Effects of Co-Applications of Biochar and Solid Digestate on Enzyme Activities and Heavy Metals Bioavailability in Cd-Polluted Greenhouse Soil

Abstract

To deal with the problems of increasing the heavy metal (HM) bioavailability and declining the soil biological properties resulting from a direct application of solid digestate (SD). A low-temperature fruit biochar and pig-SD (BSD-0, BSD-1, BSD-2, BSD-4, BSD-8) co-application experiment was performed to evaluate enzyme activities and HM bioavailability in Cd-polluted greenhouse soil. The advantage of BSD co-applications compared to SD application was maintained the stable of pH and electrical conductivity (EC) in soil and was more effective to improve soil organic matter (OM). BSD-8 treatment significantly promoted the uptake of available nitrogen, available phosphorus, and available potassium by plants. The immobilization effect of BSD co-applications on Cu, Zn, and Cd was better than SD application. BSD-8 treatment has the best immobilization effect on Cd and the contents of bioavailable Cd was 0.167 mg kg−1. The optimal enzyme activities of invertase, urease, and alkaline phosphatase were shown in BSD-8 treatment, which were 0.027 mg glucose g−1 soil h−1, 88.654 mg NH3-N g−1 soil h−1, and 15.766 μmol PNP g−1 soil h−1, respectively. The activities of enzymes also were influenced by soil physicochemical properties and HM bioavailability. BSD-8 treatment was suggested as an appropriate mixing proportion to alleviate soil acidification and salinization, decreasing HM bioavailability and stimulating enzyme activities in Cd-polluted soil.

Graphical abstract

Statement of Novelty

Solid digestate (SD) is commonly used for agricultural crops as organic fertilizer because of its abundant nutrients and long-term soil fertility maintenance. However, excessive application of SD may cause heavy metal bioavailability to increase and soil biological properties to decline, while the effects of biochar and SD (BSD) co-applications on greenhouse soil enzyme activities and heavy metal bioavailability are often neglected. To deal with these problems, a greenhouse experiment was established comparing the effects of co-applications of different SD application rates with low-temperature fruit biochar on HM bioavailability and biological properties. Our research uses the weight of SD per square meter as the fertilization basis for the rational utilization of SD and gives evidence for the safety and effectivity of BSD co-applications in agriculture.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahmad, M., Lee, S. S., Lim, J. E., Lee, S. E., Cho, J. S., Moon, D. H., et al. (2014). Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere, 95, 433–441. https://doi.org/10.1016/j.chemosphere.2013.09.077.

    CAS  Article  Google Scholar 

  2. Ali, A., Guo, D., Arockiam Jeyasundar, P. G. S., Li, Y., Xiao, R., Du, J., et al. (2019). Application of wood biochar in polluted soils stabilized the toxic metals and enhanced wheat (Triticum aestivum) growth and soil enzymatic activity. Ecotoxicol Environ Saf, 184, 109635. https://doi.org/10.1016/j.ecoenv.2019.109635.

    CAS  Article  Google Scholar 

  3. Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., et al. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnol Adv, 36(2), 452–466. https://doi.org/10.1016/j.biotechadv.2018.01.011.

    CAS  Article  Google Scholar 

  4. Arthurson, V. (2009). Closing the global energy and nutrient cycles through application of biogas residue to agricultural land – Potential benefits and drawback. Energies, 2(2), 226–242. https://doi.org/10.3390/en20200226.

    CAS  Article  Google Scholar 

  5. Baker, H., & Khalili, F. (2005). A study of complexation thermodynamic of humic acid with cadmium (II) and zinc (II) by Schubert’s ion-exchange method. Analytica Chimica Acta, 542(2), 240–248. https://doi.org/10.1016/j.aca.2005.04.008.

    CAS  Article  Google Scholar 

  6. Chen, R., Blagodatskaya, E., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., et al. (2012). Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities. Biomass and Bioenergy, 45, 221–229. https://doi.org/10.1016/j.biombioe.2012.06.014.

    CAS  Article  Google Scholar 

  7. Das, S., Jeong, S. T., Das, S., & Kim, P. J. (2017). Composted cattle manure increases microbial activity and soil fertility more than composted swine manure in a submerged rice paddy. Frontiers in Microbiology, 8, 1702. https://doi.org/10.3389/fmicb.2017.01702.

    Article  Google Scholar 

  8. Di Maria, F., Barratta, M., Bianconi, F., Placidi, P., & Passeri, D. (2017). Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: Comparison of system performances and identification of microbial guilds. Waste Manag, 59, 172–180. https://doi.org/10.1016/j.wasman.2016.10.039.

    CAS  Article  Google Scholar 

  9. Duan, N., Lin, C., Gao, R. Y., Wang, Y., Wang, J. H., & Hou, J. (2011). Ecological and economic analysis of planting greenhouse cucumbers with anaerobic fermentation residues. Procedia Environmental Sciences, 5, 71–76. https://doi.org/10.1016/j.proenv.2011.03.050.

    CAS  Article  Google Scholar 

  10. El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., et al. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536–554. https://doi.org/10.1016/j.geoderma.2018.09.034.

    CAS  Article  Google Scholar 

  11. Fan, Y., Li, H., Xue, Z., Zhang, Q., & Cheng, F. (2017). Accumulation characteristics and potential risk of heavy metals in soil-vegetable system under greenhouse cultivation condition in Northern China. Ecological Engineering, 102, 367–373. https://doi.org/10.1016/j.ecoleng.2017.02.032.

    Article  Google Scholar 

  12. Fließbach, A., Oberholzer, H.-R., Gunst, L., & Mäder, P. (2007). Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems & Environment, 118(1-4), 273–284. https://doi.org/10.1016/j.agee.2006.05.022.

    Article  Google Scholar 

  13. Frąc, M., Oszust, K., & Lipiec, J. (2012). Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage sludge. Sensors (Basel, Switzerland), 12(3), 3253–3268. https://doi.org/10.3390/s120303253.

    Article  Google Scholar 

  14. Gianfreda, L., Antonietta Rao, M., Piotrowska, A., Palumbo, G., & Colombo, C. (2005). Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution. Sci Total Environ, 341(1-3), 265–279. https://doi.org/10.1016/j.scitotenv.2004.10.005.

    CAS  Article  Google Scholar 

  15. Glaser, B., Wiedner, K., Seelig, S., Schmidt, H., & Gerber, H. (2015). Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agronomy for Sustainable Development, 35(2), 667–678. https://doi.org/10.1007/s13593-014-0251-4.

    CAS  Article  Google Scholar 

  16. Gong, X., Liu, C., Li, J., Luo, Y., Yang, Q., Zhang, W., et al. (2019). Responses of rhizosphere soil properties, enzyme activities and microbial diversity to intercropping patterns on the Loess Plateau of China. Soil and Tillage Research, 195, 104355. https://doi.org/10.1016/j.still.2019.104355.

    Article  Google Scholar 

  17. Greenberg, I., Kaiser, M., Gunina, A., Ledesma, P., Polifka, S., Wiedner, K., et al. (2019). Substitution of mineral fertilizers with biogas digestate plus biochar increases physically stabilized soil carbon but not crop biomass in a field trial. Sci Total Environ, 680, 181–189. https://doi.org/10.1016/j.scitotenv.2019.05.051.

    CAS  Article  Google Scholar 

  18. Herath, H. M. S. K., Camps-Arbestain, M., & Hedley, M. (2013). Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma, 209-210, 188–197. https://doi.org/10.1016/j.geoderma.2013.06.016.

    CAS  Article  Google Scholar 

  19. Hernández, T., Chocano, C., Moreno, J.-L., & García, C. (2016). Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops—Effects on soil and plant. Soil and Tillage Research, 160, 14–22. https://doi.org/10.1016/j.still.2016.02.005.

    Article  Google Scholar 

  20. Horswell, J., Prosser, J. A., Siggins, A., van Schaik, A., Ying, L., Ross, C., et al. (2014). Assessing the impacts of chemical cocktails on the soil ecosystem. Soil Biology and Biochemistry, 75, 64–72. https://doi.org/10.1016/j.soilbio.2014.03.013.

    CAS  Article  Google Scholar 

  21. Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., et al. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4), 379–420. https://doi.org/10.1007/s42773-020-00065-z.

    Article  Google Scholar 

  22. Hu, Y., Dandan, W., & Bin, D. (2011). Dissipation of carbendazim and chloramphenicol alone and in combination and their effects on soil fungal: Bacterial ratios and soil enzyme activities. Chemosphere, 84, 634–641.

    Article  Google Scholar 

  23. Hu, X.-F., Jiang, Y., Shu, Y., Hu, X., Liu, L., & Luo, F. (2014). Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields. Journal of Geochemical Exploration, 147, 139–150. https://doi.org/10.1016/j.gexplo.2014.08.001.

    CAS  Article  Google Scholar 

  24. Huang, D., Liu, L., Zeng, G., Xu, P., Huang, C., Deng, L., et al. (2017). The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere, 174, 545–553. https://doi.org/10.1016/j.chemosphere.2017.01.130.

    CAS  Article  Google Scholar 

  25. Hupfauf, S., Bachmann, S., Fernandez-Delgado Juarez, M., Insam, H., & Eichler-Lobermann, B. (2016). Biogas digestates affect crop P uptake and soil microbial community composition. Sci Total Environ, 542(Pt B), 1144-1154. https://doi.org/10.1016/j.scitotenv.2015.09.025.

  26. Ibrahim, M., Khan, S., & Hao, X. (2016). Biochar effects on metal bioaccumulation and arsenic speciation in alfalfa (medicago sativa L.) grown in contaminated soil. International Journal of Environmental Science and Technology, 13(10), 2467–2474. https://doi.org/10.1007/s13762-016-1081-5.

    CAS  Article  Google Scholar 

  27. Igalavithana, A. D., Kim, K. H., Jung, J. M., Heo, H. S., Kwon, E. E., Tack, F. M. G., et al. (2019). Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils. Environ Int, 126, 791–801. https://doi.org/10.1016/j.envint.2019.02.061.

    CAS  Article  Google Scholar 

  28. Insam, H., Gómez-Brandón, M., & Ascher, J. (2015). Manure-based biogas fermentation residues – Friend or foe of soil fertility? Soil Biology and Biochemistry, 84, 1–14. https://doi.org/10.1016/j.soilbio.2015.02.006.

    CAS  Article  Google Scholar 

  29. Jaiswal, A. K., Frenkel, O., Tsechansky, L., Elad, Y., & Graber, E. R. (2018). Immobilization and deactivation of pathogenic enzymes and toxic metabolites by biochar: A possible mechanism involved in soilborne disease suppression. Soil Biology and Biochemistry, 121, 59–66. https://doi.org/10.1016/j.soilbio.2018.03.001.

    CAS  Article  Google Scholar 

  30. Jeffery, S., Abalos, D., Prodana, M., Bastos, A. C., van Groenigen, J. W., Hungate, B. A., et al. (2017). Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 12(5), 053001. https://doi.org/10.1088/1748-9326/aa67bd.

    CAS  Article  Google Scholar 

  31. Jia, W., Wang, B., Wang, C., & Sun, H. (2017). Tourmaline and biochar for the remediation of acid soil polluted with heavy metals. Journal of Environmental Chemical Engineering, 5(3), 2107–2114. https://doi.org/10.1016/j.jece.2017.04.015.

    CAS  Article  Google Scholar 

  32. Jin, Y., Liang, X., He, M., Liu, Y., Tian, G., & Shi, J. (2016). Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study. Chemosphere, 142, 128–135. https://doi.org/10.1016/j.chemosphere.2015.07.015.

    CAS  Article  Google Scholar 

  33. Kammann, C. I., Linsel, S., Gößling, J. W., & Koyro, H.-W. (2011). Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant and Soil, 345(1-2), 195–210. https://doi.org/10.1007/s11104-011-0771-5.

    CAS  Article  Google Scholar 

  34. Khadem, A., & Raiesi, F. (2017). Influence of biochar on potential enzyme activities in two calcareous soils of contrasting texture. Geoderma, 308, 149–158. https://doi.org/10.1016/j.geoderma.2017.08.004.

    CAS  Article  Google Scholar 

  35. Kocyigit, R., Sartlan, H., & Oguz, I. (2017). Short-term effect of biogas residue on some soil enzymes activities under maize and clover growth in a semiarid ecosystem. International Journal of Agriculture and Biology, 19(03), 459-464, https://doi.org/10.17957/ijab/15.0302.

  36. Li, F.-l., Shi, W., Jin, Z.-f., Wu, H.-m., & Sheng, G. D. (2017). Excessive uptake of heavy metals by greenhouse vegetables. Journal of Geochemical Exploration, 173, 76–84. https://doi.org/10.1016/j.gexplo.2016.12.002.

    CAS  Article  Google Scholar 

  37. Li, C., Xiong, Y., Qu, Z., Xu, X., Huang, Q., & Huang, G. (2018). Impact of biochar addition on soil properties and water-fertilizer productivity of tomato in semi-arid region of Inner Mongolia, China. Geoderma, 331, 100–108. https://doi.org/10.1016/j.geoderma.2018.06.014.

    CAS  Article  Google Scholar 

  38. Mackie, K. A., Marhan, S., Ditterich, F., Schmidt, H. P., & Kandeler, E. (2015). The effects of biochar and compost amendments on copper immobilization and soil microorganisms in a temperate vineyard. Agriculture, Ecosystems & Environment, 201, 58–69. https://doi.org/10.1016/j.agee.2014.12.001.

    CAS  Article  Google Scholar 

  39. Möller, K., & Müller, T. (2012). Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 12(3), 242–257. https://doi.org/10.1002/elsc.201100085.

    CAS  Article  Google Scholar 

  40. Morgan Jr., H. M., Xie, W., Liang, J., Mao, H., Lei, H., Ruan, R., et al. (2018). A techno-economic evaluation of anaerobic biogas producing systems in developing countries. Bioresour Technol, 250, 910–921. https://doi.org/10.1016/j.biortech.2017.12.013.

    CAS  Article  Google Scholar 

  41. Ning, C.-c., Gao, P.-d., Wang, B.-q., Lin, W.-p., Jiang, N.-h., & Cai, K.-z. (2017). Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. Journal of Integrative Agriculture, 16(8), 1819–1831. https://doi.org/10.1016/s2095-3119(16)61476-4.

    CAS  Article  Google Scholar 

  42. Nkoa, R. (2014). Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agronomy for Sustainable Development, 34(2), 473–492. https://doi.org/10.1007/s13593-013-0196-z.

    Article  Google Scholar 

  43. Ouni, Y., Lakhdar, A., Scelza, R., Scotti, R., Abdelly, C., Barhoumi, Z., et al. (2013). Effects of two composts and two grasses on microbial biomass and biological activity in a salt-affected soil. Ecological Engineering, 60, 363–369. https://doi.org/10.1016/j.ecoleng.2013.09.002.

    Article  Google Scholar 

  44. Patinvoh, R. J., & Taherzadeh, M. J. (2019). Challenges of biogas implementation in developing countries. Current Opinion in Environmental Science & Health, 12, 30–37. https://doi.org/10.1016/j.coesh.2019.09.006.

    Article  Google Scholar 

  45. Pietrzykowski, M., Socha, J., & Doorn, N. (2014). Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in scots pine needles to soil properties in reclaimed mine areas. The Science of the Total Environment, 470-471, https://doi.org/10.1016/j.scitotenv.2013.10.008.

  46. Puga, A. P., Abreu, C. A., Melo, L. C. A., & Beesley, L. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management, 159, 86–93. https://doi.org/10.1016/j.jenvman.2015.05.036.

    CAS  Article  Google Scholar 

  47. Shahbaz, A. K., Lewińska, K., Iqbal, J., Ali, Q., Mahmood ur, R., Iqbal, M., et al. (2018). Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios. Journal of Environmental Management, 218, 256–270. https://doi.org/10.1016/j.jenvman.2018.04.046.

    CAS  Article  Google Scholar 

  48. Shi-dan, B. (2000). Soil agrochemical analysis. China Agriculture Press.

  49. Tang, J., Zhang, J., Ren, L., Zhou, Y., Gao, J., Luo, L., et al. (2019). Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. J Environ Manage, 242, 121–130. https://doi.org/10.1016/j.jenvman.2019.04.061.

    CAS  Article  Google Scholar 

  50. Tang, J., Zhang, L., Zhang, J., Ren, L., Zhou, Y., Zheng, Y., et al. (2020). Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci Total Environ, 701, 134751. https://doi.org/10.1016/j.scitotenv.2019.134751.

    CAS  Article  Google Scholar 

  51. Tripathy, S., Bhattacharyya, P., Mohapatra, R., Som, A., & Chowdhury, D. (2014). Influence of different fractions of heavy metals on microbial ecophysiological indicators and enzyme activities in century old municipal solid waste amended soil. Ecological Engineering, 70, 25–34. https://doi.org/10.1016/j.ecoleng.2014.04.013.

    Article  Google Scholar 

  52. Urra, J., Alkorta, I., Lanzén, A., Mijangos, I., & Garbisu, C. (2019). The application of fresh and composted horse and chicken manure affects soil quality, microbial composition and antibiotic resistance. Applied Soil Ecology, 135, 73–84. https://doi.org/10.1016/j.apsoil.2018.11.005.

    Article  Google Scholar 

  53. Wan, Y., Huang, Q., Wang, Q., Yu, Y., Su, D., Qiao, Y., et al. (2019). Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure. J Hazard Mater, 384, 121293. https://doi.org/10.1016/j.jhazmat.2019.121293.

    CAS  Article  Google Scholar 

  54. Wang, Y., Shi, J., Wang, H., Lin, Q., Chen, X., & Chen, Y. (2007). The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf, 67(1), 75–81. https://doi.org/10.1016/j.ecoenv.2006.03.007.

    CAS  Article  Google Scholar 

  55. Wang, Y., Ma, Z., Wang, X., Sun, Q., Dong, H., Wang, G., et al. (2019). Effects of biochar on the growth of apple seedlings, soil enzyme activities and fungal communities in replant disease soil. Scientia Horticulturae, 256, 108641. https://doi.org/10.1016/j.scienta.2019.108641.

    CAS  Article  Google Scholar 

  56. Wu, L., Chang, H., & Ma, X. (2017). A modified method for pesticide transport and fate in subsurface environment of a winter wheat field of Yangling, China. Sci Total Environ, 609, 385–395. https://doi.org/10.1016/j.scitotenv.2017.07.116.

    CAS  Article  Google Scholar 

  57. Xian, Y., Wang, M., & Chen, W. (2015). Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere, 139, 604–608. https://doi.org/10.1016/j.chemosphere.2014.12.060.

    CAS  Article  Google Scholar 

  58. Xu, Z., Yu, G., Zhang, X., Ge, J., He, N., Wang, Q., et al. (2015). The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain. Applied Soil Ecology, 86, 19–29. https://doi.org/10.1016/j.apsoil.2014.09.015.

    Article  Google Scholar 

  59. Xu, Z. M., Wang, Z., Gao, Q., Wang, L. L., Chen, L. L., Li, Q. G., et al. (2019). Influence of irrigation with microalgae-treated biogas slurry on agronomic trait, nutritional quality, oxidation resistance, and nitrate and heavy metal residues in Chinese cabbage. J Environ Manage, 244, 453–461. https://doi.org/10.1016/j.jenvman.2019.04.058.

    CAS  Article  Google Scholar 

  60. Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Guo, X., et al. (2016a). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res Int, 23(2), 974–984. https://doi.org/10.1007/s11356-015-4233-0.

    CAS  Article  Google Scholar 

  61. Yang, J., Yang, F., Yang, Y., Xing, G., Deng, C., Shen, Y., et al. (2016b). A proposal of “core enzyme” bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis. Environ Pollut, 213, 760–769. https://doi.org/10.1016/j.envpol.2016.03.030.

    CAS  Article  Google Scholar 

  62. Yu, H. Y., Liu, C., Zhu, J., Li, F., Deng, D. M., Wang, Q., et al. (2016). Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value. Environ Pollut, 209, 38–45. https://doi.org/10.1016/j.envpol.2015.11.021.

    CAS  Article  Google Scholar 

  63. Yu, Y., Wan, Y., Camara, A. Y., & Li, H. (2018). Effects of the addition and aging of humic acid-based amendments on the solubility of Cd in soil solution and its accumulation in rice. Chemosphere, 196, 303–310. https://doi.org/10.1016/j.chemosphere.2018.01.002.

    CAS  Article  Google Scholar 

  64. Zhang, R.-H., Li, Z.-G., Liu, X.-D., Wang, B.-c., Zhou, G.-L., Huang, X.-X., et al. (2017). Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar. Ecological Engineering, 98, 183–188. https://doi.org/10.1016/j.ecoleng.2016.10.057.

    Article  Google Scholar 

  65. Zhao, Y., Yan, Z., Qin, J., Ma, Z., Zhang, Y., & Zhang, L. (2016). The potential of residues of furfural and biogas as calcareous soil amendments for corn seed production. Environ Sci Pollut Res Int, 23(7), 6217–6226. https://doi.org/10.1007/s11356-015-5828-1.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Risk Assessment Lab of the Quality Safety of Biomass Fermentation Products (Chengdu) Ministry of Agriculture and Rural Affairs for technical assistance.

Availability of Data and Material

The data sets supporting the results of this article are included within the article.

Code Availability

Microsoft Excel 2010 software was used to analyze the standard deviations and statistical differences of the data and to make the diagrams in the paper. SPSS (Version 22, USA) software was used to determine the correlations.

Funding

The research was supported by the Agricultural Special Project of Shaanxi province (No. SNYJC-2018-43), the Scientific Research Project of Biogas Institute of Ministry of Agriculture and Rural Affairs (No. NYBZKS-2019-XND01), and the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ling Qiu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xue, S., Chen, F., Wang, Y. et al. Effects of Co-Applications of Biochar and Solid Digestate on Enzyme Activities and Heavy Metals Bioavailability in Cd-Polluted Greenhouse Soil. Water Air Soil Pollut 232, 140 (2021). https://doi.org/10.1007/s11270-021-05089-0

Download citation

Keywords

  • Available nutrients
  • Biochar
  • Enzyme activity
  • Heavy metals
  • Solid digestate