Skip to main content

Advertisement

Log in

Heavy Metal Concentrations and Basal Respiration in Contaminated Substrates used in the Cuban Urban Agriculture

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The input of heavy metals in agricultural systems depresses the soil quality and compromises the food safety owing to crop contamination. Metals also affect the structure, morphology, function, and activity of microorganisms in soils and substrates. Heavy metals can inhibit basic processes of microbial metabolism such as respiration. The present study aimed (i) to assess the relationship between cadmium (Cd), lead (Pb), zinc (Zn), and mercury (Hg) in contaminated organic substrates used in the Cuban urban farms (the so-called organopónicos) and the basal respiration; (ii) to study the changes in the basal respiration of substrates added with increasing metals concentrations; and (iii) to evaluate how increasing Hg concentrations in the substrates affect the basal respiration during a 135-day period. In general, the Cd, Pb, and Zn concentrations in the substrates of the organopónicos from Havana province are within the permissible values for organic substrates, while substrates prepared from municipal solid wastes from Havana and all substrates from Guantánamo province had metal concentrations exceeding the maximum permissible levels. The basal respiration was correlated negatively with the pollution load index. The toxic effect on microorganisms was also dependent on the metal concentration, the substrates, and the metal considered, with Cd and Hg having the most significant effect on diminishing microbial activity. Although Hg contamination reduced the basal respiration in the first 24 h of substrate-metal contact, at the 135th day of incubation, the basal respiration was higher than non-polluted substrates. This finding suggests the high metabolic activity of metal-resistant microorganisms in the substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data are available upon request.

References

  • Alfaro, M. R., Muñiz, O., Calero, B., Montero, A., Martínez, F., Limeres, T., et al. (2012). Contenido de metales pesados en abonos orgánicos, sustratos y plantas cultivadas en organopónicos. Journal of Cultivos Tropicales, 33(2), 5–12.

    Google Scholar 

  • Alfaro, M. R., Montero, A., Muñiz, O., Nascimento, C. W. A., Accioly, A. M. A., Biondi, C. M., et al. (2015). Background concentrations and reference values for heavy metals in soils of Cuba. Environ Monit Assess, 187, 4198–4208. https://doi.org/10.1007/s10661-014-4198-3.

    Article  CAS  Google Scholar 

  • Alfaro, M. R., Do Nascimento, C. W., Muñiz, O., Montero, A., Accioly, A. M., Calero, B., et al. (2017). First national-wide survey of trace elements in Cuban urban agriculture. Journal of Agronomy for Sustainable Development., 37, 27. https://doi.org/10.1007/s13593-017-0437-72.

    Article  Google Scholar 

  • Alloway, B. J. (2013). Heavy Metals in Soils. In B. J. Alloway (Ed.), Environmental Pollution, no. ser. 22, 3.a. Dordrecht: Springer (613 p). ISBN 978-94-007-4469-1. https://doi.org/10.1007/978-94-007-4470-7.

    Chapter  Google Scholar 

  • Amanullah, M., Ping, W., Amjad, A., Mukesh, K. A., Altaf, H. L., Quan, W., et al. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Journal of Ecotoxicology and Environmental Safety., 126(16), 111–121.

    Google Scholar 

  • Bååth, E., Díaz-Raviña, M., & Bakken, L. R. (2005). Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microb Ecol, 50, 496–505. https://doi.org/10.1007/s00248-005-0008-3.

    Article  CAS  Google Scholar 

  • Barkay, T., Miller, S. M., & Summers, A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. Journal of FEMS Microbiology Reviews., 27, 355–384.

    Article  CAS  Google Scholar 

  • Boechat, C. L., Carlos, F. S., Do Nascimento, C. W., Quadros, P. D., Sá, E. L. S., & Camargo, F. A. O. (2020). Bioaugmentation-assisted phytoremediation of As, Cd, and Pb using sorghum bicolor in a contaminated soil of an abandoned gold ore processing plant. Brasileira Journal of Ciência do Solo, 44, e0200081. https://doi.org/10.36783/18069657rbcs20200081.

    Article  CAS  Google Scholar 

  • Bolaños, Y., Alonso, C. M., Morabito, R., Díaz, M., Pinto, V., & Gómez, M. (2016). Mercury contamination of riverine sediments in the vicinity of a mercury cell chlor-alkali plant in Sagua River. Cuba. Chemosphere., 152, 376–382.

    Article  Google Scholar 

  • Brown, A. R., Wincott, P. L., LaVern, J. A., Small, J. S., Vaughan, D. J., Pimblott, S. M., & Lloyd, J. R. (2014). The impact of γ-radiation on the bioavailability of Fe(III) minerals for microbial respiration. Environmental Science & Technology 2014, 48(18), 10672–10680. https://doi.org/10.1021/es503249r.

    Article  CAS  Google Scholar 

  • Bünemann, E. K., Mäder, P., Wohlfahrt, J., Brussaard, L., Bongiorno, G., Goede, R., et al. (2016). Concepts and indicators of soil quality – a review. Ref. Ares. 6570044. www.iSQAPER-project.eu.

  • Calero, B. J., Guerrero, A., Alfonso, C. A., Somoza, V., & Camacho, E. (1999). Efecto residual de la fertilización mineral sobre el estado microbiológico del suelo. Journal of La Ciencia y el Hombre., 11, 89–94.

    Google Scholar 

  • Calero, B. J., Alfaro, M. R., Morales, A., Martínez, F., & Morejón, L. (2009). Biodegradabilidad de mezclas de caliza fosfatada con abonos orgánicos en un suelo ácido. Journal of Cultivos Tropicales., 30(3), 5–9.

    Google Scholar 

  • Caravaca, F., Lozano, Z., Rodríguez-Caballero, G., & Roldán, A. (2017). Spatial shifts in soil microbial activity and degradation of pasture cover caused by prolonged exposure to cement dust. Land Degradation Development, 28, 1329–1335. https://doi.org/10.1002/ldr.2564.

    Article  Google Scholar 

  • Chen, Z., Wang, Q., Ma, J., et al. (2020). (2020). Soil microbial activity and community composition as influenced by application of pig biogas slurry in paddy field in southeast China. Paddy Water Environ, 18, 15–25. https://doi.org/10.1007/s10333-019-00761-y.

    Article  Google Scholar 

  • Choppala, G., Saifullah, B. N., Bibi, S., Iqbal, M., Rengel, Z., Kunhikrishnan, A., Ashwath, N., & Ok, Y. S. (2014). Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Plant Science, 33, 374–391.

    CAS  Google Scholar 

  • Diez, J. L. (2010). Fitocorrección de suelos contaminados con metales pesados: Evaluación de plantas tolerantes y optimización del proceso mediante prácticas agronómicas. [Tesis de Doctorado]. Universidad de Santiago de Compostela. Departamento de Edafología y Química Agrícola. España. 104p.

  • Ding, Z., Wu, J., You, A., Huang, B., & Cao, C. (2017). Effects of heavy metals on soil microbial community structure and diversity in the rice (Oryza sativa L. subsp. Japonica, Food Crops Institute of Jiangsu Academy of Agricultural Sciences) rhizosphere. Journal of Soil Science and Plant Nutrition., 63(1), 75–83. https://doi.org/10.1080/00380768.2016.1247385.

    Article  CAS  Google Scholar 

  • Ehrlich, H.L. (2008). Geomicrobiology of Mercury. In: Taylor & Francis (Ed.) Geomicrobiology. (pp. 327-338). Ltd. United Kingdom.

  • Frey, B., & Rieder, S. R. (2013). Response of forest soil bacterial communities to mercury chloride application. Soil Biology and Biochemistry, 65, 329–337. https://doi.org/10.1016/j.soilbio.2013.06.001.

    Article  CAS  Google Scholar 

  • Irawati, W., Soraya, P. Y., Baskoro, A., & H. (2012). A study on mercury-resistant bacteria isolated from a gold mine in Pongkor Village, Bogor, Indonesia. Journal of Biosciences., 19(4), 197–200. https://doi.org/10.4308/hjb.19.4.197.

    Article  Google Scholar 

  • Jin, Y., Luan, Y., Ning, Y., & Wang, L. (2018). Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Applied Sciences, 8, 1336–1353. https://doi.org/10.3990/app8081338.

    Article  Google Scholar 

  • Ken, E. G., Ernst, W., & Steve, P. M. (2010). Heavy metals and soil microbes. Journal Soil Biology and Biochemistry., 68, 1–7.

    Google Scholar 

  • Keramati, P., Hoodaji, M., & Tahmourespour, A. (2011). Multi-metal resistance study of bacteria highly resistant to mercury isolated from dental clinic effluent. African Journal of Microbiology Research., 5, 831–837.

    Article  CAS  Google Scholar 

  • Khan, S., Cao, Q., Hesham, A., Xia, Y., & He, J. (2007). Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. Journal of Environmental Sciences., 19, 834–840.

    Article  CAS  Google Scholar 

  • Liao, M., & Xie, X. M. (2007). Effect of heavy metal son substrate utilization pattern, biomass and activity of microbial communities in a reclaimed mining wasteland of red soil area. Journal of Ecotoxicology and Environmental Safety., 66, 217–223.

    Article  CAS  Google Scholar 

  • Liu, W., Liu, S., & Huang, G. (2016). Research on the sorting reclaim system of municipal solid waste based on the concept of "cradle to cradle". Procedia Environmental Sciences, 31(2016), 482–490. https://doi.org/10.1016/j.proenv.2016.02.057.

    Article  Google Scholar 

  • Manasi, S. M., Rejesh, N., & Rejesh, V. (2017). Impact of heavy metals lead stress on polyamine levels in Halomonas BVR1 isolated from an industry effluent. Scientific Report, 7, 13447. https://doi.org/10.1038/s41598-017-13893-0.

    Article  CAS  Google Scholar 

  • MAPA: The Ministry of Agriculture, Livestock, and Food Supply. (2006). Instrução Normativa SDA 27, 05 of June, 2006. 4 p.

  • Mesa, M. A. (2009). Papel de los microorganismos en las estrategias de Biorremediación. [Tesis de Master]. Universidad Agraria de La Habana, San José de las Lajas, Mayabeque, Cuba. 90p.

  • Müller, K. A., Rasmussen, L. D., & Sorensen, S. J. (2001). Adaptation of the bacterial community to mercury contamination. Journal of FEMs Microbiology Letters., 204(3), 49–53.

    Article  Google Scholar 

  • Mylavarapu, R. S., & Zinati, G. M. (2009). Improvement of soil properties using compost for optimum parsley production in sandy soils. Journal Scientia Horticulturae., 120, 426–430. https://doi.org/10.1016/j.scienta.2008.11.038.

    Article  Google Scholar 

  • Nogales, R., Romero, E., Fernández, M. J. (2015). De residuo a recurso. El Camino hacia la sostenibilidad. Mundi-Prensa (Ed). 172p. ISBN: 978-84-8476-693-3.

  • Petrus, A. K., Rutner, C., Liu, S., Wang, Y., & Wiatrowski, H. A. (2015). Mercury reduction and methyl mercury degradation by the soil bacterium Xanthobacter autotrophicus Py2. Applied and Environmental Microbiology, 81(22), 7833–7838. https://doi.org/10.1128/AEM.01982-15.

    Article  CAS  Google Scholar 

  • Rajapaksha, R. M. C. P., Tobor-Kapłon, M. A., & Bååth, E. (2004). Metal toxicity affects fungal and bacterial activities in soil differently. Applied and Environmental Microbiology, 70, 2966–2973. https://doi.org/10.1128/AEM.70.5.2966-2973.2004.

    Article  CAS  Google Scholar 

  • Riches, D., Porter, I. J., Oliver, D. P., Bramley, R. G. V., Rawnsley, B., & Edwards, J. (2013). Review: soil biological properties as indicators of soil quality in Australian viticulture Biological indicators for soil quality. Australian Journal of Grape and Wine Research. https://doi.org/10.1111/ajgw.12034.

  • Salam, L. B., Shomope, H., & Ummi, Z. (2019). Mercury contamination imposes structural shift on the microbial community of an agricultural soil. Bulletin of the National Research Center, 43, 163. https://doi.org/10.1186/s42269-019-0208-5.

    Article  Google Scholar 

  • Silva, W. R., Silva, F. B. V., Araújo, P. R. M., & Nascimento, C. W. A. (2017). Assessing human health risks and strategies for phytoremediation in soils contaminated with As, Cd, Pb, and Zn by slag disposal. Ecotoxicological and Environtal Safety, 144, 522–530. https://doi.org/10.1016/j.ecoenv.2017.06.068.

    Article  CAS  Google Scholar 

  • Soil Survey Staff. (1999). Soil taxonomy, Second edition. USDA-NRCS, Agriculture Handbook No.436.

  • USEPA: United States Environmental Protection Agency. (1998). Method 3051A. Microwave assisted acid digestion of sediments, sludges, soils, and oils. 14p.

  • Wagner-Dobler, I., Von-Canstein, H., Li, Y., Timnis, K. N., & Deckwer, W. D. (2000). Removal of mercury from chemical wastewaster by microorganisms in technical scale. Journal of Environmental Science & Technology., 34, 4628–4634.

    Article  Google Scholar 

  • Xian, Y., Wang, M., & Chen, W. (2015). Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere, 139, 604–608. https://doi.org/10.1016/j.chemosphere.2014.12.060.

    Article  CAS  Google Scholar 

  • Xu, Y., Seshadri, B., Bolan, N., Sarkar, B., Ok, Y. S., Zhang, W., et al. (2019). Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environment International, 125, 478–488. https://doi.org/10.1016/j.envint.2019.01.071.

    Article  CAS  Google Scholar 

  • Zheng, L., Li, Y., Shang, W., et al. (2019). The inhibitory effect of cadmium and/or mercury on soil enzyme activity, basal respiration, and microbial community structure in coal mine–affected agricultural soil. Ann Microbiol, 69, 849–859. https://doi.org/10.1007/s13213-019-01478-3.

    Article  CAS  Google Scholar 

  • Zhongchen, H., Jianwu, L., Hailong, W., Zhengqian, Y., Xudong, W., Yongfu, L., et al. (2019). Soil contamination with heavy metals and its impact on food security in China. Journal of Earth & Environmental Sciences., 7(5), 150–189. https://doi.org/10.4236/gep.2019.75015.

    Article  Google Scholar 

Download references

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clístenes Williams Araújo do Nascimento.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfaro, M.R., Martín, B.C., Ugarte, O.M. et al. Heavy Metal Concentrations and Basal Respiration in Contaminated Substrates used in the Cuban Urban Agriculture. Water Air Soil Pollut 232, 112 (2021). https://doi.org/10.1007/s11270-021-05073-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05073-8

Keywords

Navigation