Skip to main content
Log in

Highly Efficient Rhodamine B Decolorization by Pyrite/Peroxymonosulfate/Hydroxylamine System

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, pyrite/peroxymonosulfate (PMS)/hydroxylamine (HA) system could decolorize rhodamine B (RhB) in a wide pH range of 3.0-10.0. Near-100% decolorization of RhB was realized under optimum conditions of pyrite 0.4 g L−1, HA 0.8 mM, PMS 1.6 mM, and initial pH 4.0. Radical (mainly SO4•−) oxidation was the dominant process for RhB decolorization by pyrite/PMS/HA system, but nonradical (largely PMS) oxidation also played a non-negligible role. HA can act as a metal-free activator for PMS activation, and a reductant to boost Fe(III)/Fe(II) cycle in solution and on pyrite surface, which not only increased the production of radicals but also enhanced the stability of pyrite via inhibiting the S22− consumption. SO4•− that produced from pyrite oxidation was mainly from PMS activated by the Fe(II) in solution. Four other dye pollutants could also be decolorized completely. Our study suggests a promising process of pyrite/PMS/HA for organic dye pollutant treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anipsitakis, G. P., & Dionysiou, D. D. (2004). Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology, 38(13), 3705–3712.

    Article  CAS  Google Scholar 

  • Bae, S., Kim, D., & Lee, W. (2013). Degradation of diclofenac by pyrite catalyzed Fenton oxidation. Applied Catalysis B: Environmental, 134-135, 93–102.

    Article  CAS  Google Scholar 

  • Ball, D. L., & Edwards, J. O. (1956). The kinetics and mechanism of the decomposition of Caro’s acid. I. Journal of the American Chemical Society, 78(6), 1125–1129.

    Article  CAS  Google Scholar 

  • Banazadeh, A., Salimi, H., Khaleghi, M., & Shafiei-Haghighi, S. (2016). Highly efficient degradation of hazardous dyes in aqueous phase by supported palladium nanocatalyst─A green approach. Journal of Environmental Chemical Engineering, 4(2), 2178–2186.

    Article  CAS  Google Scholar 

  • Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135.

    Article  CAS  Google Scholar 

  • Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166-167, 603–643.

    Article  CAS  Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O) in aqueous solution. Journal of Physical and Chemical Reference Data, 17(2), 513–886.

    Article  CAS  Google Scholar 

  • Buxton, G. V., Malone, T. N., & Arthur Salmon, G. (1997). Reaction of SO4•- with Fe2+, Mn2+ and Cu2+ in aqueous solution. Journal of the Chemical Society, Faraday Transactions, 93(16), 2893–2897.

    Article  CAS  Google Scholar 

  • Cai, Y., Pan, Y., Xue, J., Sun, Q., Su, G., & Li, X. (2009). Comparative XPS study between experimentally and naturally weathered pyrites. Applied Surface Science, 255(21), 8750–8760.

    Article  CAS  Google Scholar 

  • Chandra, A. P., & Gerson, A. R. (2010). The mechanisms of pyrite oxidation and leaching: A fundamental perspective. Surface Science Reports, 65(9), 293–315.

    Article  CAS  Google Scholar 

  • Chen, L., Ma, J., Li, X., Zhang, J., Fang, J., Guan, Y., & Xie, P. (2011). Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. Environmental Science & Technology, 45(9), 3925–3930.

    Article  CAS  Google Scholar 

  • Chen, L., Peng, X., Liu, J., Li, J., & Wu, F. (2012). Decolorization of orange II in aqueous solution by an Fe(II)/sulfite system: Replacement of persulfate. Industrial & Engineering Chemistry Research, 51(42), 13632–13638.

    Article  CAS  Google Scholar 

  • Chen, G., Nengzi, L. C., Li, B., Gao, Y., Zhu, G., & Cheng, X. (2019). Octadecylamine degradation through catalytic activation of peroxymonosulfate by FeMn layered double hydroxide. Science of The Total Environment, 695, 133963.

    Article  CAS  Google Scholar 

  • Diao, Z., Liu, J., Hu, Y., Kong, L., Jiang, D., & Xu, X. (2017). Comparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: Reactivity, stability, products and mechanism. Separation and Purification Technology, 184, 374–383.

    Article  CAS  Google Scholar 

  • Diao, Z., Lin, Z., Chen, X., Yan, L., Dong, F., Qian, W., Kong, L., Du, J., & Chu, W. (2020). Ultrasound-assisted heterogeneous activation of peroxymonosulphate by natural pyrite for 2,4-diclorophenol degradation in water: Synergistic effects, pathway and mechanism. Chemical Engineering Journal, 389, 123771.

    Article  CAS  Google Scholar 

  • Feng, Y., Wu, D., Deng, Y., Zhang, T., & Shih, K. (2016). Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: Synergistic effects and mechanisms. Environmental Science & Technology, 50(6), 3119–3127.

    Article  CAS  Google Scholar 

  • Feng, Y., Wu, D., Zhou, Y., & Shih, K. (2017). A metal-free method of generating sulfate radicals through direct interaction of hydroxylamine and peroxymonosulfate: Mechanisms, kinetics, and implications. Chemical Engineering Journal, 330, 906–913.

    Article  CAS  Google Scholar 

  • Feng, Y., Li, H., Lin, L., Kong, L., Li, X., Wu, D., Zhao, H., & Shih, K. (2018). Degradation of 1,4-dioxane via controlled generation of radicals by pyrite-activated oxidants: Synergistic effects, role of disulfides, and activation sites. Chemical Engineering Journal, 336, 416–426.

    Article  CAS  Google Scholar 

  • Ghanbari, F., & Martínez-Huitle, C. A. (2019). Electrochemical advanced oxidation processes coupled with peroxymonosulfate for the treatment of real washing machine effluent: A comparative study. Journal of Electroanalytical Chemistry, 847, 113182.

    Article  CAS  Google Scholar 

  • Ghanbari, F., & Moradi, M. (2017). Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chemical Engineering Journal, 310, 41–62.

    Article  CAS  Google Scholar 

  • Ghanbari, F., Khatebasreh, M., Mahdavianpour, M., & Lin, K. A. (2020). Oxidative removal of benzotriazole using peroxymonosulfate/ozone/ultrasound: Synergy, optimization, degradation intermediates and utilizing for real wastewater. Chemosphere, 244, 125326.

    Article  CAS  Google Scholar 

  • Giannakis, S., Lin, K.-Y. A., & Ghanbari, F. (2021). A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs). Chemical Engineering Journal, 406, 127083.

    Article  CAS  Google Scholar 

  • Guan, Y. H., Ma, J., Li, X. C., Fang, J. Y., & Chen, L. W. (2011). Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environmental Science & Technology, 45(21), 9308–9314.

    Article  CAS  Google Scholar 

  • Hassani, A., Eghbali, P., Kakavandi, B., Lin, K.-Y. A., & Ghanbari, F. (2020). Acetaminophen removal from aqueous solutions through peroxymonosulfate activation by CoFe2O4/mpg-C3N4 nanocomposite: Insight into the performance and degradation kinetics. Environmental Technology & Innovation, 20, 101127.

    Article  CAS  Google Scholar 

  • He, D. Q., Zhang, Y. J., Pei, D. N., Huang, G. X., Liu, C., Li, J., & Yu, H. Q. (2020). Degradation of benzoic acid in an advanced oxidation process: The effects of reducing agents. Journal of Hazardous Materials, 382, 121090.

    Article  CAS  Google Scholar 

  • Hickerson, R. P., Watkins-Sims, C. D., Burrows, C. J., Atkins, J. F., Gesteland, R. F., & Felden, B. (1998). A nickel complex cleaves uridine in folded RNA structures: Application to E. coli tmRNA and related engineered molecules. Journal of Molecular Biology, 279(3), 577–587.

    Article  CAS  Google Scholar 

  • Hou, X., Huang, X., Jia, F., Ai, Z., Zhao, J., & Zhang, L. (2017). Hydroxylamine promoted goethite surface Fenton degradation of organic pollutants. Environmental Science & Technology, 51(9), 5118–5126.

    Article  CAS  Google Scholar 

  • Hu, P., & Long, M. (2016). Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Applied Catalysis B: Environmental, 181, 103–117.

    Article  CAS  Google Scholar 

  • Javaid, R., & Qazi, U. Y. (2019). Catalytic oxidation process for the degradation of synthetic dyes: An overview. International Journal of Environmental Research and Public Health, 16(11), 2066–2093.

    Article  CAS  Google Scholar 

  • Ji, F., Zhang, H., Wei, X., Zhang, Y., & Lai, B. (2019). Efficient degradation of atrazine by Co-NZ catalyst prepared by electroless plating in the presence of peroxymonosulfate: Characterization, performance and mechanistic consideration. Chemical Engineering Journal, 359, 1316–1326.

    Article  CAS  Google Scholar 

  • Khabbaz, M., & Entezari, M. H. (2017). Degradation of diclofenac by sonosynthesis of pyrite nanoparticles. Journal of Environmental Management, 187, 416–423.

    Article  CAS  Google Scholar 

  • Lange, A., & Brauer, H. (1996). On the formation of dioxiranes and of singlet oxygen by the ketone-catalysed decomposition of Caro’s acid. Journal of the Chemical Society, Perkin Transactions 2, 5(5), 805–811.

    Article  Google Scholar 

  • Lei, Y., Chen, C., Ai, J., Lin, H., Huang, Y., & Zhang, H. (2016). Selective decolorization of cationic dyes by peroxymonosulfate: Non-radical mechanism and effect of chloride. RSC Advances, 6(2), 866–871.

    Article  CAS  Google Scholar 

  • Li, J., Wan, Y., Li, Y., Yao, G., & Lai, B. (2019). Surface Fe(III)/Fe(II) cycle promoted the degradation of atrazine by peroxymonosulfate activation in the presence of hydroxylamine. Applied Catalysis B: Environmental, 256, 117782.

    Article  CAS  Google Scholar 

  • Li, Y., Li, J., Pan, Y., Xiong, Z., Yao, G., Xie, R., & Lai, B. (2020). Peroxymonosulfate activation on FeCo2S4 modified g-C3N4 (FeCo2S4-CN): Mechanism of singlet oxygen evolution for nonradical efficient degradation of sulfamethoxazole. Chemical Engineering Journal, 384, 123361.

    Article  CAS  Google Scholar 

  • Li, T., Abdelhaleem, A., Chu, W., & Xu, W. (2021). Efficient activation of oxone by pyrite for the degradation of propanil: Kinetics and degradation pathway. Journal of Hazardous Materials, 403, 123930.

    Article  CAS  Google Scholar 

  • Liu, W., Wang, Y., Ai, Z., & Zhang, L. (2015). Hydrothermal synthesis of FeS2 as a high-efficiency Fenton reagent to degrade alachlor via superoxide-mediated Fe(II)/Fe(III) cycle. ACS Applied Materials & Interfaces, 7(51), 28534–28544.

    Article  CAS  Google Scholar 

  • Luan, J., Li, M., Ma, K., Li, Y., & Zou, Z. (2011). Photocatalytic activity of novel Y2InSbO7 and Y2GdSbO7 nanocatalysts for degradation of environmental pollutant rhodamine B under visible light irradiation. Chemical Engineering Journal, 167(1), 162–171.

    Article  CAS  Google Scholar 

  • Moses, C. O., & Herman, J. S. (1991). Pyrite oxidation at circumneutral pH. Geochimica et Cosmochimica Acta, 55(2), 471–482.

    Article  CAS  Google Scholar 

  • Neta, P., Huie, R. E., & Ross, A. B. (1988). Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 17(3), 1027–1284.

    Article  CAS  Google Scholar 

  • Nidheesh, P. V., Gandhimathi, R., & Sanjini, N. S. (2014). NaHCO3 enhanced rhodamine B removal from aqueous solution by graphite–graphite electro Fenton system. Separation and Purification Technology, 132, 568–576.

    Article  CAS  Google Scholar 

  • Oral, O., & Kantar, C. (2019). Diclofenac removal by pyrite-Fenton process: Performance in batch and fixed-bed continuous flow systems. Science of The Total Environment, 664, 817–823.

    Article  CAS  Google Scholar 

  • Rastogi, A., Al-Abed, S. R., & Dionysiou, D. D. (2009). Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Applied Catalysis B: Environmental, 85(3-4), 171–179.

    Article  CAS  Google Scholar 

  • Rimstidt, J. D., & Vaughan, D. J. (2003). Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism. Geochimica et Cosmochimica Acta, 67(5), 873–880.

    Article  CAS  Google Scholar 

  • Robinson, R. A., & Bower, V. E. (1961). The ionization constant of hydroxylamine. The Journal of Physical Chemistry, 65(7), 1279–1280.

    Article  CAS  Google Scholar 

  • Spiro, M. (1979). The standard potential of the peroxosulphate/sulphate couple. Electrochimica Acta, 24(3), 313–314.

    Article  CAS  Google Scholar 

  • Stemmler, A. J., & Burrows, C. J. (2001). Guanine versus deoxyribose damage in DNA oxidation mediated by vanadium(IV) and vanadium(V) complexes. Journal of Biological Inorganic Chemistry, 6(1), 100–106.

    Article  CAS  Google Scholar 

  • Tan, C., Xu, Q., Sheng, T., Cui, X., Wu, Z., Gao, H., & Li, H. (2020). Reactive oxygen species generation in FeOCl nanosheets activated peroxymonosulfate system: Radicals and non-radical pathways. Journal of Hazardous Materials, 398, 123084.

    Article  CAS  Google Scholar 

  • Todd, E. C., Sherman, D. M., & Purton, J. A. (2003). Surface oxidation of pyrite under ambient atmospheric and aqueous (pH = 2 to 10) conditions: Electronic structure and mineralogy from X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 67(5), 881–893.

    Article  CAS  Google Scholar 

  • Wacławek, S., Lutze, H. V., Grübel, K., Padil, V. V. T., Černík, M., & Dionysiou, D. D. (2017). Chemistry of persulfates in water and wastewater treatment: A review. Chemical Engineering Journal, 330, 44–62.

    Article  Google Scholar 

  • Wang, S., Jia, Y., Song, L., & Zhang, H. (2018). Decolorization and mineralization of rhodamine B in aqueous solution with a triple system of Cerium(IV)/H2O2/Hydroxylamine. ACS Omega, 3(12), 18456–18465.

    Article  CAS  Google Scholar 

  • Xiao, S., Cheng, M., Zhong, H., Liu, Z., Liu, Y., Yang, X., & Liang, Q. (2020). Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review. Chemical Engineering Journal, 384, 123265.

    Article  CAS  Google Scholar 

  • Xiong, Z., Zhang, H., Zhang, W., Lai, B., & Yao, G. (2019). Removal of nitrophenols and their derivatives by chemical redox: A review. Chemical Engineering Journal, 359, 13–31.

    Article  CAS  Google Scholar 

  • Yang, Z., Yu, A., Shan, C., Gao, G., & Pan, B. (2018). Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes. Water Research, 137, 37–46.

    Article  CAS  Google Scholar 

  • Yin, R., Guo, W., Wang, H., Du, J., Zhou, X., Wu, Q., Zheng, H., Chang, J., & Ren, N. (2018). Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: Direct oxidation and nonradical mechanisms. Chemical Engineering Journal, 334, 2539–2546.

    Article  CAS  Google Scholar 

  • Zeng, L., Gong, J., Dan, J., Li, S., Zhang, J., Pu, W., & Yang, C. (2019). Novel visible light enhanced pyrite-Fenton system toward ultrarapid oxidation of p-nitrophenol: Catalytic activity, characterization and mechanism. Chemosphere, 228, 232–240.

    Article  CAS  Google Scholar 

  • Zhang, T., Zhu, H., & Croue, J. P. (2013). Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism. Environmental Science & Technology, 47(6), 2784–2791.

    Article  CAS  Google Scholar 

  • Zhang, J., Chen, M., & Zhu, L. (2016). Activation of peroxymonosulfate by iron-based catalysts for orange G degradation: Role of hydroxylamine. RSC Advances, 6(53), 47562–47569.

    Article  CAS  Google Scholar 

  • Zhou, Y., Wang, X., Zhu, C., Dionysiou, D. D., Zhao, G., Fang, G., & Zhou, D. (2018). New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: Role of sulfur conversion in sulfate radical generation. Water Research, 142, 208–216.

    Article  CAS  Google Scholar 

  • Zou, J., Ma, J., Chen, L., Li, X., Guan, Y., Xie, P., & Pan, C. (2013). Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine. Environmental Science & Technology, 47(20), 11685–11691.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng-Jie Zhong.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, GJ., Zhong, DJ., Xu, YL. et al. Highly Efficient Rhodamine B Decolorization by Pyrite/Peroxymonosulfate/Hydroxylamine System. Water Air Soil Pollut 232, 141 (2021). https://doi.org/10.1007/s11270-021-05086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05086-3

Keywords

Navigation