Skip to main content
Log in

Recovering Soils Affected by Iron Mining Tailing Using Herbaceous Species with Mycorrhizal Inoculation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The objective of this research was to evaluate a soil recovery strategy in soils that were affected by iron mining tailing using herbaceous species inoculated with Acaulospora morrowiae (arbuscular mycorrhizal fungus (AMF)). Tailings were collected on the banks of the Gualaxo do Norte river, one of the places impacted by the Fundão Dam rupture, where tailing layers that were more than one meter were deposited. The experiment was carried out in a greenhouse, using 6 kg pots of non-sterile reject, in a randomized block design in a 4 × 2 factorial scheme, with four cropping systems (Urochloa ruziziensis single crop–RS; and intercropping cultivation: U. ruziziensis with Crotalaria spectabilis–R + C; U. ruziziensis with Guizotia abyssinica–R + G and U. ruziziensis with C. spectabilis and G. abyssinica–R + C + G), with two AMF inoculation conditions (with 200 A. morrowiae spores per pot, and no inoculation), with three replications and 100 days duration. The R + C and R + C + G systems presented the highest shoot dry matter (SDM) yields. Regarding root dry matter production (RDM), a variation of 9.2 g of pot−1 roots was observed between the R + C and R + G systems. Mycorrhizal colonization (MC) was higher in the cultivation system with the three herbaceous species, being the R + C + G system 52% higher than RS system. Spore density did not vary among treatments. Microbial carbon biomass was higher in the RS and R + G treatments when not inoculated. Basal respiration was also higher when not inoculated. Overall, the R + C + G system was more efficient than other systems in the accumulation of elements. The cultivation system with three herbaceous plants proved to be efficient in establishing itself initially in the iron mining tailings, being a viable alternative for the rehabilitation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahirwal, J., & Maiti, S. K. (2018). Development of Technosol properties and recovery of carbon stock after 16 years of revegetation on coal mine degraded lands, India. Catena, 166, 114–123. https://doi.org/10.1016/j.catena.2018.03.026.

    Article  CAS  Google Scholar 

  • Alef, K. (1995). Estimation of soil respiration. In P. Nannipieri (Ed.), Alef. K. (pp. 214–219). Methods in Applied Soil Microbiology and Biochemistry: Academic Press, London.

    Google Scholar 

  • Anderson, T. H., & Domsch, K. H. (1993). The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry, 25, 393–395. https://doi.org/10.1016/0038-0717(93)90140-7.

    Article  Google Scholar 

  • Andrade, G. F., Paniz, F. P., Martins Jr., A. C., Rocha, B. A., Lobato, A. K. S., Rodrigues, J. L., Cardoso-Gustavson, P., Masuda, H. P., & Batista, B. L. (2018). Agricultural use of Samarco's spilled mud assessed by rice cultivation: a promising residue use? Chemosphere, 193, 892–902. https://doi.org/10.1016/j.chemosphere.2017.11.099.

    Article  CAS  Google Scholar 

  • Baker, A. J. M. (1987). Metal tolerance. New Phytologist, 106, 93–111. https://doi.org/10.1111/j.1469-8137.1987.tb04685.x.

    Article  CAS  Google Scholar 

  • Bandopadhyay, S., Rana, V., & Maiti, S. K. (2018). Chronological variation of metals in reclaimed coal mine soil and tissues of Eucalyptus hybrid tree after 25 years of reclamation, Jharia coal field (India). Bulletin of Environmental Contamination and Toxicology, 101, 604–610. https://doi.org/10.1007/s00128-018-2466-6.

  • Banerjee, R., Goswami, P., Pathak, K., & Mukherjee, A. (2016). Vetiver grass: an environment clean-up tool for toxic mineral elements contaminated iron ore mine-soil. Ecological Engineering, 90, 25–34. https://doi.org/10.1016/j.ecoleng.2016.01.027.

    Article  Google Scholar 

  • Barbosa, M. V., Pedroso, D. F., Curi, N., & Carneiro, M. A. C. (2019). Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates? Ciência e Agrotecnologia., 43, e003519. https://doi.org/10.1590/1413-7054201943003519.

  • Batista, É. R., Carneiro, J. J., Pinto, F. A., Santos, J. V., & Carneiro, M. A. C. (2020). Environmental drivers of shifts on microbial traits in sites disturbed by a large-scale tailing dam collapse. Science of the Total Environment, 139453. https://doi.org/10.1016/j.scitotenv.2020.139453.

  • Carneiro, M. A. C., Siqueira, J. O., & Moreira, F. M. S. (2002). Comportamento de espécies herbáceas em misturas de solo com diferentes graus de contaminação com metais pesados. Pesquisa Agropecuária Brasileira, 37, 1629–1638.

    Article  Google Scholar 

  • Carneiro, M. A. C., Siqueira, J. O., Moreira, F. M. S., & Soares, A. L. L. (2008). Carbono orgânico, nitrogênio total, biomassa e atividade microbiana do solo em duas cronossequências de reabilitação após a mineração de bauxita. Revista Brasileira de Ciência do Solo, 32, 621–632. https://doi.org/10.1590/S0100-06832008000200017.

    Article  CAS  Google Scholar 

  • Carneiro, M. A. C., Ferreira, D. A., Souza, E. D., Paulino, H. B., Saggin Jr., O. J., & Siqueira, J. O. (2015). Arbuscular mycorrhizal fungi in soil aggregates from fields of “murundus” converted to agriculture. Pesquisa Agropecuária Brasileira, 50, 313–321. https://doi.org/10.1590/S0100-204X2015000400007.

    Article  Google Scholar 

  • Carrenho, R., Alves, L. J., & Santos, I. S. (2018). Arbuscular Mycorrhizal Fungi, Interactions With Heavy Metals and Rehabilitation of Abandoned Mine. Elsevier Inc: Lands.

    Book  Google Scholar 

  • Couto, F. R., Ferreira, A. M., Pontes, P. P., & Marques, A. R. (2021). Physical, chemical, and microbiological characterization of the soils contaminated by iron ore tailing mud after Fundão Dam disaster in Brazil. Applied Soil Ecology, 158, 103811. https://doi.org/10.1016/j.apsoil.2020.103811.

    Article  Google Scholar 

  • Davila, R. B., Fontes, M. P. F., Pacheco, A. A., & Ferreira, M. S. (2020). Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. Science of the Total Environment, 136151. https://doi.org/10.1016/j.scitotenv.2019.136151.

  • Dickie, I. A., Martínez-García, L. B., Koele, N., Grelet, G. A., Tylianakis, J. M., Peltzer, D. A., & Richardson, S. J. (2013). Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant and Soil, 367, 11–39. https://doi.org/10.1007/s11104-013-1609-0.

    Article  CAS  Google Scholar 

  • Doubková, P., & Sudová, R. (2016). Limited impact of arbuscular mycorrhizal fungi on clones of Agrostis capillaris with different heavy metal tolerance. Applied Soil Ecology, 99, 78–88. https://doi.org/10.1016/j.apsoil.2015.11.004.

  • Echevarria, G., Morel, J. L. (2015). Technosols of mining areas. In: Nascimento, C. W. A., Souza Júnior, V. S., Freire, M. B. G. S, &, Souza, E. R. (ed) Tópicos em Ciência do Solo, Volume IX, (pp 1–20) Sociedade Brasileira de Ciência do Solo, Viçosa.

  • Esteves, G. F., Souza, K. R. D., Bressanin, L. A., Andrade, P. C. C., Veroneze Júnior, V., Reis, P. E., Silva, A. B., Mantovani, J. R., Magalhães, P. C., Pasqual, M., & Souza, T. C. (2020). Vermicompost improves maize, millet and sorghum growth in iron mine tailings. Journal of Environmental Management, 264, 110468. https://doi.org/10.1016/j.jenvman.2020.110468.

    Article  Google Scholar 

  • Faucon, M.-P., Houben, D., & Lambers, H. (2017). Plant functional traits: soil and ecosystem services. Trends in Plant Science, 22, 385–394. https://doi.org/10.1016/j.tplants.2017.01.005.

    Article  CAS  Google Scholar 

  • Gastauer, M., Silva, J. R., Caldeira Junior, C. F., Ramos, S. J., Souza Filho, P. W. M., Furtini Neto, A. E., & Siqueira, J. O. (2018). Mine land rehabilitation: modern ecological approaches for more sustainable mining. Journal of Cleaner Production, 172, 1409–1422. https://doi.org/10.1016/j.jclepro.2017.10.223.

    Article  Google Scholar 

  • Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235–244. https://doi.org/10.1016/S0007-1536(63)80079-0.

  • Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x.

  • Hamels, F., Malevé, J., Sonnet, P., Kleja, D. B., & Smolders, E. (2014). Phytotoxicity of trace metals in spiked and field-contaminated soils: linking soil-extractable metals with toxicity. Environmental Toxicology and Chemistry, 33, 2479–2487. https://doi.org/10.1002/etc.2693.

    Article  CAS  Google Scholar 

  • Jenkins, W. R. (1964). A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Report, 48, 692.

    Google Scholar 

  • Jordão, T. C., Prado, I. G. O., Silva, M. C. S., Diogo, N. V., Prates Júnior, P., Veloso, T. G. R., Cardoso, E. B., Neves, J. C. L., Fernandes, R. B. A., & Kasuya, M. C. M. (2021). Shifts in Arbuscular Mycorrhizal fungal properties due to vegetative remediation of mine spoil contamination from a dam rupture in Mariana, Brazil. Applied Soil Ecology, 162, 103885. https://doi.org/10.1016/j.apsoil.2021.103885.

  • Kemmelmeier, K. (2018). Comunidades de fungos micorrízicos arbusculares (Glomeromycota) em ecossistemas impactados por rejeito de mineração de ferro em Mariana-MG. 61p. Dissertação (Mestrado em Ciência do Solo) – Universidade Federal de Lavras.

  • Khan, A. G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 355–364. https://doi.org/10.1016/j.jtemb.2005.02.006.

    Article  CAS  Google Scholar 

  • Klauberg-Filho, O., Siqueira, J. O., & Moreira, F. M. S. (2002). Fungos micorrízicos arbusculares em solos de área poluída com metais pesados. Revista Brasileira de Ciência do Solo, 26, 125–134.

    Article  CAS  Google Scholar 

  • Kumar, A., Maiti, S. K., Tripti, P., Majeti, N. V., & Singh, R. S. (2017). Grasses and legumes facilitate phytoremediation of metalliferous soils in the vicinity of an abandoned chromite-asbestos mine. Journal of Soils and Sediments, 17, 1358–1368. https://doi.org/10.1007/s11368-015-1323-z.

    Article  CAS  Google Scholar 

  • Kumari, S., & Maiti, S. K. (2019). Reclamation of coalmine spoils with topsoil and grass-legume mixture: A case study from India. Environmental Earth Sciences, 78, 429. https://doi.org/10.1007/s12665-019-8446-2.

    Article  CAS  Google Scholar 

  • Li, H., Ding, L., Ren, M., Li, C., & Wang, H. (2017). Sponge city construction in china: a survey of the challenges and opportunities. Water (Switzerland), 9, 1–17. https://doi.org/10.3390/w9090594.

    Article  Google Scholar 

  • Lin, L., Chen, F., Wang, J., Liao, M., Lv, X., Wang, Z., Li, H., Deng, Q., Xia, H., Liang, D., et al. (2018). Effects of living hyperaccumulator plants and their straws on the growth and cadmium accumulation of Cyphomandra betacea seedlings. Ecotoxicology and Environmental Safety, 155, 109–116. https://doi.org/10.1016/j.ecoenv.2018.02.072.

  • Maiti, S. K. (Ed.). (2013). Ecorestoration of the coalmine degraded lands (361p). Springer Science and Business: Media.

    Google Scholar 

  • Maiti, S. K., & Maiti, D. (2015). Ecological restoration of waste dumps by topsoil blanketing, coir-mating and seeding with grass-legume mixture. Ecological Engineering, 77, 74–84. https://doi.org/10.1016/j.ecoleng.2015.01.003.

    Article  Google Scholar 

  • Maiti, S. K., Kumar, A., Ahirwal, J., & Das, R. (2016). Comparative study on bioaccumulation and translocation of metals in Bermuda grass (Cynodon dactylon) naturally growing on fly ash lagoons and topsoil. Applied Ecology and Environmental Research, 14, 1–12. https://doi.org/10.15666/aeer/1401_001012.

  • Matias, S. R., Pagano, M. C., Muzzi, F. C., Oliveira, C. A., Carneiro, A. A., Horta, S. N., & Scotti, M. R. (2009). Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. European Journal of Soil Biology, 45, 259–266. https://doi.org/10.1016/j.ejsobi.2009.02.003.

    Article  CAS  Google Scholar 

  • Matos, L. P., Andrade, H. M., Marinato, C. S., Prado, I. G. O., Coelho, D. G., Montoya, S. G., Kasuya, M. C. M., & Oliveira, J. A. (2020). Limitations to use of Cassia grandis L. in the revegetation of the areas impacted with mining tailings from Fundão Dam. Water, Air, & Soil Pollution, 231, 127. https://doi.org/10.1007/s11270-020-04479-0.

    Article  CAS  Google Scholar 

  • Miranda, E. M., Silva, E. M. R., & SaginJúnior, O. J. (2010). Comunidades de fungos micorrízicos arbusculares associados ao amendoim forrageiro em pastagens consorciadas no Estado do Acre, Brasil. ActaAmazonica, 40, 13–22.

    Google Scholar 

  • Miransari, M. (2011). Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances, 29, 645–653. https://doi.org/10.1016/j.biotechadv.2011.04.006.

  • Moraes, J. M. A. S., Zanchi, C. S., Pires, G. C., Moretti, C. F., Barbosa, M. V., Silva, A. O., Pacheco, L. P., Carneiro, M. A. C., Oliveira, R. L., Kemmelmeier, K., et al. (2019). Arbuscular mycorrhizal fungi in integrated crop livestock systems with intercropping in the pasture phase in the Cerrado. Rhizosphere, 11, 100165. https://doi.org/10.1016/j.rhisph.2019.100165.

    Article  Google Scholar 

  • Mukhopadhyay, S., & Maiti, S. K. (2011). Trace metal accumulation and natural mycorrhizal colonisation in an afforested coal mine overburden dump: a case study from India. International Journal of Mining, Reclamation and Environment, 25, 187–207. https://doi.org/10.1080/17480930.2010.548663.

  • Pedroso, D. F., Barbosa, M. V., Santos, J. V., Pinto, F. A., Siqueira, J. O., & Carneiro, M. A. C. (2018). Arbuscular Mycorrhizal Fungi Favor the Initial Growth of Acacia mangium, Sorghum bicolor, and Urochloa brizantha in Soil Contaminated with Zn, Cu, Pb, and Cd. Bulletin of Environmental Contamination and Toxicology, 101, 386–391. https://doi.org/10.1007/s00128-018-2405-6.

  • Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158–161. https://doi.org/10.1016/S0007-1536(70)80110-3.

  • Prado, I. G. O., Silva, M. C. S., Prado, D. G. O., Kemmelmeier, K., Pedrosa, B. G., Silva, C. C., & Kasuya, M. C. M. (2019). Revegetation process increases the diversity of total and arbuscular mycorrhizal fungi in areas affected by the Fundão dam failure in Mariana, Brazil. Applied Soil Ecology, 141, 84–95. https://doi.org/10.1016/j.apsoil.2019.05.008.

  • Queiroz, H. M., Nóbrega, G. N., Ferreira, T. O., Almeida, L. S., Romero, T. B., Santaella, S. T., Bernardino, A. F., & Otero, X. L. (2018). The Samarco mine tailing disaster: A possible time-bomb for heavy metals contamination? Science of the Total Environment, 637–638, 498–506. https://doi.org/10.1016/j.scitotenv.2018.04.370.

    Article  CAS  Google Scholar 

  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. URL https://www.R-project.org/.

  • Remigio, A. C., Chaney, R. L., Baker, A. J. M., Edraki, M., Erskine, P. D., Echevarria, G., & van der Ent, A. (2020). Phytoextraction of high value elements and contaminants from mining and mineral wastes: opportunities and limitations. Plant and Soil, 449, 11–37. https://doi.org/10.1007/s11104-020-04487-3.

    Article  CAS  Google Scholar 

  • Rydlová, J., & Vosátka, M. (2003). Effect of Glomus intraradices isolated from PB-contaminated soil on PB uptake by Agrostiscapillaris is changed by its cultivation in a metal-free substrate. Folia Geobotanica, 38, 155–165. https://doi.org/10.1007/BF02803148.

    Article  Google Scholar 

  • Salton, J. C., & Tomazi, M. (2014). Sistema Radicular de Plantas e Qualidade do Solo. Embrapa Agropecuária Oeste-Comunicado Técnico (INFOTECA-E), 1, 1–6.

    Google Scholar 

  • Santamarina, J. C., Torres-Cruz, L. A., & Bachus, R. C. (2019). Why coal ash and tailings dam disasters occur. Science, 364, 526–528. https://doi.org/10.1126/science.aax1927.

    Article  CAS  Google Scholar 

  • Santos, O. S. H., Avellar, F. C., Alves, M., Trindade, R. C., Menezes, M. B., Ferreira, M. C., França, G. S., Cordeiro, J., Sobreira, F. G., Yoshida, I. M., Moura, P. M., Baptista, M. B., & Scotti, M. R. (2019). Understanding the environmental impact of a Mine Dam Rupture in Brazil: Prospects for remediation. Journal of Environmental Quality, 48, 439–449. https://doi.org/10.2134/jeq2018.04.0168.

    Article  CAS  Google Scholar 

  • Schneider, J., Stürmer, S. L., Guilherme, L. R. G., Moreira, F. M. S., & Soares, C. R. F. S. (2013). Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. Journal of Hazardous Materials, 262(1), 1105–1115. https://doi.org/10.1016/j.jhazmat.2012.09.063.

    Article  CAS  Google Scholar 

  • Schneider, J., Bundschuh, J., Rangel, W. M., & Guilherme, L. R. G. (2017). Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil. Environmental Pollution, 224(1), 125–135. https://doi.org/10.1016/j.envpol.2017.01.071.

  • Scotti, M. R., Gomes, A. R., Lacerda, T. L., Ávila, S. S., Silva, S. L. L., Antão, A., Santos, A. G. P., Medeiros, M. B., Alvarenga, S., Santos, C. H., & Rigobelo, E. C. (2020). Remediation of a riparian site in the Brazilian Atlantic forest reached by contaminated tailings from the collapsed Fundão dam with native woody species. Integrated Environmental Assessment and Management. https://doi.org/10.1002/ieam.4272.

  • Segura, F. R., Nunes, E. A., Paniz, F. P., Paulelli, A. C. C., Rodrigues, G. B., Braga, G. U. L., Pedreira Filho, W. R., Barbosa, F., Cerchiaro, G., Silva, F. F. F. F., & Batista, B. L. (2016). Potential risks of the residue from Samarco’s mine dam burst (Bento Rodrigues, Brazil). Environmental Pollution, 218, 813–825. https://doi.org/10.1016/j.envpol.2016.08.005.

    Article  CAS  Google Scholar 

  • Silva, J. A. A., Santos, M. A., & Karam, D. (2010). Competição interespecífica entre capim braquiária e girassol – um ensaio aditiv. XXVII Congresso Brasileiro da Ciência das Plantas Daninhas, 8, 219–229.

    Google Scholar 

  • Silva, A. O., Costa, A. M., Teixeira, A. F. S., Guimarães, A. S., Santos, J. V., & Moreira, F. M. S. (2018). Soil microbiological attributes indicate recovery of an iron mining area and of the biological quality of adjacent phytophysiognomies. Ecological Indicators, 93, 142–151. https://doi.org/10.1016/j.ecolind.2018.04.073.

    Article  CAS  Google Scholar 

  • Sinha, S., Masto, R. E., Ram, L. C., Selvi, V. A., Srivastava, N. K., Tripathi, R. C., & George, J. (2009). Rhizosphere soil microbial index of tree species in a coal mining ecosystem. Soil Biology and Biochemistry, 41, 1824–1832. https://doi.org/10.1016/j.soilbio.2008.11.022.

    Article  CAS  Google Scholar 

  • Stumpf, L., Pauletto, E. A., Fernandes, F. F., Suzuki, L. E. A. S., Silva, T. S., Pinto, L. F. S., & Lima, C. L. R. (2014). Perennial grasses for recovery of the aggregation capacity of a reconstructed soil in a coal mining area in southern Brazil. Revista Brasileira de Ciência do Solo, 38, 327–335. https://doi.org/10.1590/S0100-06832014000100033.

    Article  Google Scholar 

  • Stürmer, S. L., & Bellei, M. M. (1994). Composition and seasonal variation of spore populations of  arbuscular mycorrhizal fungi in dune soils on the island of Santa Catarina, Brazil. Canadian Journal of Botany, 72, 359–363. https://doi.org/10.1139/b94-048.

  • Stürmer, S. L., Klauberg Filho, O., Queiroz, M. H., & Mendonça, M. M. (2006). Occurrence of arbuscular mycorrhizal fungi in soils of early stages of a secondary succession of Atlantic Forest in South Brazil. Acta Botanica Brasilica, 20, 513–521. https://doi.org/10.1590/s0102-33062006000300002.

  • Teixeira, A. F. S., Kemmelmeier, K., Marascalchi, M. N., Stürmer, S. L., Carneiro, M. A. C., & Moreira, F. M. S. (2017). Arbuscular mycorrhizal fungal communities in an iron mining area and its surroundings: Inoculum potential, density, and diversity of spores related to soil properties. Ciência e Agrotecnologia, 41, 511–525. https://doi.org/10.1590/1413-70542017415014617.

    Article  CAS  Google Scholar 

  • Thijs, S., Sillen, W., Weyens, N., & Vangronsveld, J. (2017). Phytoremediation: State-of-the-art and a key role for the plant microbiome in future trends and research prospects. International Journal of Phytoremediation, 19, 23–38. https://doi.org/10.1080/15226514.2016.1216076.

    Article  CAS  Google Scholar 

  • USEPA – United States Environmental Protection Agency (1998). USEPA – Method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils; test methods for evaluating solid Waste, physical/chemical methods (p. 20). Washington: USEPA.

  • van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., & Sanders, I. R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396(6706), 69–72. https://doi.org/10.1038/23932.

    Article  CAS  Google Scholar 

  • Vance, E. D., Brooks, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707.

    Article  CAS  Google Scholar 

  • Vergilio, C. S., Lacerda, D., Oliveira, B. C. Z., Sartori, E., Campos, G. M., Pereira, A. L. S., Aguiar, D. B., Souza, T. S., Almeida, M. G., Thompson, F., & Rezende, C. E. (2020). Metal concentrations and biological effects from one of the largest mining disasters in the world (Brumadinho, Minas Gerais, Brazil). Scientific Reports, 10, 5936. https://doi.org/10.1038/s41598-020-62700-w.

    Article  CAS  Google Scholar 

  • Vieira, C. K., Marascalchi, M. N., Rodrigues, A. V., Armas, R. D.,  &  Stürmer, S. L. (2018). Morphological and molecular diversity of arbuscular mycorrhizal fungi in revegetated iron-mining site has the same magnitude of adjacent pristine ecosystems. Journal of Environmental Sciences, 67, 330–343. https://doi.org/10.1016/j.jes.2017.08.019.

  • Vilela, L. A. F., SagginJúnior, O. J., Paulino, H. B., Siqueira, J. O., Santos, V. L. S., & Carneiro, M. A. C. (2014). Arbuscular mycorrhizal fungus in microbial activity and aggregation of a Cerrado Oxisol in crop sequence. Ciência e Agrotecnologia, 38, 34–42. https://doi.org/10.1590/s1413-70542014000100004.

  • Wu, S., Liu, Y., Southam, G., Robertson, L., Chiu, T. H., Cross, A. T., Dixon, K. W., Stevens, J. C., Zhong, H., Chan, T.-S., et al. (2019). Geochemical and mineralogical constraints in iron ore tailings limit soil formation for direct phytostabilization. Science of the Total Environment, 651, 192–202. https://doi.org/10.1016/j.scitotenv.2018.09.171.

    Article  CAS  Google Scholar 

  • Zago, V. C. P., Dores, N. C., & Watts, B. A. (2019). Strategy for phytomanagement in an area affected by iron ore dam rupture: A study case in Minas Gerais State, Brazil. Environmental Pollution, 249, 1029–1037. https://doi.org/10.1016/j.envpol.2019.03.060.

    Article  CAS  Google Scholar 

  • Zu, Y., Qin, L., Zhan, F., Wu, J., Li, Y., Chen, J., Wang, J., & Hu, W. (2017). Effects of Intercropping of Sonchus asper and Vicia faba on Plant Cadmium Accumulation and Root Responses. Pedosphere. https://doi.org/10.1016/s1002-0160(17)60484-3.

Download references

Acknowledgements

We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnologia (CNPq), and the Fundação de Amparo a Pesquisa de Minas Gerais (FAPEMIG-APQ-01661-16) for the financial support and scholarships granted to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Aurélio Carbone Carneiro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 18 kb)

ESM 2

Fig. S1. Elements content in the aerial part of herbaceous cultivated in tailings deposited on the banks of the Gualáxo do Norte river two years after the Fundão Dam rupture. Herbaceous Crop Systems: Ruz: Urochloa ruziziensis (Ruz) single; R+C: U. ruziziensis intercropped with Crotalaria spectabilis (Crot); R+G: U. ruziziensis consortium with Guizotia abyssinica (Gui); and R+C+G: U. ruziziensis consortium with C. spectabilis and G. abyssinica. Means followed by the same letter within the same element do not differ from each other by the Tukey test at 5% probability (PNG 419 kb)

High Resolution Image (TIF 1844 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanchi, C.S., Batista, É.R., Silva, A.O. et al. Recovering Soils Affected by Iron Mining Tailing Using Herbaceous Species with Mycorrhizal Inoculation. Water Air Soil Pollut 232, 110 (2021). https://doi.org/10.1007/s11270-021-05061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05061-y

Keywords

Navigation