Skip to main content

Advertisement

Log in

Single-Stage and Two-Stage Anaerobic Digestion of Food Waste: Effect of the Organic Loading Rate on the Methane Production and Volatile Fatty Acids

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The high organic content of food waste (FW), which represents the largest proportion of municipal solid waste (MSW) (in Latinamerican countries 50–75%), makes its treatment increasingly common trough technologies such as anaerobic digestion (AD), to obtain value-added by-products, such as renewable energy in the form of methane, digestates and other by-products of biotechnological applications such as long-chain fatty acids. In this study, the influence of semi-continuous reactors in single-stage (R1) and two-stage (R2: acidogenic and R3: methanogenic reactors) configurations on the AD-FW was evaluated (including parameters related to process monitoring, organic matter conversion and process reactions) with the following organic loading rate (OLR: kgVS m-3 d-1) values: i. R1: 0.7, 1.5, 3.0 and 6.0; ii. R2: 3.0, 4.0, 9.0 and 15.0; and R3: 1.0, 2.0, 4.0 and 7.0. The two-stage configuration showed a better performance in terms of: i. the OLRs: 35% higher than that in the single-stage configuration, with chemical oxygen demand (CODtotal) and volatile solid (VS) removal efficiencies > 80%; ii. the best performance in terms of methane production, with statistically significant differences (p<0.05) in the quantity and quality of biogas and iii. obtaining other by-products with high added value, such as behenic and caproic acid, which are useful in biotechnological applications. Additionally, it was found that total reducing sugars (TRS) are an important parameter in the monitoring and conversion of matter organic, mainly in two-stage configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahamed, A., Chen, C. L., Rajagopal, R., Wu, D., Mao, Y., Ho, I. J. R., Lim, J. W., & Wang, J. Y. (2015). Multi-phased anaerobic baffled reactor treating food waste. Bioresource Technology, 182, 239–244.

    Article  CAS  Google Scholar 

  • Aldin, S., Nakhla, G., & Ray, M. B. (2011). Modeling the influence of particulate protein size on hydrolysis in anaerobic digestion. Industrial and Engineering Chemistry Research, 50(18), 10843–10,849.

    Article  CAS  Google Scholar 

  • Angulo-Padilla, J., Lozano-De La Ossa, L., González-Delgado, A., Sánchez-Tuirán, E., & Ojeda-Delgado, K. (2018). Monitoring anaerobic digester parameters of biogas production from corn (Zea mays) leaf and stalk residual biomass. Contemporary Engineering Sciences, 11(26), 1291–1299.

    Article  CAS  Google Scholar 

  • APHA (2005). Standard Methods for the Examination of Water and Wastewater. Washington DC: American Public Health Association, American Water Works Association, Water Environment Federation. 21st ed.p282.

  • Arzate, J. A., Kirstein, M., Ertem, F. C., Kielhorn, E., Ramirez Malule, H., Neubauer, P., Cruz-Bournazou, M. N., & Junne, S. (2017). Anaerobic digestion model (AM2) for the description of biogas processes at dynamic feedstock loading rates. Chemie Ingenieur Technik, 89(5), 686–695.

    Article  CAS  Google Scholar 

  • Aslanzadeh, S., Rajendran, K., & Taherzadeh, M. J. (2014). A comparative study between single- and two-stage anaerobic digestion processes: Effects of organic loading rate and hydraulic retention time. International Biodeterioration and Biodegradation, 95, 181–188.

    Article  CAS  Google Scholar 

  • Baldi, F., Pecorini, I., & Iannelli, R. (2019). Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production. Renewable Energy, 143, 1755–1765.

    Article  CAS  Google Scholar 

  • Cappai, G., De Gioannis, G., Muntoni, A., Spiga, D., Boni, M. R., Polettini, A., Pomi, R. & Rossi, A. (2018). Biohydrogen production from food waste: Influence of the inoculum-to-substrate ratio. Sustainability, 10 (12), 1–15.

  • Capson-Tojo, G., Ruiz, D., Rouez, M., Crest, M., Steyer, J. P., Bernet, N., Delgenès, J. P., & Escudié, R. (2017). Accumulation of propionic acid during consecutive batch anaerobic digestion of commercial food waste. Bioresource Technology, 245, 724–733.

    Article  CAS  Google Scholar 

  • Casallas-Ojeda, M. R., Marmolejo-Rebellón, L. F., & Torres-Lozada, P. (2020). Evaluation of simultaneous incidence of head space and temperature on biochemical methane potential in food waste. Cogent Engineering, 7(1), 1729514.

    Article  Google Scholar 

  • Dahiya, S., Lakshminarayanan, S. S., & Venkata, M. S. (2019). Steering acidogenesis towards selective propionic acid production using co-factors and evaluating environmental sustainability. Chemical Engineering Journal, 379, 122–135.

    Google Scholar 

  • De Gioannis, G., Muntoni, A., Polettini, A., Pomi, R., & Spiga, D. (2017). Energy recovery from one- and two-stage anaerobic digestion of food waste. Waste Management, 68, 595–602.

    Article  Google Scholar 

  • Fernández-Domínguez, D., Astals, S., Peces, M., Frison, N., Bolzonella, D., Mata-Alvarez, J., & Dosta, J. (2020). Volatile fatty acids production from biowaste at mechanical-biological treatment plants: Focusing on fermentation temperature. Bioresource Technology, 314, 123729.

    Article  Google Scholar 

  • Gomes, S. D., Fuess, L. T., Mañunga, T., & Feitosa de Lima Gomes, P. C. & Zaiat, M. (2016). Bacteriocins of lactic acid bacteria as a hindering factor for biohydrogen production from cassava flour wastewater in a continuous multiple tube reactor. International Journal of Hydrogen Energy, 41(19), 8120–8131.

    Article  CAS  Google Scholar 

  • Gómez-Camacho, C. E., Ruggeri, B., Mangialardi, L., Persico, M., & Luongo Malavé, A. C. (2019). Continuous two-step anaerobic digestion (TSAD) of organic market waste: rationalising process parameters. International Journal of Energy and Environmental Engineering, 10(4), 413–427.

    Article  Google Scholar 

  • Gourdon, R., & Vermande, P. (1987). Effects of propionic acid concentration on anaerobic digestion of pig manure. Biomass, 13(1), 1–12.

    Article  CAS  Google Scholar 

  • Goux, X., Calusinska, M., Fossépré, M., Benizri, E., & Delfosse, P. (2016). Start-up phase of an anaerobic full-scale farm reactor – Appearance of mesophilic anaerobic conditions and establishment of the methanogenic microbial community. Bioresource Technology, 212, 217–226.

    Article  CAS  Google Scholar 

  • Guo, X., Kang, K., Shang, G., Yu, X., Qiu, L., & Sun, G. (2018). Influence of mesophilic and thermophilic conditions on the anaerobic digestion of food waste: focus on the microbial activity and removal of long chain fatty acids. Waste Management and Research, 36(11), 1106–1112.

    Article  CAS  Google Scholar 

  • Hidalgo, D., & Martín-Marroquín, J. M. (2014). Effects of inoculum source and co-digestion strategies on anaerobic digestion of residues generated in the treatment of waste vegetable oils. Journal of Environmental Management, 142, 17–22.

    Article  CAS  Google Scholar 

  • Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., De Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J. C., De Laclos, H. F., Ghasimi, D. S. M., Hack, G., Hartel, M., Heerenklage, J., Horvath, I. S., Jenicek, P., Koch, K., Krautwald, J., Lizasoain, J., Liu, J., Mosberger, L., Nistor, M., Oechsner, H., Oliveira, J. V., Paterson, M., Pauss, A., Pommier, S., Porqueddu, I., Raposo, F., Ribeiro, T., Pfund, F. R., Strömberg, S., Torrijos, M., Van Eekert, M., Van Lier, J., Wedwitschka, H., & Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522.

    Article  CAS  Google Scholar 

  • Jo, Y., Kim, J., Hwang, K., & Lee, C. (2018). A comparative study of single- and two-phase anaerobic digestion of food waste under uncontrolled pH conditions. Waste Management, 78, 509–520.

    Article  CAS  Google Scholar 

  • Le Hyaric, R., Chardin, C., Benbelkacem, H., Bollon, J., Bayard, R., Escudié, R., & Buffière, P. (2011). Influence of substrate concentration and moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate spiked with propionate. Bioresource Technology, 102(2), 822–827.

    Article  Google Scholar 

  • Li, L., He, Q., Wei, Y., He, Q., & Peng, X. (2014). Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste. Bioresource Technology, 171, 491–494.

    Article  CAS  Google Scholar 

  • Liu, N., & Jiang, J. (2020). Valorisation of food waste using salt to alleviate inhibition by animal fats and vegetable oils during anaerobic digestion. Biomass and Bioenergy, 143, 105826.

    Article  Google Scholar 

  • Margallo, M., Ziegler-Rodriguez, K., Vázquez-Rowe, I., Aldaco, R., Irabien, Á., & Kahhat, R. (2019). Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective: A review for policy support. Science of the Total Environment, 689, 1255–1275.

    Article  CAS  Google Scholar 

  • Micolucci, F., Gottardo, M., Pavan, P., Cavinato, C., & Bolzonella, D. (2018). Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste. Journal of Cleaner Production, 171, 1376–1385.

    Article  CAS  Google Scholar 

  • Montecchio, D., Astals, S., Di Castro, V., Gallipoli, A., Gianico, A., Pagliaccia, P., Piemonte, V., Rossetti, S., Tonanzi, B., & Braguglia, C. M. (2019). Anaerobic co-digestion of food waste and waste activated sludge: ADM1 modelling and microbial analysis to gain insights into the two substrates’ synergistic effects. Waste Management, 97, 27–37.

    Article  CAS  Google Scholar 

  • Montgomery, D. C. (2004). Diseño y Análisis de Experimentos. México D.F. 2nd ed. John Wiley & Sons. p 682

  • Morais, D. R., Rotta, E. M., Sargi, S. C., Bonafe, E. G., Suzuki, R. M., Souza, N. E., Matsushita, M., & Visentainer, J. V. (2017). Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in brazil. Journal of the Brazilian Chemical Society, 28, 308–318.

    CAS  Google Scholar 

  • Nakasima-López, M., Taboada-González, P., Aguilar-Virgen, Q., & Velázquez-Limón, N. (2017). Inoculum adaptation during start-up of anaerobic digestion of organic solid waste. Información Tecnológica, 28(1), 199–208.

    Article  Google Scholar 

  • Nzeteu, C. O., Trego, A. C., Abram, F., & O'Flaherty, V. (2018). Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system. Biotechnology for Biofuels, 11, 108.

    Article  Google Scholar 

  • Parra-Orobio, B. A., Torres-Lozada, P., & Marmolejo-Rebellón, L. F. (2017). Anaerobic digestion of municipal biowaste for the production of renewable energy: effect of particle size. Brazilian Journal of Chemical Engineering, 34(2), 481–491.

    Article  CAS  Google Scholar 

  • Parra-Orobio, B. A., Angulo-Mosquera, L. S., Loaiza-Gualtero, J. S., Torres-López, W. A., & Torres-Lozada, P. (2018a). Inoculum mixture optimization as strategy for to improve the anaerobic digestion of food waste for the methane production. Journal of Environmental Chemical Engineering, 6(1), 1529–1535.

    Article  CAS  Google Scholar 

  • Parra-Orobio, B. A., Donoso-Bravo, A., Ruiz-Sánchez, J. C., Valencia-Molina, K. J., & Torres-Lozada, P. (2018b). Effect of inoculum on the anaerobic digestion of food waste accounting for the concentration of trace elements. Waste Management, 71, 342–349.

    Article  CAS  Google Scholar 

  • Parra-Orobio, B. A., Donoso-Bravo, A., & Torres-Lozada, P. (2020a). Energy balance and carbon dioxide emissions comparison through modified anaerobic digestion model No 1 for single-stage and two-stage anaerobic digestion of food waste. Biomass and Bioenergy, 142, 105814.

    Article  Google Scholar 

  • Parra-Orobio, B. A., Torres-López, W. A., & Torres-Lozada, P. (2020b). Response surface methodology as an optimization tool for anaerobic digestion of food waste. Water, Air, & Soil Pollution, 231(8), 385.

    Article  CAS  Google Scholar 

  • Peces, M., Pozo, G., Koch, K., Dosta, J., & Astals, S. (2020). Exploring the potential of co-fermenting sewage sludge and lipids in a resource recovery scenario. Bioresource Technology, 300, 122561.

    Article  CAS  Google Scholar 

  • Quintero, M., Castro, L., Ortiz, C., Guzmán, C., & Escalante, H. (2012). Enhancement of starting up anaerobic digestion of lignocellulosic substrate: fique’s bagasse as an example. Bioresource Technology, 108, 8–13.

    Article  CAS  Google Scholar 

  • Ratanatamskul, C., Wattanayommanaporn, O., & Yamamoto, K. (2015). An on-site prototype two-stage anaerobic digester for co-digestion of food waste and sewage sludge for biogas production from high-rise building. International Biodeterioration & Biodegradation, 102, 143–148.

    Article  CAS  Google Scholar 

  • Rojas, G. A. F., & Flórez, M. C. (2019). Fruit waste valorization for combustion and pyrolysis. Revista Politécnica, 15(28), 42–53.

    Google Scholar 

  • Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., Liu, Y., Ma, J., Yu, L., & Li, X. (2013). Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Bioresource Technology, 144, 80–85.

    Article  CAS  Google Scholar 

  • Song, H., Zhang, Y., Kusch-Brandt, S., & Banks, C. J. (2020). Comparison of variable and constant loading for mesophilic food waste digestion in a long-term experiment. Energies, 13(5), 1279.

    Article  CAS  Google Scholar 

  • Soto-Paz, J., Oviedo-Ocaña, E. R., Manyoma-Velásquez, P. C., Torres-Lozada, P., & Gea, T. (2019). Evaluation of mixing ratio and frequency of turning in the co-composting of biowaste with sugarcane filter cake and star grass. Waste Management, 96, 86–95.

    Article  CAS  Google Scholar 

  • Torres-Lozada, P., Díaz-Granados, J. S., & Parra-Orobio, B. A. (2015). Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production. Water Science and Technology, 72(6), 1016–1021.

    Article  CAS  Google Scholar 

  • Uludag-Demirer, S., Liao, W., & Demirer, G. N. (2019). Volatile Fatty Acid Production from Anaerobic Digestion of Organic Residues. In V. Balan (Ed.), Microbial Lipid Production. Methods in Molecular Biology (pp. 357–367). New York: Springer New York.

    Chapter  Google Scholar 

  • Verstraete, W., Morgan-Sagastume, F., Aiyuk, S., Waweru, M., Rabaey, K., & Lissens, G. (2005). Anaerobic digestion as a core technology in sustainable management of organic matter. Water Science and Technology, 52, 59–66.

    Article  CAS  Google Scholar 

  • Voelklein, M. A., Jacob, A., & O’ Shea, R. & Murphy, J. D. (2016). Assessment of increasing loading rate on two-stage digestion of food waste. Bioresource Technology, 202, 172–180.

    Article  CAS  Google Scholar 

  • Xiao, B., Qin, Y., Wu, J., Chen, H., Yu, P., Liu, J., & Li, Y. Y. (2018). Comparison of single-stage and two-stage thermophilic anaerobic digestion of food waste: performance, energy balance and reaction process. Energy Conversion and Management, 156, 215–223.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Banks, C. J. (2013). Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste. Waste Management, 33n(2), 297–307.

    Article  Google Scholar 

  • Zhang, L., Lee, C. H., & Jahng, D. (2011). Restriction of linoleic acid inhibition of methanization of piggery wastewater and enhancement of its mineralization by adding calcium ions. Journal of Chemical Technology & Biotechnology, 86(2), 282–289.

    Article  CAS  Google Scholar 

  • Zhu, Z., Liu, Z., Zhang, Y., Li, B., Lu, H., Duan, N., Si, B., Shen, R., & Lu, J. (2016). Recovery of reducing sugars and volatile fatty acids from cornstalk at different hydrothermal treatment severity. Bioresource Technology, 199, 220–227.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank COLCIENCIAS for supporting to Brayan A. Parra Orobio as a scholar of the National Doctorates Convocation Program (617 - 2013 –Second Cut) and the Universidad del Valle for funding the project “Evaluation of the anaerobic digestion of food waste under conditions of temperature lower than 20 °C for the production of renewable energy-CI 21118”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brayan Alexis Parra-Orobio.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 466 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parra-Orobio, B.A., Cruz-Bournazou, M.N. & Torres-Lozada, P. Single-Stage and Two-Stage Anaerobic Digestion of Food Waste: Effect of the Organic Loading Rate on the Methane Production and Volatile Fatty Acids. Water Air Soil Pollut 232, 105 (2021). https://doi.org/10.1007/s11270-021-05064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05064-9

Keywords

Navigation