Skip to main content
Log in

The Effect of pH and Light on the Colony Formation and Buoyancy of Microcystis aeruginosa UTEX-2061

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Extracellular polysaccharides (EPS) in the outer layer of Microcystis cells can influence colony formation and buoyancy ability. The carboxyl groups in EPS can combine with divalent metals to induce colony formation. One of the main components in EPS is called tightly cell-bound EPS (TB-EPS), which contains more carboxyl groups and potential to combine with more metal ions. In this study, we isolated the EPS and TB-EPS from Microcystis bloom sample, and, using both EPS samples, the effect of EPS and TB-EPS on the colony formation and buoyancy of M. aeruginosa UTEX-2061 was investigated. Then, we discussed the impact of the environmental factors such as light and solution pH on M. aeruginosa UTEX-2061 colony formation and buoyancy. With the addition of Ca2+, Mg2+, EPS, and TB-EPS, M. aeruginosa UTEX-2061 could form a colony, in which the size was more than 200 μm, showing the same strong buoyancy as wild Microcystis. The addition of TB-EPS could lead to M. aeruginosa UTEX-2061 to form the largest colony and exhibit strong buoyancy under light conditions. Under dark conditions, the addition of EPS or TB-EPS failed to lead M. aeruginosa to form a colony and obtain buoyancy, indicating that light affects colony formation and buoyancy. The solution pH played a role in controlling colony formation and buoyancy. Neutral conditions (pH 7) were conducive for TB-EPS to induce colony formation, while under alkaline conditions (pH 10), EPS had an excellent effect on the induction of M. aeruginosa UTEX-2061 colony formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amemiya, Y., & Nakayama, O. (1984). The chemical composition and metal adsorption capacity of the sheath materials isolated from Microcystis, Cyanobacteria. Japanese Journal of Limnology, 45, 187–193.

    Article  CAS  Google Scholar 

  • Basuvaraj, M., Fein, J., & Liss, S. N. (2015). Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc. Water Research, 82, 104–117.

    Article  CAS  Google Scholar 

  • Damerval, T., Guglielmi, G., Houmard, J., & De Marsac, N. T. (1991). Hormogonium differentiation in the cyanobacterium Calothrix: a photoregulated developmental process. The Plant Cell, 3(2), 191–201.

    Article  Google Scholar 

  • Deng, J., Qin, B., Paerl, H. W., Zhang, Y., Ma, J., & Chen, Y. (2014). Earlier and warmer springs increase cyanobacterial (Microcystis spp.) blooms in subtropical Lake Taihu, China. Freshwater Biology, 59(5), 1076–1085.

    Article  Google Scholar 

  • Dervaux, J., Mejean, A., & Brunet, P. (2015). Irreversible collective migration of cyanobacteria in eutrophic conditions. PLoS One, 10(3), e0120906.

    Article  Google Scholar 

  • Ebert, U., Arrayás, M., Temme, N., Sommeijer, B., & Huisman, J. (2001). Critical conditions for phytoplankton blooms. Bulletin of Mathematical Biology, 63(6), 1095–1124.

    Article  CAS  Google Scholar 

  • Fang, F., Gao, Y., Gan, L., He, X., & Yang, L. (2018). Effects of different initial pH and irradiance levels on cyanobacterial colonies from Lake Taihu, China. Journal of Applied Phycology, 30(3), 1777–1793.

    Article  CAS  Google Scholar 

  • Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623.

    Article  CAS  Google Scholar 

  • Gao, H., Zhu, T., Xu, M., Wang, S., Xu, X., & Kong, R. (2016). pH-dependent gas vesicle formation in Microcystis. FEBS Letters, 590(18), 3195–3201.

    Article  CAS  Google Scholar 

  • Guibaud, G., Bordas, F., Saaid, A., D’abzac, P., & Van Hullebusch, E. (2008). Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloids and Surfaces B: Biointerfaces, 63(1), 48–54.

    Article  CAS  Google Scholar 

  • Guillard, R., & Lorenzen, C. (1972). Yellow-green algae with chlorophyllide c. Journal of Phycology, 8(1), 10–14.

    CAS  Google Scholar 

  • Ha, K., Cho, E.-A., Kim, H.-W., & Joo, G.-J. (1999). Microcystis bloom formation in the lower Nakdong River, South Korea: importance of hydrodynamics and nutrient loading. Marine and Freshwater Research, 50(1), 89–94.

    Article  Google Scholar 

  • Huisman, J., & Hulot, F. D. (2005). Population dynamics of harmful cyanobacteria. Harmful cyanobacteria. Aquatic Ecology Series, 3, 143–176.  https://doi.org/10.1007/1-4020-3022-3_7.

  • Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471–483.

    Article  CAS  Google Scholar 

  • Kardinaal, W. E. A., Tonk, L., Janse, I., Hol, S., Slot, P., Huisman, J., et al. (2007). Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Applied and Environmental Microbiology, 73(9), 2939–2946.

    Article  Google Scholar 

  • Li, M., Zhu, W., & Gao, L. (2014). Analysis of cell concentration, volume concentration, and colony size of Microcystis via laser particle analyzer. Environmental Management, 53(5), 947–958.

    Article  Google Scholar 

  • Liu, X., Sheng, G., Luo, H., Zhang, F., Yuan, S., Xu, J., et al. (2010). Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environmental Science & Technology, 44(11), 4355–4360.

    Article  CAS  Google Scholar 

  • Ma, J., Brookes, J. D., Qin, B., Paerl, H. W., Gao, G., Wu, P., et al. (2014). Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae, 31, 136–142.

    Article  CAS  Google Scholar 

  • Nishikawa, S., & Kuriyama, M. (1974). Nucleic acid as a component of mucilage in activated sludge. Journal of Fermentation Technology, 52, 335–338.

    CAS  Google Scholar 

  • Paerl, H. W., & Huisman, J. (2008). Blooms like it hot. Science, 320(5872), 57–58.

    Article  CAS  Google Scholar 

  • Qu, F., Liang, H., Wang, Z., Wang, H., Yu, H., & Li, G. (2012). Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: influences of interfacial characteristics of foulants and fouling mechanisms. Water Research, 46(5), 1490–1500.

    Article  CAS  Google Scholar 

  • Sakurai, S., Omori, K., Amano, Y., & Machida, M. (2019). Removal of Microcystis blooms using enhanced colony formation and buoyancy by controlling extracellular polysaccharides and cation concentrations. International journal of Environmental Science and Technology, 16(8), 4793–4802.

    Article  CAS  Google Scholar 

  • Sato, M., Amano, Y., Machida, M., & Imazeki, F. (2017). Colony formation of highly dispersed Microcystis aeruginosa by controlling extracellular polysaccharides and calcium ion concentrations in aquatic solution. Limnology, 18(1), 111–119.

    Article  CAS  Google Scholar 

  • Sheng, G., Yu, H., & Li, X. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnology Advances, 28(6), 882–894.

    Article  CAS  Google Scholar 

  • Song, Y., Zhang, L.-L., Li, J., Chen, M., & Zhang, Y.-W. (2018). Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs. Science of the Total Environment, 636, 230–239.

    Article  CAS  Google Scholar 

  • Thomas, R., & Walsby, A. (1986). The effect of temperature on recovery of buoyancy by Microcystis. Microbiology, 132(6), 1665–1672.

    Article  Google Scholar 

  • Van der Westhuizen, A., & Eloff, J. (1983). Effect of culture age and pH of culture medium on the growth and toxicity of the blue-green alga Microcystis aeruginosa. Zeitschrift für Pflanzenphysiologie, 110(2), 157–163.

    Article  Google Scholar 

  • Walsby, A. (1975). Gas vesicles. Annual Review of Plant Physiology, 26(1), 427–439.

    Article  CAS  Google Scholar 

  • Walsby, A. (1994). Gas vesicles. Microbiological Reviews, 58(1), 94–144.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhao, J., Li, J., Li, S., Zhang, L., & Wu, M. (2011). Effects of calcium levels on colonial aggregation and buoyancy of Microcystis aeruginosa. Current Microbiology, 62(2), 679–683.

    Article  CAS  Google Scholar 

  • Wang, L., Wang, L. F., Ren, X., Ye, X., Li, W., Yuan, S., et al. (2012). pH dependence of structure and surface properties of microbial EPS. Environmental Science & Technology, 46(2), 737–744.

    Article  CAS  Google Scholar 

  • Wei, K., Amano, Y., Machida, M., Asukabe, H., & Harada, K. (2018). Effects of light and potassium ion on buoyancy regulation with gas vesicle in a Cyanobacterium Microcystis aeruginosa NIES-843. Water, Air, & Soil Pollution, 229(11), 352.

    Article  Google Scholar 

  • Wei, K., Jung, S., Amano, Y., & Machida, M. (2019). Control of the buoyancy of Microcystis aeruginosa via colony formation induced by regulating extracellular polysaccharides and cationic ions. SN Applied Sciences, 1(12), 1573.

    Article  CAS  Google Scholar 

  • Wei, K., Amano, Y., & Machida, M. (2020). Impacts of different extracellular polysaccharides on colony formation and buoyancy of Microcystis aeruginosa. In Annales de Limnologie-International Journal of Limnology (Vol. 56, p. 28). EDP Sciences.

  • Whitton, B. A., & Potts, M. (2012). Introduction to the cyanobacteria. In Ecology of Cyanobacteria II (pp. 1-13). Springer.

  • Wu, X., & Kong, F. (2009). Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. International Review of Hydrobiology, 94(3), 258–266.

    Article  Google Scholar 

  • Xiao, M., Li, M., & Reynolds, C. S. (2018). Colony formation in the cyanobacterium Microcystis. Biological Reviews.

  • Xu, H., Yu, G., & Jiang, H. (2013). Investigation on extracellular polymeric substances from mucilaginous cyanobacterial blooms in eutrophic freshwater lakes. Chemosphere, 93(1), 75–81.

    Article  CAS  Google Scholar 

  • Yang, Z., & Kong, F. (2013). Abiotic factors in colony formation: effects of nutrition and light on extracellular polysaccharide production and cell aggregates of Microcystis aeruginosa. Chinese Journal of Oceanology and Limnology, 31(4), 796–802.

    Article  CAS  Google Scholar 

  • Yang, J., Tang, H., Zhang, X., Zhu, X., Huang, Y., & Yang, Z. (2018). High temperature and pH favor Microcystis aeruginosa to outcompete Scenedesmus obliquus. Environmental Science and Pollution Research, 25(5), 4794–4802.

    Article  CAS  Google Scholar 

  • You, J., Mallery, K., Hong, J., & Hondzo, M. (2017). Temperature effects on growth and buoyancy of Microcystis aeruginosa. Journal of Plankton Research, 40(1), 16–28.

    Article  Google Scholar 

  • Zhao, L., Lu, L., Li, M., Xu, Z., & Zhu, W. (2011). Effects of Ca and Mg levels on colony formation and EPS content of cultured M. aeruginosa. Procedia Environmental Sciences, 10, 1452–1458.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr. Fumio Imazeki, Safety and Health Organization of Chiba University, for his valuable and helpful suggestions.

Funding

JSPS KAKENHI Grant Number JP18K04404 supported the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, K., Amano, Y. & Machida, M. The Effect of pH and Light on the Colony Formation and Buoyancy of Microcystis aeruginosa UTEX-2061. Water Air Soil Pollut 232, 113 (2021). https://doi.org/10.1007/s11270-021-05066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05066-7

Keywords

Navigation