Skip to main content
Log in

Equilibrium Isotherms, Kinetics, and Thermodynamics of the Adsorption of 2,4-Dichlorophenoxyacetic Acid to Chitosan-Based Hydrogels

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this work was to study the equilibrium isotherms, kinetics, and thermodynamics of the adsorption of 2,4-dichlorophenoxyacetic acid to a chitosan-based hydrogel and chitosan/magnetite-based composite hydrogel containing 1.0% (w/w) magnetite. The hydrogel synthesis and adsorption processes were confirmed by Fourier transform-infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. Adsorption was affected by contact time, solution pH, initial 2,4-D concentration, and solution temperature. The maximum 2,4-D adsorption capacities of the chitosan-based hydrogel and chitosan/magnetite-based composite hydrogel were 75.29 and 45.33 mg of pollutant per g of dried hydrogel, respectively, determined by the Sips isotherm model. The calculation of Gibbs free energy, enthalpy, and entropy revealed the occurrence of spontaneous, endothermic, disordered processes. The adsorption mechanism takes place by monolayer formation and multisite intra/intermolecular interactions, according to the nonlinear Sips isotherm model. In conclusion, the adsorption of 2,4-D to the hydrogels takes place by diffusion processes, intra/intermolecular interactions, and macromolecular relaxation of the polymer network. Desorption processes confirmed the adsorption mechanism. The hydrogels synthesized in this work are efficient solid matrices for the removal of 2,4-dichlorophenoxyacetic acid and chemical oxygen demand from polluted water and wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adesola Babarinde, N. A., Oyebamiji Babalola, J., Omoiya, F. A., Odufuwa, N. A., & Omotade, O. V. (2013). Kinetic and thermodynamic studies of the biosorption of Ni(II), Cr(III) and Co(II) from solutions onto Kolanut (Cola acuminata) leaf. IJCBS.

  • Almodóvar, J., Place, L. W., Gogolski, J., Erickson, K., & Kipper, M. J. (2011). Layer-by-layer assembly of polysaccharide-based polyelectrolyte multilayers: A spectroscopic study of hydrophilicity, composition, and ion pairing. Biomacromolecules. https://doi.org/10.1021/bm200519y.

  • Asouhidou, D. D., Triantafyllidis, K. S., Lazaridis, N. K., Matis, K. A., Kim, S. S., & Pinnavaia, T. J. (2009). Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Microporous and Mesoporous Materials. https://doi.org/10.1016/j.micromeso.2008.06.034.

  • Ayar, N., Bilgin, B., & Atun, G. (2008). Kinetics and equilibrium studies of the herbicide 2,4-dichlorophenoxyacetic acid adsorption on bituminous shale. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2007.06.032.

  • Bhattarai, N., Gunn, J., & Zhang, M. (2010). Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2009.07.019.

  • Cargnin, M. A., de Souza, A. G., de Lima, G. F., Gasparin, B. C., dos Santos Rosa, D., & Paulino, A. T. (2020). Pinus residue/pectin-based composite hydrogels for the immobilization of β-D-galactosidase. International Journal of Biological Macromolecules https://doi.org/10.1016/j.ijbiomac.2020.01.280

  • Djelad, A., Mokhtar, A., Khelifa, A., Bengueddach, A., & Sassi, M. (2019). Alginate-whey an effective and green adsorbent for crystal violet removal: Kinetic, thermodynamic and mechanism studies. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2019.08.068.

  • Erdoǧan, S., Önal, Y., Akmil-Başar, C., Bilmez-Erdemoǧlu, S., Sarici-Özdemir, Ç., Köseoǧlu, E., & IçDuygu, G. (2005). Optimization of nickel adsorption from aqueous solution by using activated carbon prepared from waste apricot by chemical activation. Applied Surface Science. https://doi.org/10.1016/j.apsusc.2005.02.089.

  • Facin, B. R., Moret, B., Baretta, D., Belfiore, L. A., & Paulino, A. T. (2015). Immobilization and controlled release of β-galactosidase from chitosan-grafted hydrogels. Food Chemistry. https://doi.org/10.1016/j.foodchem.2015.01.088.

  • Falamarzpour, P., Behzad, T., & Zamani, A. (2017). Preparation of nanocellulose reinforced chitosan films, cross-linked by adipic acid. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms18020396.

  • Fazlzadeh, M., Khosravi, R., & Zarei, A. (2017). Green synthesis of zinc oxide nanoparticles using Peganum harmala seed extract, and loaded on Peganum harmala seed powdered activated carbon as new adsorbent for removal of Cr(VI) from aqueous solution. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2017.02.052.

  • Fontes, J. R. A., Shiratsuchi, L. S., Neves, J. L., Júlio, L., & Filho, J. S. (2003). Manejo Integrado de Plantas Daninhas: In J.R.A. Fontes (Ed.), Embrapa Cerrados (48 p). Planaltina: Embrapa

  • Heidarinejad, Z., Rahmanian, O., Fazlzadeh, M., & Heidari, M. (2018). Enhancement of methylene blue adsorption onto activated carbon prepared from Date Press Cake by low frequency ultrasound. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2018.05.100.

  • Jiang, J., Zhang, Q., Zhan, X., & Chen, F. (2019). A multifunctional gelatin-based aerogel with superior pollutants adsorption, oil/water separation and photocatalytic properties. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2018.10.144.

  • Kast, W. (1985). Principles of adsorption and adsorption processes. Chemical Engineering and Processing: Process Intensification. https://doi.org/10.1016/0255-2701(85)80013-1.

  • Khan, S. A., Siddiqui, M. F., & Khan, T. A. (2020). Ultrasonic-assisted synthesis of polyacrylamide/bentonite hydrogel nanocomposite for the sequestration of lead and cadmium from aqueous phase: Equilibrium, kinetics and thermodynamic studies. Ultrasonics Sonochemistry. https://doi.org/10.1016/j.ultsonch.2019.104761.

  • Kim, Y. W., Kim, J. E., Jung, Y., & Sun, J. Y. (2019). Non-swellable, cytocompatible pHEMA-alginate hydrogels with high stiffness and toughness. Materials Science and Engineering: C. https://doi.org/10.1016/j.msec.2018.10.045.

  • Kittur, F. S., Harish Prashanth, K. V., Udaya Sankar, K., & Tharanathan, R. N. (2002). Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydrate Polymers. https://doi.org/10.1016/S0144-8617(01)00320-4.

  • Kumar, M., Dosanjh, H. S., & Singh, H. (2018). Magnetic zinc ferrite–alginic biopolymer composite: As an alternative adsorbent for the removal of dyes in single and ternary dye system. Journal of Inorganic and Organometallic Polymers and Materials. https://doi.org/10.1007/s10904-018-0839-2.

  • Leechart, P., Nakbanpote, W., & Thiravetyan, P. (2009). Application of “waste” wood-shaving bottom ash for adsorption of azo reactive dye. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2008.02.005.

  • Lewandowska, K. (2009). Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures. Thermochimica Acta. https://doi.org/10.1016/j.tca.2009.04.003.

  • Li, X. Q., & Tang, R. C. (2016). Crosslinking of chitosan fiber by a water-soluble diepoxy crosslinker for enhanced acid resistance and its impact on fiber structures and properties. Reactive and Functional Polymers. https://doi.org/10.1016/j.reactfunctpolym.2016.01.015.

  • Ma, J., Zhuang, Y., & Yu, F. (2015). Equilibrium, kinetic and thermodynamic adsorption studies of organic pollutants from aqueous solution onto CNT/C@Fe/chitosan composites. New Journal of Chemistry. https://doi.org/10.1039/c5nj01876e.

  • Martini, B. K., Daniel, T. G., Corazza, M. Z., & De Carvalho, A. E. (2018). Methyl orange and tartrazine yellow adsorption on activated carbon prepared from boiler residue: Kinetics, isotherms, thermodynamics studies and material characterization. Journal of Environmental Chemical Engineering https://doi.org/10.1016/j.jece.2018.10.013

  • Matias, C. A., Vilela, P. B., Becegato, V. A., & Paulino, A. T. (2019a). Adsorption and removal of methylene blue from aqueous solution using sterile bract of Araucaria angustifolia as novel natural adsorbent. International Journal of Environmental Research. https://doi.org/10.1007/s41742-019-00231-7.

  • Matias, C. A., Vilela, P. B., Becegato, V. A., & Paulino, A. T. (2019b). Adsorption kinetic, isotherm and thermodynamic of 2,4-dichlorophenoxyacetic acid herbicide in novel alternative natural adsorbents. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-019-4324-5.

  • Milosavljević, N. B., Ristić, M. D., Perić-Grujić, A. A., Filipović, J. M., Štrbac, S. B., Rakočević, Z. L., & Krušić, M. T. K. (2011). Removal of Cu2+ ions using hydrogels of chitosan, itaconic and methacrylic acid: FTIR, SEM/EDX, AFM, kinetic and equilibrium study. Colloids and Surfaces A: Physicochemical and Engineering Aspects. https://doi.org/10.1016/j.colsurfa.2011.08.011.

  • Movasaghi, Z., Yan, B., & Niu, C. (2019). Adsorption of ciprofloxacin from water by pretreated oat hulls: Equilibrium, kinetic, and thermodynamic studies. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2018.10.051.

  • Naushad, M., Ahamad, T., Sharma, G., Al-Muhtaseb, A. H., Albadarin, A. B., Alam, M. M., et al. (2016). Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2016.04.084.

  • Neto, C. G. T., Giacometti, J. A., Job, A. E., Ferreira, F. C., Fonseca, J. L. C., & Pereira, M. R. (2005). Thermal analysis of chitosan based networks. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2005.02.022.

  • Norouzi, S., Heidari, M., Alipour, V., Rahmanian, O., Fazlzadeh, M., Mohammadi-moghadam, F., et al. (2018). Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste. Bioresource Technology. https://doi.org/10.1016/j.biortech.2018.02.106.

  • Nunes, A. R., Araújo, K. R. O., & Moura, A. O. (2019). 2,4-Dichlorophenoxyactic acid herbicide removal from water using chitosan. Research on Chemical Intermediates. https://doi.org/10.1007/s11164-018-3604-9.

  • Ostrowska-Czubenko, J., & Gierszewska-Druzyńska, M. (2009). Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2009.01.036.

  • Paulino, A. T., Fajardo, A. R., Junior, A. P., Muniz, E. C., & Tambourgi, E. B. (2011). Two-step synthesis and properties of a magnetic-field-sensitive modified maltodextrin-based hydrogel. Polymer International, 60(9). https://doi.org/10.1002/pi.3084.

  • Paulino, A.T., Guilherme, M. R., de Almeida, E. A. M. S., Pereira, A. G. B., Muniz, E. C., & Tambourgi, E. B. (2009). One-pot synthesis of a chitosan-based hydrogel as a potential device for magnetic biomaterial. Journal of Magnetism and Magnetic Materials https://doi.org/10.1016/j.jmmm.2009.03.078

  • Paulino, A. T., Guilherme, M. R., Mattoso, L. H. C., & Tambourgi, E. B. (2010). Smart hydrogels based on modified gum arabic as a potential device for magnetic biomaterial. Macromolecular Chemistry and Physics. https://doi.org/10.1002/macp.200900657.

  • Paulino, A. T., Pereira, A. G. B., Fajardo, A. R., Erickson, K., Kipper, M. J., & Muniz, E. C. (2012). et al., Natural polymer-based magnetic hydrogels: Potential vectors for remote-controlled drug release. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2012.06.051.

  • Pavlovic, I., Barriga, C., Hermosín, M. C., Cornejo, J., & Ulibarri, M. A. (2005). Adsorption of acidic pesticides 2,4-D, Clopyralid and Picloram on calcined hydrotalcite. Applied Clay Science. https://doi.org/10.1016/j.clay.2005.04.004.

  • Pereira, A. G. B., Martins, A. F., Paulino, A. T., Fajardo, A. R., Guilherme, M. R., Faria, M. G. I., et al. (2017). Recent advances in designing hydrogels from chitin and chitin-derivatives and their impact on environment and agriculture: A review. Revista Virtual de Quimica, 9(1). https://doi.org/10.21577/1984-6835.20170021.

  • Pereira, A. G. B., Rodrigues, F. H. A., Paulino, A. T., Martins, A. F., & Fajardo, A. R. (2020). Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.124703.

  • Pezoti, O., Cazetta, A. L., Bedin, K. C., Souza, L. S., Martins, A. C., Silva, T. L., et al. (2016). NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2015.12.042.

  • Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of Physical Chemistry. https://doi.org/10.1021/j150576a611.

  • Rueda, D. R., Secall, T., & Bayer, R. K. (1999). Differences in the interaction of water with starch and chitosan films as revealed by infrared spectroscopy and differential scanning calorimetry. Carbohydrate Polymers. https://doi.org/10.1016/S0144-8617(99)00033-8.

  • Ruiz de Arcaute, C., Soloneski, S., & Larramendy, M. L. (2016). Toxic and genotoxic effects of the 2,4-dichlorophenoxyacetic acid (2,4-D)-based herbicide on the Neotropical fish Cnesterodon decemmaculatus. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2016.02.027.

  • Standard methods for the examination of water and wastewater. (2012). Choice Reviews Online. https://doi.org/10.5860/choice.49-6910.

  • Sun, X. F., Gan, Z., Jing, Z., Wang, H., Wang, D., & Jin, Y. (2015). Adsorption of methylene blue on hemicellulose-based stimuli-responsive porous hydrogel. Journal of Applied Polymer Science, 132(10), 19–22. https://doi.org/10.1002/app.41606.

    Article  Google Scholar 

  • Tang, J., Huang, J., Zhou, G., & Liu, S. (2020). Versatile fabrication of ordered cellular structures double network composite hydrogel and application for cadmium removal. The Journal of Chemical Thermodynamics. https://doi.org/10.1016/j.jct.2019.105918.

  • Tuzen, M., Sarı, A., & Saleh, T. A. (2018). Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO2 nanocomposite. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2017.10.016.

  • Vieira, R. M., Vilela, P. B., Becegato, V. A., & Paulino, A. T. (2018). Chitosan-based hydrogel and chitosan/acid-activated montmorillonite composite hydrogel for the adsorption and removal of Pb+2 and Ni+2 ions accommodated in aqueous solutions. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2018.04.018.

  • Vilela, P. B., Dalalibera, A., Duminelli, E. C., Becegato, V. A., & Paulino, A. T. (2019a). Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-018-3208-3.

  • Vilela, P. B., Matias, C. A., Dalalibera, A., Becegato, V. A., & Paulino, A. T. (2019b). Polyacrylic acid-based and chitosan-based hydrogels for adsorption of cadmium: Equilibrium isotherm, kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2019.103327.

  • Wang, F. P., Li, G. F., Zhou, Q. Q., Yang, C. X., & Wang, Q. Z. (2016). Removal of metal ions from aqueous solution with β-cyclodextrin-based hydrogels. Materials Express. https://doi.org/10.1166/mex.2016.1329.

  • World Health Organization. (2015). IARC Monographs evaluate DDT, lindane, and 2,4-D. Press Release, n.o, 236. https://doi.org/10.4185/RLCS-2016-1094en.

  • World Health Organization. (2003). Guidelines for safe recreational water. Volume 1. Coastal and Fresh Waters. Geneva.

  • World Health Organization. (2010). The Who Recommended Classification of Pesticides By Hazard and Guidelines To Classification 2009. World Health Organization.

  • Zheng, Y., Huang, D., & Wang, A. (2011). Chitosan-g-poly(acrylic acid) hydrogel with crosslinked polymeric networks for Ni2+ recovery. Analytica Chimica Acta. https://doi.org/10.1016/j.aca.2010.12.026.

  • Zonatto, F., Muniz, E. C., Tambourgi, E. B., & Paulino, A. T. (2017). Adsorption and controlled release of potassium, phosphate and ammonia from modified Arabic gum-based hydrogel. International Journal of Biological Macromolecules, 105, 363–369. https://doi.org/10.1016/j.ijbiomac.2017.07.051.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

TV is grateful to Santa Catarina State University (Brazil) for the master’s fellowship (PROMOP). ATP thanks the Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC [State of Santa Catarina Research and Innovation Foundation]) for financial support (Grant number: 2019/TR672) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq [National Council of Scientific and Technological Development] for the research productivity scholarship (Grant number 312467/2019-2). This study was also funded in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES [Coordination for the Advancement of Higher Education Personnel] – Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Tadeu Paulino.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, T., Becegato, V.A. & Paulino, A.T. Equilibrium Isotherms, Kinetics, and Thermodynamics of the Adsorption of 2,4-Dichlorophenoxyacetic Acid to Chitosan-Based Hydrogels. Water Air Soil Pollut 232, 60 (2021). https://doi.org/10.1007/s11270-021-05021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05021-6

Keywords