexafluorotitanate-organic salts. Materials Research Bulletin, 45, 1224–1229.

    Article  CAS  Google Scholar 

  • Eustis Krylova, G., Eremenko, A., Smirnova, N., Schilla, A. W., & El-Sayed, M. (2005). Growth and fragmentation of silver nanoparticles in their synthesis with a fs laser and CW light by photo-sensitization with benzophenone. Photochemical & Photobiological Sciences, 4, 154–159.

    Article  Google Scholar 

  • Ferreira, V. S., Ferreira, M. E. C., Lima, L. M. T. R., Frasés, S., Souza, W., & Sant’Anna, C. (2017). Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme and Microbial Technology - Journal, 97, 114–121.

    Article  Google Scholar 

  • Filpo, G., Palermo, A., Rachiele, F., & Nicoletta, F. P. (2013). Preventing fungal growth in wood by titanium dioxide nanoparticles. International Biodeterioration & Biodegradation, 83, 217–222.

    Article  Google Scholar 

  • Foster, H. A., et al. (2011). Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology, 90, 1847–1868.

    Article  CAS  Google Scholar 

  • Freitas, A. R., Baeza, L. C., Faria, M. G. I., Dota, K. F. D., Martínez, P. G., & Svidzinski, T. I. R. (2014). Yeasts isolated from nosocomial urinary infections: Antifungal susceptibility and biofilm production. Revista Iberoamericana de Micología, 31(2), 104–108.

    Article  Google Scholar 

  • Gorup, L. F., Longo, E., Leite, E. R., & Camargo, E. R. (2011). Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method. Journal of Colloid and Interface Science, 360, 355–358.

    Article  CAS  Google Scholar 

  • Hassanjani-Roshana, A., Kazemzadeha, S. M., Vaezia, M. R., & Shokuhfarc, A. (2011). The effect of sonication power on the sonochemical synthesis of titania nanoparticles. Journal of Ceramic Processing, 12(3), 299–303.

    Google Scholar 

  • Hebeish, A., Hashem, M., Abd El-Hady, M. M., & Sharaf, S. (2013). Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydrate Polymers, 92, 407–413.

    Article  CAS  Google Scholar 

  • Kim, Y. J., Platt, U., Gu, M. B., & Iwahashi, H. (2009). Atmospheric and biological environmental monitoring. Springer.

  • Krutyakov, Y. A., Olenin, A. Y., Kudrinskii, A. A., Dzhurik, P. S., & Lisichkin, G. V. (2008). Aggregative stability and polydispersity of silver nanoparticles prepared using two-p aqueous organic systems. Nanotechnologies in Russia, 3(5-6), 303–310.

    Article  Google Scholar 

  • Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2017). Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi Journal of Biological Sciences, 24(1), 45–50.

    Article  CAS  Google Scholar 

  • Lazarevic, Z. Z., Vijatovic, M., Dohcevic-Mitrovic, C., Romcevic, N. Z., Romcevic, M. J., Paunovic, N., & Stojanovic, B. D. (2010). The characterization of the barium titanate ceramic powders prepared by the Pechini type reaction route and mechanically assisted synthesis. Journal of the European Ceramic Society, 30, 623–628.

    Article  CAS  Google Scholar 

  • Le Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10(3), 339–354. https://doi.org/10.1016/j.nantod.2015.04.002.

  • Lee, P. C., & Meisel, D. (1982). Adsorption and surface-enhanced Raman of dyes on silver and gold sols. The Journal of Physical Chemistry, 86, 3391.

    Article  CAS  Google Scholar 

  • Ma, H., Yin, B., Wang, S., Jiao, Y., Pan, W., Huang, S., Chen, S., & Meng, F. (2004). Synthesis of silver and gold nanoparticles by a novel electrochemical method. Chemphyschem, 5, 68–75.

    Article  CAS  Google Scholar 

  • Malekfar, R., Ahmadi, G., Cheraghi, A., Rohollahnejad, J., Sahraiyan, F., & Khanzadeh, M. (2009). Micro-Raman scattering of KTP (KTiOPO4) nanocrystallites synthesized by modified sol–gel Pechini method. Vibrational Spectroscopy, 51, 308–312.

    Article  CAS  Google Scholar 

  • Ninan, N., Muthiah, M., Bt Yahaya, N. A., Park, I., Elain, A., Wong, T. W., Thomas, S., & Grohens, Y. (2014). Antibacterial and wound healing analysis of gelatin/zeolite scaffolds. Colloids and Surfaces, B: Biointerfaces, 115, 244–252.

    Article  CAS  Google Scholar 

  • Nurul Aini, A., Al Farraj, D. A., Endarko, E., et al. (2019). A new green method for the synthesis of silver nanoparticles and their antibacterial activities against gram-positive and gram negative bacteria. Journal of the Chinese Chemical Society, 64, 1–8.

    Google Scholar 

  • Palanisamy, S., Rajasekar, P., Vijayaprasath, G., Ravi, G., Manikandan, R., & Prabhu, N. M. (2017). A green route to synthesis silver nanoparticles using Sargassum polycystum and its antioxidant and cytotoxic effects: An in vitro analysis. Materials Letters, 185, 196–200.

    Article  Google Scholar 

  • Pan, X., et al. (2010). Nanocharacterization and bactericidal performance of silver modified titania photocatalyst. Colloids and Surfaces, B: Biointerfaces, 77, 82–89.

    Article  CAS  Google Scholar 

  • Panacek, A., Kolar, M., Vecerova, R., Prucek, R., Soukupova, J., Krystof, V., Hamal, P., Zboril, R., & Kvitek, L. (2009). Antifungal activity of silver nanoparticles against Candida spp. Biomaterials, 30, 6333–6340.

    Article  CAS  Google Scholar 

  • Pechini, M. P. (1967). Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. United States Patent Office. U.S. Patent 3.330.697, July 11, 1967.

  • Pillai, Z. S., & Kamat, P. V. (2004). What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? The Journal of Physical Chemistry. B, 108, 945–951.

    Article  CAS  Google Scholar 

  • Prasad, K., et al. (2017). Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Nature Scientific Reports, 7(1591), 1–11.

    Google Scholar 

  • Prema, P., Thangapandiyanb, S., & Immanuel, G. (2017). CMC stabilized nano silver synthesis, characterization and its antibacterial and synergistic effect with broad spectrum antibiotics. Carbohydrate Polymers, 158, 141–148.

    Article  CAS  Google Scholar 

  • Raja, S., Ramesh, V., & Thivaharan, V. (2017). Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian Journal of Chemistry, 10, 253–261.

    Article  CAS  Google Scholar 

  • Rajagopal, G., et al. (2006). Biocidal effects of photocatalytic semiconductor TiO2. Colloids and Surfaces B: Biointerfaces, 51, 107–111.

    Article  CAS  Google Scholar 

  • Ravichandran, K., Nithiyadevi, K., Sakthivel, B., Arun, T., Sindhuja, E., & Muruganandam, G. (2016). Synthesis of ZnO:Co/rGO nanocomposites for enhanced photocatalytic and antibacterial activities. Ceramics International, 42, 17539–17550.

    Article  CAS  Google Scholar 

  • Rosa, P. F., et al. (2017). Modification of cotton fabrics with silver nanoparticles for use in conditioner air to minimize the bioaerosol concentration in indoor environments. Water, Air, and Soil Pollution, 228, 244.

    Article  Google Scholar 

  • Rosa, P. F., Martins, J. C., Lima, B. A., Oishi, M., Aguiar, M. L., & Bernardo, A. (2018). Atomization of silver nanoparticles suspension as an alternative for generating nanosilver aerosol. Chemical Industry and Chemical Engineering Quarterly, 24(4), 303–307.

    Article  CAS  Google Scholar 

  • Ross, M. A., Curtis, L., Scheff, P. A., Hryhorczuk, D. O., Ramakrishnan, V., Wadden, R. A., & Persky, V. W. (2000). Association of asthma symptoms and severity with indoor bioaerosols. Allergy, 55, 705–711.

    Article  CAS  Google Scholar 

  • Šalkus, T., Barre, M., Kežionis, A., Kazakevičius, E., Bohnke, O., Selskienė, A., & Orliukas, A. F. (2012). Ionic conductivity of Li1.3Al0.3−xScxTi1.7(PO4)3 (x = 0, 0.1, 0.15, 0.2, 0.3) solid electrolytes prepared by Pechini process. Solid State Ionics, 225, 615–619.

    Article  Google Scholar 

  • Selvamani, M., Krishnamoorthy, G., Ramadoss, M., Sivakumar, P. K., Settu, M., Ranganathan, S., & Vengidusamy, N. (2016). Ag@Ag8W4O16 nanoroasted rice beads with photocatalytic, antibacterial and anticancer activity. Materials Science and Engineering: C, 60, 109–118.

    Article  CAS  Google Scholar 

  • Sivaranjani, V., & Philominathan, P. (2016). Synthesize of titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity. Wound Medicine, 12, 1–5.

    Article  Google Scholar 

  • Suman, T. Y., Ravindranath, R. R. S., Elumalai, D., Kaleena, P. K., Ramkumar, R., Perumal, P., Aranganathan, L., & Chitrarasu, P. S. (2015). Larvicidal activity of titanium dioxide nanoparticles synthesized using Morinda citrifolia root extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus and its other effect on non-target fish. Asian Pacific Journal of Tropical Disease, 5(3), 224–230.

    Article  CAS  Google Scholar 

  • Syafiuddin, A., Salmiati, Hadibarata, T., et al. (2017). A purely green synthesis of silver nanoparticles using Carica papaya, Manihot esculenta, and Morinda citrifolia: Synthesis and antibacterial evaluations. Bioprocess and Biosystems Engineering, 40, 1349–1361.

    Article  CAS  Google Scholar 

  • Syafiuddin, A., et al. (2018). Novel weed-extracted silver nanoparticles and their antibacterial appraisal against a rare bacterium from river and sewage treatment plan. Nanomaterials (Basel), 8(9), 1–17.

    CAS  Google Scholar 

  • Tian, J., Tu, H., Shi, X., Wang, X., Deng, H., Li, B., & Du, Y. (2016). Antimicrobial application of nanofibrous mats self-assembled with chitosan and epigallocatechin gallate. Colloids and Surfaces, B: Biointerfaces, 145, 643–652.

    Article  CAS  Google Scholar 

  • Tortora, G.J.; Funke, B.R.; Case, C.L. Microbiologia. Artmed, 8а edição, 2006.

  • Turkevich, J., Stevenson, P. C., & Hillier. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Journal Discussions of the Faraday Society, 11, 55–75.

    Article  Google Scholar 

  • Turki, Y., Ouzari, H., Mehri, I., Ammar, A. B., & Hassen, A. (2012). Evaluation of a cocktail of three bacteriophages for the biocontrol of Salmonella of wastewater. Food Research International, 45, 1099–1105.

    Article  Google Scholar 

  • WHO. (2017). World Health Association, Accessed on 03/01/2017. http://www.who.int/mediacentre/news/releases/2016/air-pollution-rising/en/.

  • Xia, Z., Ma, Q., Li, S., Zhang, D., Cong, L., Tian, Y., & Yang, R. (2016). The antifungal effect of silver nanoparticles on Trichosporon asahii. Journal of Microbiology, Immunology, 49, 182–188.

    CAS  Google Scholar 

  • Zhang, W., Qiao, X., & Chen, J. (2007). Synthesis of nanosilver colloidal particles in water/oil microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 299, 22–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Laboratory of Pharmaceutical Processes (LAPROFAR) for the particle size analyses using the Zetasizer Nano ZS90 system (FAPESP process 2014/25934-9).

Funding

This study received financial support from FAPESP (process 2014/11425-5.) and Coordination of Improvement of Higher Education Personnel (CAPES, Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Bernardo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•Synthesis and characterization of silver nanoparticles (AgNPs), titania nanoparticles (TiO2NPs), and a titania-silver nanocomposite;

•Evaluation of the biocidal capacity of the nanomaterials against Gram-negative bacteria, Gram-positive bacteria, and fungi;

•Modification of HEPA filter by deposition of nanomaterials with biocidal characteristics, without significant change on filter permeability;

•Evaluation of the biocidal capacity of the filters modified with nanomaterials in a realistic application in which filters were exposed to a real heterogeneous population of microorganisms;

•Comparison between the performance of the nanomaterial against specific microorganisms and the modified filter against a realistic exposure to bioaerosol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas Rosa Remiro, P., de Sousa, C.P., Alves, H.C. et al. In Situ Evaluation of Filter Media Modified by Biocidal Nanomaterials to Control Bioaerosols in Internal Environments. Water Air Soil Pollut 232, 176 (2021). https://doi.org/10.1007/s11270-021-05105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05105-3

Keywords