Skip to main content

Advertisement

Log in

Ecotoxicity and Antimicrobial Inhibition Assessment of Effluent from an Anaerobic Bioreactor Applied to the Removal of Sulfamethoxazole and Ciprofloxacin Antibiotics from Domestic Sewage

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study evaluated the ecotoxicity effects of effluent from an anaerobic fixed bed biofilm reactor (AFBBR) removing the sulfamethoxazole (SMX - 403 ± 104 ng L−1) and ciprofloxacin (CIP - 294 ± 123 ng L−1) antibiotics from domestic sewage in some microorganisms (Brevundimonas sp., Escherichia coli, Ochrobactrum sp., Sphingomonas sp.) and benthic organisms (Allonais inaequalis and Chironomus sancticaroli). The AFBBR showed high removal efficiency of SMX (85 ± 10%) and CIP (81 ± 16%) and completely eliminated the acute ecotoxicological effect on the C. sancticaroli insect larvae. The bioreactor effluent did not cause any inhibition on the cell growth of the microorganisms. Nonetheless, the A. inaequalis was extremely sensitive to the reactor effluent (100% mortality), probably due to the death of bacteria and algae essential to the nutrition of the Oligochaeta. Regarding the adult insect emergency of C. sancticaroli, a reduction of 50% was observed after 17 days of exposure to the effluent with 40 μgSMX L−1, inhibiting the larval development, which did not occur for CIP. The antimicrobial inhibition by CIP present in the domestic sewage resulted in EC50 (median effective concentration) values of 2.5, 0.9, 3.1 and 0.1 mgCIP L−1 for Ochrobactrum sp., Brevundimonas sp., Sphingomonas sp. and E. coli, respectively. Assessing the effect of antibiotics in the effluent on the microorganisms’ growth by a disk diffusion test, only E. coli culture showed inhibition at the concentration of 5.0 mgCIP L−1. The study emphasized the potential of AFBBR to reduce ecotoxicity in the sewage on aquatic biota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • American Public Health Association (APHA). (2005). Standard methods for the examination of water and wastewater. American Water Works Association/American Public Works Association/Water Environment Federation (21st ed.). American Water Works Association/American Public Works Association/Water Environment Federation. https://doi.org/10.2105/AJPH.51.6.940-a.

  • Andrade, M. V. F., Sakamoto, I. K., Corbi, J. J., Silva, E. L., & Varesche, M. B. A. (2017). Effects of hydraulic retention time, co-substrate and nitrogen source on laundry wastewater anionic surfactant degradation in fluidized bed reactors. Bioresource Technology, 224, 246–254. https://doi.org/10.1016/j.biortech.2016.11.001.

    Article  CAS  Google Scholar 

  • Bernegossi, A. C., Cardoso, B. N. P., Felipe, M. C., De Lima, M. R., & Corbi, J. J. (2019). Chironomus sancticaroli generation test: A new methodology with a Brazilian endemic insect. MethodsX, 6, 92–97. https://doi.org/10.1016/j.mex.2018.12.013.

    Article  Google Scholar 

  • Carneiro, R. B., Mukaeda, C. M., Sabatini, C. A., Santos-Neto, A. J., & Zaiat, M. (2020). Influence of organic loading rate on ciprofloxacin and sulfamethoxazole biodegradation in anaerobic fixed bed biofilm reactors. Journal of Environmental Management, 273. https://doi.org/10.1016/j.jenvman.2020.111170.

  • Carneiro, R. B., Sabatini, C. A., Santos-Neto, Á. J., & Zaiat, M. (2019). Feasibility of anaerobic packed and structured-bed reactors for sulfamethoxazole and ciprofloxacin removal from domestic sewage. Science of The Total Environment, 678, 419–429. https://doi.org/10.1016/J.SCITOTENV.2019.04.437.

    Article  CAS  Google Scholar 

  • Chatila, S., Amparo, M. R., Carvalho, L. S., Penteado, E. D., Tomita, I. N., Santos-Neto, Á. J., et al. (2016). Sulfamethoxazole and ciprofloxacin removal using a horizontal-flow anaerobic immobilized biomass reactor. Environmental Technology (United Kingdom), 37(7), 847–853. https://doi.org/10.1080/09593330.2015.1088072.

    Article  CAS  Google Scholar 

  • Corbi, J. J., Bernegossi, A. C., Moura, L., Felipe, M. C., Issa, C. G., Rubia, M., & Gorni, G. R. (2019). Chironomus sancticaroli (Diptera , Chironomidae) as a sensitive test species: can we rely on its use after repeated generations, under laboratory conditions? Bulletin of Environmental Contamination and Toxicology, 103(2), 213–217. https://doi.org/10.1007/s00128-019-02644-8.

    Article  CAS  Google Scholar 

  • Corbi, J. J., Gorni, G. R., & Correa, R. C. (2015). An evaluation of Allonais inaequalis Stephenson, 1911 (Oligochaeta: Naididae) as a toxicity test organism. Ecotoxicology and Environmental Contamination, 10(1), 7–11. https://doi.org/10.5132/eec.2015.01.02.

    Article  Google Scholar 

  • Dolar, D., Gros, M., Rodriguez-Mozaz, S., Moreno, J., Comas, J., Rodriguez-Roda, I., & Barceló, D. (2012). Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. Journal of Hazardous Materials, 239–240, 64–69. https://doi.org/10.1016/j.jhazmat.2012.03.029.

    Article  CAS  Google Scholar 

  • Dornfeld, C. B., Rodgher, S., Negri, R. G., Espíndola, E. L. G., & Daam, M. A. (2019). Chironomus sancticaroli (Diptera, Chironomidae) as a sensitive tropical test species in laboratory bioassays evaluating metals (copper and cadmium) and field testing. Archives of Environmental Contamination and Toxicology, 76(1), 42–50. https://doi.org/10.1007/s00244-018-0575-1.

    Article  CAS  Google Scholar 

  • Drillia, P., Dokianakis, S. N., Fountoulakis, M. S., Kornaros, M., Stamatelatou, K., & Lyberatos, G. (2005). On the occasional biodegradation of pharmaceuticals in the activated sludge process: The example of the antibiotic sulfamethoxazole. Journal of Hazardous Materials, 122(3), 259–265. https://doi.org/10.1016/j.jhazmat.2005.03.009.

    Article  CAS  Google Scholar 

  • Ebele, A. J., Abou-Elwafa Abdallah, M., & Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3(1), 1–16. https://doi.org/10.1016/j.emcon.2016.12.004.

    Article  Google Scholar 

  • Esmerino, L. A., Gonçalves, L. G., & Schelesky, M. E. (2003). Perfil de sensibilidade antimicrobiana de cepas Escherichia coli isoladas de infecções urinárias comunitárias. Publication UEPG: Ciencias Biologicas e da Saude, 9(1), 31–39. https://doi.org/10.5212/publ.biologicas.v.9i1.0004.

    Article  Google Scholar 

  • Ferrari, B., Mons, R., Vollat, B., Fraysse, B., Paxéus, N., Lo Giudice, R., et al. (2004). Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environmental Toxicology and Chemistry, 23(5), 1344. https://doi.org/10.1897/03-246.

    Article  CAS  Google Scholar 

  • Gogoi, A., Mazumder, P., Tyagi, V. K., Tushara Chaminda, G. G., An, A. K., & Kumar, M. (2018). Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development, 6(December 2017), 169–180. https://doi.org/10.1016/j.gsd.2017.12.009.

    Article  Google Scholar 

  • Halling-Sørensen, B. (2000). Algal toxicity of antibacterial agents used in intensive farming. Chemosphere, 40(7), 731–739. https://doi.org/10.1016/S0045-6535(99)00445-2.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. Paleontologia Electronica, 4(1), 1–9. https://doi.org/10.1016/j.bcp.2008.05.025.

    Article  CAS  Google Scholar 

  • Hecht, D. W., Citron, D. M., Dzink-Fox, J., Gregory, W. W., Jacobus, N. V., Jenkins, S. G., et al. (2012). M11-A8: Methods for antimicrobial susceptibility testing of anaerobic bacteria; approved standard – eighth edition. Clinical and Laboratory Standards Institute, 32(5), 1–38.

    Google Scholar 

  • Hudzicki, J. (2016). Kirby-Bauer disk diffusion susceptibility test protocol. American Society For Microbiology, (December 2009), 1–13. https://www.asm.org/Protocols/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Pro.

  • Krzeminski, P., Tomei, M. C., Karaolia, P., Langenhoff, A., Almeida, C. M. R., Felis, E., et al. (2019). Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Science of the Total Environment, 648, 1052–1081. https://doi.org/10.1016/j.scitotenv.2018.08.130.

    Article  CAS  Google Scholar 

  • Kümmerer, K., Al-Ahmad, A., & Mersch-Sundermann, V. (2000). Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere, 40(7), 701–710. https://doi.org/10.1016/S0045-6535(99)00439-7.

    Article  Google Scholar 

  • Laquaz, M., Dagot, C., Bazin, C., Bastide, T., Gaschet, M., Ploy, M., & Perrodin, Y. (2018). Ecotoxicity and antibiotic resistance of a mixture of hospital and urban sewage in a wastewater treatment plant. Environmental Science and Pollution Research, 25, 9243–9253. https://doi.org/10.1007/s11356-017-9957-6.

    Article  CAS  Google Scholar 

  • Lima Gomes, P. C. F., Tomita, I. N., Santos-Neto, Á. J., & Zaiat, M. (2015). Rapid determination of 12 antibiotics and caffeine in sewage and bioreactor effluent by online column-switching liquid chromatography/tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 407(29), 8787–8801. https://doi.org/10.1007/s00216-015-9038-y.

    Article  CAS  Google Scholar 

  • Marti, E., Variatza, E., & Balcazar, J. L. (2014). The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends in Microbiology, 22(1), 36–41. https://doi.org/10.1016/j.tim.2013.11.001.

    Article  CAS  Google Scholar 

  • Michael, I., Rizzo, L., McArdell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., et al. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 47(3), 957–995. https://doi.org/10.1016/j.watres.2012.11.027.

    Article  CAS  Google Scholar 

  • Mockaitis, G., Pantoja, J. L. R., Rodrigues, J. A. D., Foresti, E., & Zaiat, M. (2014). Continuous anaerobic bioreactor with a fixed-structure bed (ABFSB) for wastewater treatment with low solids and low applied organic loading content. Bioprocess and Biosystems Engineering, 37(7), 1361–1368. https://doi.org/10.1007/s00449-013-1108-y.

    Article  CAS  Google Scholar 

  • Morais, G. d. S., Vieira, T. B., Santos, G. S., Baika, L. M., Cestari, M. M., Grassi, M. T., & Navarro da Silva, M. A. (2019). Biological, biochemical and genotoxic effects of Sb in the midge Chironomus sancticaroli Strixino and Strixino, 1981 (Diptera: Chironomidae). Ecotoxicology and Environmental Safety, 176(March), 196–203. https://doi.org/10.1016/j.ecoenv.2019.03.080.

    Article  CAS  Google Scholar 

  • Morais, G. d. S., Vieira, T. B., Santos, G. S., Dolatto, R. G., Cestari, M. M., Grassi, M. T., & Navarro da Silva, M. A. (2020). Genotoxic , metabolic , and biological responses of Chironomus sancticaroli Strixino & Strixino , 1981 (Diptera: Chironomidae) after exposure to BBP. Science of the Total Environment, 715, 136937. https://doi.org/10.1016/j.scitotenv.2020.136937.

    Article  CAS  Google Scholar 

  • Oberoi, A. S., Jia, Y., Zhang, H., Khanal, S. K., & Lu, H. (2019). Insights into the fate and removal of antibiotics in engineered biological treatment systems: a critical review. Environmental Science and Technology, 53(13), 7234–7264. https://doi.org/10.1021/acs.est.9b01131.

    Article  CAS  Google Scholar 

  • Oliveira, J. M. S., de Lima e Silva, M. R., Issa, C. G., Corbi, J. J., Damianovic, M. H. R. Z., & Foresti, E. (2020). Intermittent aeration strategy for azo dye biodegradation: A suitable alternative to conventional biological treatments? Journal of Hazardous Materials, 385. https://doi.org/10.1016/j.jhazmat.2019.121558.

  • Oliveira, C. A., Penteado, E. D., Tomita, I. N., Santos-Neto, Á. J., Zaiat, M., da Silva, B. F., & Lima Gomes, P. C. F. (2019). Removal kinetics of sulfamethazine and its transformation products formed during treatment using a horizontal flow-anaerobic immobilized biomass bioreactor. Journal of Hazardous Materials, 365, 34–43. https://doi.org/10.1016/j.jhazmat.2018.10.077.

    Article  CAS  Google Scholar 

  • Oliveira, G. H. D., Santos-Neto, A. J., & Zaiat, M. (2017). Removal of the veterinary antimicrobial sulfamethazine in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor subjected to step changes in the applied organic loading rate. Journal of Environmental Management, 204, 674–683. https://doi.org/10.1016/j.jenvman.2017.09.048.

    Article  CAS  Google Scholar 

  • Patel, J. B., Cockerill, F. R., Bradford, P. A., Eliopoulos, G. M., Hindler, J. A., Jenkins, S. G., et al. (2015). M02-A12: Performance standards for antimicrobial disk susceptibility tests; approved standard—twelfth edition. Clinical and Laboratory Standards Institute, 35, 73 https://clsi.org/media/1631/m02a12_sample.pdf.

    Google Scholar 

  • Pazda, M., Kumirska, J., Stepnowski, P., & Mulkiewicz, E. (2019). Antibiotic resistance genes identified in wastewater treatment plant systems – A review. Science of the Total Environment, 697, 134023. https://doi.org/10.1016/j.scitotenv.2019.134023.

    Article  CAS  Google Scholar 

  • Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72(0), 3–27. https://doi.org/10.1016/j.watres.2014.08.053.

    Article  CAS  Google Scholar 

  • Printes, L. B., Fernandes, M. N., & Espíndola, E. L. G. (2011). Laboratory measurements of biomarkers and individual performances in Chironomus xanthus to evaluate pesticide contamination of sediments in a river of southeastern Brazil. Ecotoxicology and Environmental Safety, 74, 424–430. https://doi.org/10.1016/j.ecoenv.2010.10.033.

    Article  CAS  Google Scholar 

  • Robinson, A. A., Belden, J. B., & Lydy, M. J. (2005). Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environmental Toxicology and Chemistry, 24(2), 423. https://doi.org/10.1897/04-210R.1.

    Article  CAS  Google Scholar 

  • Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2017). Treatment technologies for emerging contaminants in water: A review. Chemical Engineering Journal, 323, 361–380. https://doi.org/10.1016/j.cej.2017.04.106.

    Article  CAS  Google Scholar 

  • Romeiro, G. F., Oliveira, C. A., Tomita, I. N., Santos-Neto, Á. J., Zaiat, M., & Lima Gomes, P. C. F. (2018). Evaluation of sulfamethazine removal kinetics using fixed structured bed bioreactor. Environmental Technology (United Kingdom), 40(8), 979–987. https://doi.org/10.1080/09593330.2017.1414315.

    Article  CAS  Google Scholar 

  • Singh, R., Singh, A. P., Kumar, S., Giri, B. S., & Kim, K. H. (2019). Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies. Journal of Cleaner Production, 234, 1484–1505. https://doi.org/10.1016/j.jclepro.2019.06.243.

    Article  CAS  Google Scholar 

  • Sousa, J. C. G., Ribeiro, A. R., Barbosa, M. O., Pereira, M. F. R., & Silva, A. M. T. (2018). A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of Hazardous Materials, 344, 146–162. https://doi.org/10.1016/j.jhazmat.2017.09.058.

    Article  CAS  Google Scholar 

  • Sponza, D. T., & Demirden, P. (2010). Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine. Journal of Hazardous Materials, 176(1–3), 64–75. https://doi.org/10.1016/j.jhazmat.2009.10.127.

    Article  CAS  Google Scholar 

  • Xu, J., Xu, Y., Wang, H., Guo, C., Qiu, H., He, Y., & Zhang, Y. (2015). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 119, 1379–1385. https://doi.org/10.1016/j.chemosphere.2014.02.040.

    Article  CAS  Google Scholar 

  • Załęska-Radziwiłł, M., Affek, K., & Rybak, J. (2014). Ecotoxicity of chosen pharmaceuticals in relation to micro-organisms — Risk assessment. Desalination and Water Treatment, 52, 3908–3917. https://doi.org/10.1080/19443994.2014.887503.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhao, H., Du, J., Qu, Y., Shen, C., Tan, F., et al. (2017). Occurrence, removal, and risk assessment of antibiotics in 12 wastewater treatment plants from Dalian, China. Environmental Science and Pollution Research, 24(19), 16478–16487. https://doi.org/10.1007/s11356-017-9296-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mayara C. Felipe and MSc. Bruna N. P. Cardoso for their valuable support with the ecotoxicity assays and Dr. Carolina A. Sabatini for her technical and scientific support.

Funding

This study was funded by the São Paulo Research Foundation (FAPESP - processes no 2015/04427-4 and 2015/06246-7) and the Coordination for the Improvement of Higher Education Personnel (CAPES - Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

Rodrigo B. Carneiro: conceptualization, methodology, formal analysis, investigation, resources, data curation, writing - original draft, writing - review and editing, visualization, project administration; Eloisa Pozzi: conceptualization, methodology, investigation, writing - review and editing, visualization; Juliano J. Corbi: conceptualization, methodology, formal analysis, investigation, resources, writing - review and editing, visualization; Marcelo Zaiat: conceptualization, resources, writing - review and editing, visualization, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Rodrigo B. Carneiro.

Ethics declarations

Ethical Approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 972 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, R.B., Pozzi, E., Corbi, J.J. et al. Ecotoxicity and Antimicrobial Inhibition Assessment of Effluent from an Anaerobic Bioreactor Applied to the Removal of Sulfamethoxazole and Ciprofloxacin Antibiotics from Domestic Sewage. Water Air Soil Pollut 232, 143 (2021). https://doi.org/10.1007/s11270-021-05097-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05097-0

Keywords

Navigation