Skip to main content

Advertisement

Log in

Algal Community Dynamics and Underlying Driving Factors in Some Crenic Habitats of Kashmir Himalaya

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Given the authoritative and well-documented publication records that crenic habitats support the substantial aquatic biodiversity, understanding of algal dynamics in response to anthropogenic and natural stressors in these crenic systems seems paramount. We sampled and monitored twelve freshwater springs for a period of 2 years from 2014 to 2015 to observe algal dynamics and the factors govern the distribution and dynamics. We used ANOVA, nMDS, PCA, ANOSIM, SIMPER, and BIOENV to reveal the key physicochemical variables influencing the distributional pattern and dynamics of algae. The analysis of variance (ANOVA, Tukey’s post hoc test) revealed significant difference among the springs with dominance of Bacillariophyceae (62%) followed by Chlorophyceae (18%) whereas nMDS ordination of abundance data in two-dimensional space resulted in a significant separation between spring sites (stress value of 0.13). One-way nested ANOSIM produced a significant distinction between periphytic algal communities in springs (global test R = 0.928, p = 0.001). The results of SIMPER revealed the highest average dissimilarity (60.95%) between springs S4 and S5, with the top five contributing families including Cyanophyceae (30.25%), Bacillariophyceae (25.98%), Rhodophyceae (16.74%), Chlorophyceae (13.64%), and Chrysophyceae (13.39%). BIOENV analysis of the periphytic algal data suggested that the assemblage pattern in all crenic habitats were controlled by discharge, conductivity, dissolved oxygen, total alkalinity, and total phosphorus. Since, springs are groundwater-dependent ecosystems acting as ecohydrologic refugia, any small change in groundwater discharge could strongly influence the ambient conditions (including water quality and temperature), which in turn influences the biological assemblage patterns and ecosystem services. Therefore, changes in discharge may provide information on possible future ecological change in the springs in relation to rising aridification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that supports the findings of this study is available in the main manuscript filer and the supplementary material of this manuscript.

References

  • Angeli, N., Cantonati, M., Spitale, D., & Lange–Bertalot, H. (2010). A comparison between diatom assemblages in two groups of carbonate, low–altitude springs with different levels of anthropogenic disturbances. Fottea, 10, 115–128. https://doi.org/10.5507/fot.2010.006.

    Article  Google Scholar 

  • APHA. (2012). Standard methods for examination of water and wastewater (22nd ed.). Washington: American Public Health Association.

    Google Scholar 

  • Bhat, S. U., & Pandit, A. K. (2009). Ecological study of macro invertebrate communities in three limnocrene freshwater springs of Kashmir Himalaya. Journal of Natural Science and Mathematics, 3(2), 89–96 https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.942.365&rep=rep1&type=pdf.

    Google Scholar 

  • Bhat, S. U., & Pandit, A. K. (2010a). Limnochemistry of three freshwater springs of Kashmir Himalaya. Hydro Nepal. Journal of Water, Energy and Environment, 7, 54–59. https://doi.org/10.3126/hn.v7i0.4237.

    Article  Google Scholar 

  • Bhat, S.U. & Pandit, A.K. (2010b). Comparative ecology of some freshwater springs of Kashmir. Ph. D thesis University of Kashmir, Srinagar.

  • Bhat, S. U., & Pandit, A. K. (2018). Hydrochemical characteristics of some typical freshwater springs - a case study of Kashmir Valley Springs. International Journal Water Resources and Arid Environments, 7(1), 90–100.

    Google Scholar 

  • Bhat, S. U., & Pandit, A. K. (2020). Water quality assessment and monitoring of Kashmir Himalayan freshwater springs- A case study. Aquatic Ecosystem Health Management. https://doi.org/10.1080/14634988.2020.1816771.

  • Bhat, F. A., & Yousuf, A. R. (2002). Ecology of periphytic community of seven springs of Kashmir. Journal of Research and Development, 2, 47–59.

    Google Scholar 

  • Bhat, S. U., Pandit, A. K., & Mudathir, R. (2010). Limnological investigation of three freshwater springs of Pulwama District-Kashmir Valley. Recent Research in Science Technology, 2(2), 88–94 https://updatepublishing.com/journal/index.php/rrst/article/view/381.

    CAS  Google Scholar 

  • Bhat, S. U., Mushtaq, S., Qayoom, U., & Sabha, I. (2020). Water quality scenario of Kashmir Himalayan Springs- a case study of Baramulla District, Kashmir Valley. Water Air Soil Pollution. https://doi.org/10.1007/s11270-020-04796-4.

  • Biggs, B. J. F., & Kilroy, C. (2000). Stream Periphyton Monitoring Manual. The New Zealand Ministry for the Environment. Christchurch, New Zealand: NIWA https://niwa.co.nz/sites/niwa.co.nz/files/import/attachments/peri_complete.pdf.

    Google Scholar 

  • Blagojević, S. (1974). The development of periphyton in open devices waterworks on karstic springs. PhD Thesis. Faculty of Science, University of Zagreb.

  • Bothwell. (1988). Growth rate responses of lotic periphytic diatoms to experimental phosphorus enrichment: the influence of temperature and light. Canadian Journal of Fisheries and Aquatic Science, 45(2), 261–270. https://doi.org/10.1139/f88-031.

    Article  Google Scholar 

  • Botosaneanu, L. (1995). Springs as refugia for geographic relicts. Crunoecia, 4, 5–9 https://hdl.handle.net/11245/1.119513.

    Google Scholar 

  • Bureau of Indian Standards (BIS) (2012). Indian Standard: Drinking Water — Specification (Second Revision). BIS.10500:2012. http://cgwb.gov.in/Documents/WQ-standards.pdf. Accessed 23 Sep 2020.

  • Cantonati, M., & Lange-Bertalot, H. (2010). Diatom biodiversity of springs in the Berchtesgaden National Park (northern Alps, Germany), with the ecological and morphological characterization of two species new to science. Diatom Research, 25, 251–280. https://doi.org/10.1080/0269249X.2010.9705849.

    Article  Google Scholar 

  • Cantonati, M., & Spitale, D. (2009). The role of environmental variables in structuring epiphytic and epilithic diatom assemblages in springs and streams of the Dolomiti Bellunesi National Park (south-eastern Alps). Fundamentals of Applied Limnology, 174, 117–133. https://doi.org/10.1127/1863-9135/2009/0174-0117.

    Article  CAS  Google Scholar 

  • Cantonati, M., Corradini, G., Juettner, I., & Cox, E. J. (2001). Diatom assemblages in high mountain streams of the Alps and the Himalaya. Nova Hedwigia, Beiheft, 123, 37–61.

    Google Scholar 

  • Cantonati, M., Gerecke, R., & Bertuzzi, E. (2006). Springs of the Alps-sensitive ecosystems to environmental change: From biodiversity assessments to long-term studies. Hydrobiologia, 562, 59–96. https://doi.org/10.1007/s10750-005-1806-9.

    Article  CAS  Google Scholar 

  • Cantonati, M., Moreschini, R., Bertuzzi, E., & Oss Cazzador, P. (2007). Detailed spring inventory of two areas of special interest for nature conservation within the Adamello-Brenta Natural Park (south-eastern Alps, Trentino, Italy). Monografie del Museo Tridentino di Scienze Naturali, 4, 327–334 https://www.researchgate.net/publication/236132661.

    Google Scholar 

  • Cantonati, M., Van de Vijver, B., & Lange-Bertalot, A. H. (2009). Microfissurata gen. nov. (Bacillariophyta), a new diatom genus from dystrophic and intermittently wet terrestrial habitats 1. Journal of Phycology, 45(3), 732–741. https://doi.org/10.1111/j.1529-8817.2009.00683.x.

    Article  Google Scholar 

  • Cantonati, M., Lange-Bertalot, H., & Angeli, N. (2010). Neidiomorpha gen. nov. (Bacillariophyta): a new freshwater diatom genus separated from Neidium Pfitzer. Botanical Studies, 51, 19 https://ejournal.sinica.edu.tw/bbas/content/2010/2/Bot512-07.pdf.

    Google Scholar 

  • Cantonati, M., Fureder, L., Gerecke, R., Juttner, I., & Cox, E. J. (2012a). Crenic habitats, hotspots for freshwater biodiversity conservation: toward an understanding of their ecology. Freshwater Science, 31, 463–480. https://doi.org/10.1899/11-111.1.

    Article  Google Scholar 

  • Cantonati, M., Angeli, N., Bertuzzi, E., Spitale, D., & Lange-Bertalot, H. (2012b). Diatoms in springs of the Alps: spring types, environmental determinants, and substratum. Freshwater Science, 31, 499–524. https://doi.org/10.1899/11-065.

    Article  Google Scholar 

  • Cantonati, M., Poikāne, S., Pringle, C. M., Stevens, L. E., Turak, E., Heino, J., Richardson, J., Bolpagni, R., Borrini, A., Cid, N., Čtvrtlíková, M., Galassi, D. M., Hájek, M., Hawes, I., Levkov, Z., Naselli-Flores, L., Saber, A. A., Cicco, M. D., Fiasca, B., Hamilton, P., Kubecka, J., Segadelli, S., & Znachor, P. (2020c). Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: Consequences for biodiversity conservation. Water, 12, 1–82. https://doi.org/10.3390/w12010260.

    Article  Google Scholar 

  • Cantonati, M., Fensham, R. J., Stevens, L. E., Gerecke, R., Glazier, D. S., Goldscheider, N., Knight, R. L., Richardson, J. S., Springer, A. E., & Tockner, K. (2020a). Urgent plea for global protection of springs. Conservation Biology, 1–5. https://doi.org/10.1111/cobi.13576.

  • Cantonati, M., Segadelli, S., Spitale, D., Gabrieli, J., Gerecke, R., Angeli, N., De Nardo, M. T., Ogata, K., & Wehrf, J. D. (2020b). Geological and hydrochemical prerequisites of unexpectedly high biodiversity in spring ecosystems at the landscape level. Science of The Total Environment, 740, 140157. https://doi.org/10.1016/j.scitotenv.2020.140157.

    Article  CAS  Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: User manual/tutorial (p. 115). Plymouth: PRIMER-E.

    Google Scholar 

  • Clarke, K. R., & Warwick, R. M. (2001). A further biodiversity index applicable to species lists: variation in taxonomic distinctness. The Marine Ecology Progress Series, 216, 265–278. https://doi.org/10.3354/meps216265.

    Article  Google Scholar 

  • Cox, E. J. (1996). Identification of freshwater diatoms from live material. London: Chapman and Hall. https://doi.org/10.1017/S0025315400041023.

    Book  Google Scholar 

  • Demir, N., & Kirkagac, M. U. (2005). Plankton composition and water quality in a pond of spring origin in Turkey. Limnology, 6, 189–194. https://doi.org/10.1007/s10201-005-0156-7.

    Article  CAS  Google Scholar 

  • Dumnicka, E., Galas, J., & Koperski, P. (2007). Benthic invertebrates in karst springs: does substratum or location define communities? International Review of Hydrobiology, 92, 452–464. https://doi.org/10.1002/iroh.200610991.

    Article  Google Scholar 

  • Gawa, S., Kumar, N. R., Tiwari, V. K., Prakash, S., Yadav, V. K., & Wani, G. B. (2017). Trout culture in Kashmir: an opportunity for profitable enterprise. In V. R. P. Sinha, G. Krishna, P. Keshavanath, & N. R. Kumar (Eds.), Social Entrepreneurship in Aquaculture (pp. 381–389). Delhi: Narendra Publishing House.

    Google Scholar 

  • Gerecke, R., Cantonati, M., Spitale, D., Stur, E., & Wiedenbrug, S. (2011). The challenges of long-term ecological research in springs in the northern and southern Alps: indicator groups, habitat diversity, and medium-term change. In: M. Cantonati, R. Gerecke, I. Jüttner & E.J. Cox (Eds), Springs: neglected key habitats for biodiversity conservation. Journal of Limnology, 70(1), 168–187. https://doi.org/10.4081/jlimnol.2011.s1.168.

    Article  Google Scholar 

  • Glazier, D. S. (2009). Springs. In G. E. Likens (Ed.), Encyclopedia of inland waters (pp. 734–755). Oxford: Academic Press Elsevier.

    Chapter  Google Scholar 

  • Glazier, D. S. (2012). Temperature affects food-chain length and macroinvertebrate species richness in spring ecosystems. Freshwater Science, 31, 575–585. https://doi.org/10.1899/11.058.1.

  • Glazier, D. S. (2014). In S. A. Elias (Ed.), Springs. Reference module in Earth Systems and Environmental Sciences. Waltham: Elsevier.

    Google Scholar 

  • Hahn, H. J. (2000). Studies on classifying undisturbed springs in southwestern Germany by macrobenthic communities. Limnologica, 30(3), 247–259. https://doi.org/10.1016/S0075-9511(00)80055-9.

    Article  Google Scholar 

  • Hameed, A., Bhat, S. U., Sabha, I., & Lone, S. H. (2018). Water quality monitoring of some freshwater springs in Hazratbal Tehsil, Srinagar, Kashmir Himalaya. Journal of Himalayan Ecology and Sustainable Development, 13, 61–74.

    Google Scholar 

  • Hillebrand, H., & Sommer, U. (2000). Diversity of benthic microalgae in response to colonization time and eutrophication. Aquatic Botany, 67, 221–236. https://doi.org/10.1016/S0304-3770(00)00088-7.

    Article  Google Scholar 

  • Ilmonen, J., Mykra, H., Virtanen, R., Paasivirta, L., & Muotka, T. (2012a). Responses of spring macroinvertebrate and bryophyte communities to habitat modification: community composition, species richness, and red listed species. Freshwater Science, 31, 657–667. https://doi.org/10.1899/10-060.1.

    Article  Google Scholar 

  • Ilmonen, J., Virtanen, R., Paasivirta, L., & Muotka, T. (2012b). Responses of spring macroinvertebrate communities to habitat modification: community composition, specie richness and red-listed species. Freshwater Science, 31(2), 657–667. https://doi.org/10.1899/10-060.1.

    Article  Google Scholar 

  • IPCC (2007). Climate change 2007: climate change impacts, adaptation and vulnerability, Contribution of Working Group II contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva. https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf. Accessed 13 November 2020.

  • Jeelani, G. (2008). Aquifer response to regional climate variability in a part of Kashmir Himalaya in India. Hydrogeology Journal, 16(8), 1625–1633.

    Article  CAS  Google Scholar 

  • Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J. J., Kupfersberge, H., Kværner, J., Muotka, T., Mykrä, H., Preda, E., Rossi, P., et al. (2014). Climate change impacts on groundwater and dependent ecosystems. Journal of Hydrology, 518, 250–266. https://doi.org/10.1016/j.jhydrol.2013.06.037.

    Article  Google Scholar 

  • Knight, R.L., & Notestein, S.K. (2008). Springs as ecosystems. In Summary and Synthesis of the Available Literature on the Effects of Nutrients on Spring Organisms and Systems. (pp. 1–52). Brown, M.T., Reiss, K.C., Cohen, M.J., Evans, J.M., Inglett, P.W., Inglett, K.S., Frazer, T.K., Jacoby, C.A., Phlips, E.J., Knight, R.L., et al. (Eds.), University of Florida Water Institute: Gainesville, FL, USA.

  • Krammer, K., & Lange-Bertalot, H. (2000). Bacillariophyceae, part 5. English and French Translation of the Keys. Jena: VEB Gustav Fisher Verlag.

    Google Scholar 

  • Kreamer, D.K., Stevens, L. E., & Ledbetter, J.D. (2015). Groundwater Dependent Ecosystems –Science, Challenges, And Policy Directions. In S.H. Adelana (Ed.) Groundwater (pp.205–230). Nova Science Publishers, Inc.

  • Kubí Ková, L., Simon, O. P., Tichá, K., Maciak, M., Douda, K., & Bí Lý, M. (2012). The influence of mesoscale habitat conditions on the macroinvertebrate composition of springs in a geologically homogeneous area. Freshwater Science, 31, 669–679. https://doi.org/10.1899/11-174.1.

    Article  Google Scholar 

  • Lai, G. G., Ector, L., Wetzel, C. E., Sechi, N., Lugliè, A., & Padedda, B. M. (2018). Periphytic diatoms of the Mediterranean karst spring Sa Vena (Su Gologone system, Sardinia, Italy): relationships with environmental variables and effects of an extreme flash flood. Inland Waters, 8(3), 284–293. https://doi.org/10.1080/20442041.2018.1457851.

  • Lai, G. G., Padedda, B. M., Ector, L., Wetzel, C. E., Lugliè, A., & Cantonati, M. (2019). Mediterranean karst springs: Diatom biodiversity hotspots under the pressure of hydrological fluctuation and nutrient enrichment. Plant Biosystems, 154(5). https://doi.org/10.1080/11263504.2019.1674402.

  • Lone, S.A., & Bhat, S.U. (2020). Study of Hydro chemical and Biological Characteristics of Some Cernic Habitats of Kashmir. Ph. D thesis University of Kashmir, Srinagar.

  • Lone, S. A., Pandit, A. K., & Bhat, S. U. (2013). Species composition and diversity of phytoplankton in some crenic habitats of district Anantnag, Kashmir. Egyptian Academic Journal of Biological Science, 4(2), 19–26. https://doi.org/10.21608/eajbsh.2013.16999.

    Article  Google Scholar 

  • Lone, S. A., Bhat, S. U., Hamid, A., Bhat, F. A., & Kumar, A. (2020). Quality assessment of springs for drinking water in the Himalaya of South Kashmir, India. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-10513-9.

  • Marazi, A., & Romshoo, S.A. (2018). Streamflow response to shrinking glaciers under changing climate in the Lidder Valley, Kashmir Himalayas. Journal of Mountain Science, 15, 1241–1253. https://doi.org/10.1007/s11629-017-4474-0.

  • McLaughlin, B. C., David, D. A., Klos, P. Z., Natali, J., Dawson, T. E., & Thompson, S. E. (2017). Hydrologic refugia, plants, and climate change. Global Change Biology, 23(8), 2941–2961. https://doi.org/10.1111/gcb.13629.

    Article  Google Scholar 

  • Menegalija, T., & Kosi, G. (2008). Distribution of diatoms in springs in the Julian Alps (NW Slovenia). Natura Slovenia, 10, 21–37 http://eprints.gozdis.si/1037/1/NatSlo_10_1_2.pdf.

    Google Scholar 

  • Morelli, T. L., Daly, C., Dobrowski, S. Z., Dulen, D. M., Ebersole, J. L., et al. (2017). Correction: managing climate change Refugia for climate adaptation. PlosOne, 12(1), e0169725. https://doi.org/10.1371/journal.pone.0169725.

    Article  Google Scholar 

  • Moser, G., Lange-Bertalot, H., & Metzeltin, D. (1998). Endemic island: New Caledonia geobotanical phenomenon. Biblioth Diatomology, 38, 1–455.

    Google Scholar 

  • Murhekar, G. H. (2011). Assessment of physico-chemical status of ground water samples in Akot city. Research Journal of Chemical Sciences, 1(4), 117–124 http://isca.me/rjcs/Archives/vol1/I4/ISCA-RJCS-2011-June97%20_14_.pdf.

    Google Scholar 

  • NITI Aayog (2018). Report of Working Group I Inventory and Revival of springs in the Himalayas for Water Security Contributing to Sustainable Development in Indian Himalayan Region. NITI Aayog. https://niti.gov.in/writereaddata/files/document_publication/doc1.pdf Accessed 25 August 2020.

  • Odum, H. T. (1957). Trophic structure and productivity of Silver Springs, Florida. Ecological Monographs, 27, 55–112.

    Article  Google Scholar 

  • Odum, E. P. (1971). Fundamentals of ecology (3rd ed.). Philadelphia: Saunders.

    Google Scholar 

  • Paffett, K., Stevens, L. E., & Springer, A. E. (2018). Ecological assessment and rehabilitation prioritization for improving springs ecosystem stewardship. In J. Dorney et al. (Eds.), Wetland and stream rapid assessments: development, validation, and application (pp. 475–487). Cambridge: Elsevier.

    Chapter  Google Scholar 

  • Poulíčková, A., Duchoslav, M., & Dokulil, M. (2004). Littoral diatom assemblages and bioindicators of lake trophic status. A case study from perialpine lakes in Austria. European Journal of Phycology, 39, 143–152. https://doi.org/10.1080/0967026042000201876.

    Article  CAS  Google Scholar 

  • Rather, M. I., Rashid, I., Shahi, N., Murtaza, K. O., Hassan, K., Yousuf, A. R., Romshoo, S. A., & Shah, I. Y. (2016). Massive land system changes impact water quality of the Jhelum River in Kashmir Himalaya. Environmental Monitoring and Assessment, 188(3), 185. https://doi.org/10.1007/s10661-016-5190-x.

    Article  CAS  Google Scholar 

  • Reichardt, E. (2004). A remarkable association of diatoms in a spring habitat in the Grazer Bergland, Austria. In H Lange-Bertalot (Ed.). Iconographia Diatomologica (pp. 419–479).

  • Romshoo, S. A., Dar, R. A., Rashid, I., Marazi, A., Ali, N., & Zaz, S. N. (2015). Implications of shrinking cryosphere under changing climate on the stream flows in the Lidder catchment in the upper Indus Basin, India. Arctic, Antarctic, and Alpine Research, 47(4), 627–644. https://doi.org/10.1657/AAAR0014-088.

    Article  Google Scholar 

  • Rosemond, A. D. (1993). Interactions among irradiance, nutrients, and herbivores constrain a stream algal community. Oecologia, 94, 585–594. https://doi.org/10.1007/BF00566976.

    Article  CAS  Google Scholar 

  • Scarsbrook, M., Barquin, J. & Gray, D. (2007). New Zealand Coldwater Springs and Their Biodiversity. Department of Conservation. (pp. 1-74),Wellington. Science for Conservation. Science & Technical Publishing Department of Conservation, The Terrace Wellington 6143, New Zealand. https://www.doc.govt.nz/globalassets/documents/science-and-technical/sfc278entire.pdf.

  • Showqi, I., Rashid, I., & Romshoo, S. A. (2014). Land use land cover dynamics as a function of changing demography and hydrology. Geochemical Journal, 79(3), 297–307. https://doi.org/10.1007/s10708-013-9494-x.

    Article  Google Scholar 

  • Smol, J.P. & Stoermer, E.F. (2010). The diatoms: applications for the environmental and earth sciences. Second Edition. (pp. 668). Cambridge University Press, UK.

  • Sobolev, D., Moore, K., & Morris, A. L. (2009). Nutrients and light limitation of phytoplankton biomass in a turbid southeastern reservoir: implications for water quality. Southeastern Naturalist, 8(2), 255–266 https://www.jstor.org/stable/25599317.

    Article  Google Scholar 

  • Štambuk-Giljanović, N. (1998). Waters of Neretva River and its Catchment Area. (pp.683). Institute of Public Health Split.

  • Stevens, E. (2020). The springs biome, with an emphasis on arid regions. Encyclopedia of the World's Biomes, 354–370. https://doi.org/10.1016/B978-0-12-409548-9.12451-0.

  • Vepraskas, M.J. (1994). Redoximorphic features for identifying aquic conditions. Tech. Bulletin 301. North Carolina Ag. Research Service, North Carolina State Univ., Raleigh, North Carolina. https://agris.fao.Org/agris-search/search.do?RecordID=US201300004175. Accessed 11 Aug 2020.

  • Von Fumetti, S., Nagel, P., & Baltes, B. (2007). Where a springhead becomes a spring brook – a regional zonation of springs. Fundamentals of Applied Limnology, 169, 37–48. https://doi.org/10.1127/1863-9135/2007/0169-0037.

    Article  Google Scholar 

  • Werum, M. (2001). The diatom communities in springs. (pp.273). Hessian State Office for Environment and Geology. Wiesbaden, Germany. http://www.gbv.de/dms/bs/toc/34202289X.pdf.

  • Werum, M., & Lange-Bertalot, H. (2004). Diatoms in springs from Central Europe and elsewhere under the influence of hydrologeology and anthropogenic impacts. In H. Lange-Bertalot (Ed.), Iconographia Diatomologica. Annotated Diatom Micrographs (pp. 3–417).

  • WHO (World Health Organization). (2011). Guidelines for Drinking-Water Quality (3rd ed.). Geneva: World Health Organization https://www.who.int/water_sanitation_health/publications/gdwq3rev/en/.

    Google Scholar 

  • Wojtal, A. Z., & Sobczyk, Ł. (2012). The influence of substrates and physicochemical factors on the composition of diatom assemblages in karst springs and their applicability in water–quality assessment. Hydrobiologia, 695, 97–108. https://doi.org/10.1007/s10750-012-1203-0.

    Article  CAS  Google Scholar 

  • Żelazna-Wieczorek, J. (2011). Diatom flora in springs of Lódz Hills (Central Poland). Biodiversity, taxonomy and temporal changes of epipsammic diatom assemblages in springs affected by human impact, (pp.419). Volume 13 of Diatom monographs. Gantner. https://books.google.co.in/books?id=bdxeewAACAAJ.

  • Zelnik, I., Balanč, T., & Toman, M. J. (2018). Diversity and structure of the tychoplankton diatom community in the Limnocrene Spring Zelenci (Slovenia) in Relation to Environmental Factors. Water, 10(4), 361. https://doi.org/10.3390/w10040361.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of the present study would like to thank the Head Department of Environmental Science, University of Kashmir, for providing laboratory facilities.

Materials Availability

The material that supports the findings of this study is available in the main manuscript filer and the supplementary material of this manuscript.

Funding

This work was supported by the University of Kashmir through scholarship in favour of first author.

Author information

Authors and Affiliations

Authors

Contributions

Showkat Ahmad Lone: Conceptualization, writing- original draft, methodology, investigation, visualization, resources, and data curation. Aadil Hamid: writing- original draft, investigation, visualization, resources, and data curation. Sami Ullah Bhat: conceptualization, supervision, writing-review and editing.

Corresponding author

Correspondence to Sami Ullah Bhat.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lone, S.A., Hamid, A. & Bhat, S.U. Algal Community Dynamics and Underlying Driving Factors in Some Crenic Habitats of Kashmir Himalaya. Water Air Soil Pollut 232, 104 (2021). https://doi.org/10.1007/s11270-021-05010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05010-9

Keywords

Navigation