Skip to main content
Log in

Conventional Anaerobic Reactors Applied to Denitrification: a Comparison Between Packed Bed and UASB Reactors Under Low COD Conditions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Anaerobic reactors have been spreading in places with tropical climate and in developing countries. Their association with aerobic reactors provides great removal of carbonaceous matter with lower energy consumption and sludge production, although it does not allow the reduction in the concentration of total nitrogen. An alternative that could provide nitrogen removal without the construction of new reactors would be the nitrified effluent recirculation to the anaerobic reactor, in which denitrification would take place. Therefore, in this study, we sought to perform the nitrified effluent recirculation to the packed bed reactor (PBR) and UASB and concluded the following: (a) due to the presence of filling material, PBR tended to present a better performance in denitrification and removal of organic matter and suspended solids than the UASB reactor; (b) when performing the nitrified effluent recirculation to anaerobic reactors, the COD/NO3-N ratio must not be less than 6; (c) the concentration of N2O in the biogas of both reactors remained below the detection limit, minimizing the production of greenhouse gases; and (d) the limitation of organic matter promoted partial denitrification, creating conditions for the emergence of anammox bacteria in the sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Akunna, J. C., Bizeau, C., & Moletta, R. (1992). Denitrification in anaerobicdigesters: Possibilities and influence of wastewater COD/N-NOX ratio. Environmental Technology, 13(9), 825–836. https://doi.org/10.1080/09593339209385217.

    Article  CAS  Google Scholar 

  • ANA - Agência Nacional de Águas (Brasil). (2017) Atlas esgotos: despoluição de bacias hidrográficas - Agência Nacional de Águas, Secretaria Nacional de Saneamento Ambiental. -- Brasília: ANA.

  • APHA/AWWA/WEF. (2012) Standard methods for the examination of water and wastewater. 22a edição. Nova Iorque: American Public Health Association.

  • Azevedo, L. S., Castro, I. M. P., Leal, C. D., Araújo, J. C., & Chernicharo, C. A. L. (2018). Performance and bacterial diversity of bioreactors used for simultaneous removal of sulfide, solids and organic matter from UASB reactor effluents. Water Science and Technology, 78(6), 1312–1323. https://doi.org/10.2166/wst.2018.403.

    Article  CAS  Google Scholar 

  • Bressani-Ribeiro, T., Almeida, P. G. S., Volcke, E. I. P., & Chernicharo, C. A. L. (2018). Trickling filters following anaerobic sewage treatment: State of the art and perspectives. Environ. Sci.: Water Res. Technol., 4, 1721–1738. https://doi.org/10.1039/C8EW00330K.

    Article  CAS  Google Scholar 

  • Carrera, J., Vicent, T. E., & Lafuente, J. (2004). Effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater. Process Biochemistry, 39(12), 2035–2041. https://doi.org/10.1039/C5RA08364H.

    Article  CAS  Google Scholar 

  • Chen, S., Sun, D., & Chung, J. S. (2009). Simultaneous methanogenesis and denitrification of aniline wastewater by using anaerobic–aerobic biofilm system with recirculation. Journal of Hazardous Materials, 169(1–3), 575–580. https://doi.org/10.1016/j.jhazmat.2009.03.132.

    Article  CAS  Google Scholar 

  • Chernicharo, C. A. L., van Lier Noyola, J. B., & Bressani Ribeiro, A. T. (2015). Anaerobic sewage treatment: State of the art, constraints and challenges. Ver Environ Sci Biotechnol, 14, 649–679. https://doi.org/10.1007/s11157-015-9377-3.

    Article  CAS  Google Scholar 

  • Chong, S., Tushar, K. S., Ahmet, K., & Ha, M. A. (2012). The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment – a state-of-the-art review. Water Research, 46, 3434–3470. https://doi.org/10.1016/j.watres.2012.03.066.

    Article  CAS  Google Scholar 

  • Christensson, M., Lie, E., & Welander, T. (1994). A comparison between ethanol and methanol as carbon sources for denitrification. Water Sci. Technol., 30(6), 83–90.

    Article  CAS  Google Scholar 

  • Cui, B.; Yang, Q.; Liu, X.; Wu, W.; Liu, Z.; Gu, P. (2020). Achieving partial denitrification-anammox in biofilter for advanced wastewater treatment. Environment International 138. https://doi.org/10.1016/j.envint.2020.105612

  • Dinçer, A. R., & Kargi, F. (2000). Kinetics of sequential nitrification and denitrification processes. Enzyme and Microbial Technology, 27(1–2), 37–42. https://doi.org/10.1016/S0141-0229(00)00145-9.

    Article  Google Scholar 

  • Du, R.; Peng, Y.; Ji, J.; Shi, L.; Gao, R.; Li, X. (2019). Partial denitrification providing nitrite: Opportunities of extending application for Anammox. Environment International 131. https://doi.org/10.1016/j.envint.2019.105001

  • Grießmeier, V., Bremges, A., McHardy, A. C., et al. (2017). Investigation of different nitrogen reduction routes and their key microbial players in wood chip-driven denitrification beds. Sci Rep, 7, 17028. https://doi.org/10.1038/s41598-017-17312-2.

    Article  CAS  Google Scholar 

  • Han, X.; Wang, Z., Ma, J., Zhu, C., Li, Y.; Wu, Z. (2015) Membrane bioreactors fed with different COD/N ratio wastewater: Impacts on microbial community, microbial products, and membrane fouling. Environ Sci Pollut Res Int., v 15, p. 11436-45. https://doi.org/10.1007/s11356-015-4376-z

  • Hanaki, K.; Hong, Z.; Matsuo, T. (1992) Production of nitrous-oxide gas during denitrification of wastewater. Water Science and Technology, v. 26, n. 5–6, p. 1027–1036, 1992.

  • Hendriksen, H. V., & Ahring, B. K. (1996). Integrated removal of nitrate and carbon in an upflow anaerobic sludge blanket (UASB) reactor: Operating performance. Water Research, 30(6), 1451–1458.

    Article  CAS  Google Scholar 

  • Hong, Z.; Hanaki, K.; Matsuo, T. (1993) Greenhouse gas - N20 production during denitrification in wastewater treatment. v. 28, n. 7, p. 203–207.

  • Huang, J. S., Hsin, H. C., Chih, M. C., & Chun, M. C. (2007). Effect of recycle-to-influent ratio on activities of nitrifiers and denitrifiers in a combined UASB-activated sludge reactor system. Chemosphere, 68(2), 382–388. https://doi.org/10.1016/j.chemosphere.2007.01.037.

    Article  CAS  Google Scholar 

  • Jimenez, B., Capdeville, B., Roques, H., & Faup, G. M. (1987). Design considerations for a nitrification-denitrification process using two fixed-bed reactors in series. Water Science and Technology, 19(1-2), 139–150. https://doi.org/10.2166/wst.1987.0196.

    Article  CAS  Google Scholar 

  • Karim, K., & Gupta, S. K. (2003). Continuous biotransformation and removal of nitrophenols under denitrifying conditions. Water Research, 37(12), 2953–2959. https://doi.org/10.1016/S0043-1354(03)00073-3.

    Article  CAS  Google Scholar 

  • Khan, S. J., Ilyas, S., Javid, S., Visvanathan, C., & Jegatheesan, V. (2011). Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater. Bioresource Technology, 102(9), 5331–5336. https://doi.org/10.1016/J.BIORTECH.2010.09.100.

    Article  Google Scholar 

  • Khan, A. A., Rubia, Z. G., Indu, M., Vasileios, D., Beni, L., & Absar, A. K. (2014). Performance assessment of different STPs based on UASB followed by aerobic post treatment systems. Journal of Environmental Health Science & Engineering, 12(43). https://doi.org/10.1186/2052-336X-12-43.

  • Kodera, T.; Akizuki, S.; Toda, T. (2017) Formation of simultaneous denitrification and methanogenesis granules in biological wastewater treatment, v.58, p. 252-257. https://doi.org/10.1016/j.procbio.2017.04.038

  • Lin, Y. F., & Chen, K. C. (1995). Denitrification and methanogenesis in a coimmobilized mixed culture system. Water Reserach, 29(1), 35–43. https://doi.org/10.1016/0043-1354(94)00144-V.

    Article  CAS  Google Scholar 

  • Magalhães, T. M., Duarte, N. C., Neves, T. A., Bueno, D. A. C., Delforno, T. P., Oliveira, V. M., & Tonetti, A. L. (2019). The challenge of making wastewater treatment plants composed by anaerobic reactors capable of removing nitrogen. Water Air Soil Pollut, 230, 234. https://doi.org/10.1007/s11270-019-4300-0.

    Article  CAS  Google Scholar 

  • Phanwilai, S., Noophan, P., Li, C. W., et al. (2020). Effect of COD:N ratio on biological nitrogen removal using full-scale step-feed in municipal wastewater treatment plants. Sustain Environ Res, 30, 24. https://doi.org/10.1186/s42834-020-00064-6.

    Article  CAS  Google Scholar 

  • Ruiz, G., Jeison, D., & Chamy, R. (2006). Development of denitrifying and methanogenic activities in USB reactors for the treatment of wastewater: Effect of COD/N ratio. Process Biochemistry, 41(6), 1338–1342. https://doi.org/10.1016/j.procbio.2006.01.007.

    Article  CAS  Google Scholar 

  • Saliba, P. D., & von Sperling, M. (2017). Performance evaluation of large sewage treatment plant in Brazil, consisting of an upflow anaerobic sludge blanket reactor followed by activated sludge. Water Science & Technology, 76(8), 2003–2014. https://doi.org/10.2166/wst.2017.284.

    Article  CAS  Google Scholar 

  • Sánchez-Guillén, J. A. S., Jayawardana, L. K. M. C. B., Lopez Vazquez, C. M., Cruz, L. M., Brdjanovic, D., & Van Lier, J. B. (2015). Autotrophic nitrogen removal over nitrite in a sponge-bed trickling filter. Bioresource Technology, 187, 314–325. https://doi.org/10.1016/j.biortech.2015.03.140.

    Article  CAS  Google Scholar 

  • Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M., Metzger, J. W., Schleifer, K. H., & Wagner, M. (2000). Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Systematic and Applied Microbiology, 23(1), 93–106. https://doi.org/10.1016/S0723-2020(00)80050-8.

    Article  CAS  Google Scholar 

  • Singh, N. K., Kazmi, A. A., & Starkl, M. (2015). A review on full scale decentralized wastewater treatment systems: Techno economical approach. Water Science and Technology, 71(4), 468–478. https://doi.org/10.2166/wst.2014.413.

    Article  CAS  Google Scholar 

  • Stazi, V., & Tomei, M. C. (2018). Enhancing anaerobic treatment of domestic wastewater: State of the art, innovative technologies and future perspectives. Science of the Total Environment, v., 635, 78–91. https://doi.org/10.1016/j.scitotenv.2018.04.071.

    Article  CAS  Google Scholar 

  • USEPA. U.S.A. Environmental protection agency. Inventory of U.S. Greenhouse gas emissions and sinks: 1990–2007. (2009). Washington D.C.

  • van Haandel, A. C., & Lettinga, G. (1994). Anaerobic sewage treatment: A practical guide for regions with a hot climate. Chichester, UK: Wiley.

    Google Scholar 

  • von Sperling, M.; Chernicharo, C. A. L. (2005) Biological wastewater treatment in warm climate regions, Vols 1 and 2, 1st edn. IWA Publishing, London, UK.

  • Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L., & Siegrist, H. (2012). Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research, 46(4), 1027–1037. https://doi.org/10.1016/J.WATRES.2011.11.080.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would also like to acknowledge the service of the Espaço da Escrita – Pró-Reitoria de Pesquisa – UNICAMP for helping translate the original manuscript.

Funding

The authors would like to thank CNPq (National Council for Scientific and Technological Development, process number 311275/2015-0) and FAPESP (São Paulo Research Foundation, process number 2017/07490-4) for financing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Luiz Tonetti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, N.C., Barbosa, A.C., Magalhães, T.M. et al. Conventional Anaerobic Reactors Applied to Denitrification: a Comparison Between Packed Bed and UASB Reactors Under Low COD Conditions. Water Air Soil Pollut 232, 54 (2021). https://doi.org/10.1007/s11270-021-05009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05009-2

Keywords

Profiles

  1. Adriano Luiz Tonetti