Skip to main content
Log in

Efficient Removal of Cr(VI) from Aqueous Solution by Fe-Mn Oxide-Modified Biochar

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Removal of Cr(VI) is of great concern due to its high mobility and toxicity in the natural environment. In this study, Fe-Mn oxide-modified biochar composite (FMBC) was prepared by impregnation to remove Cr(VI) from aqueous systems. The effect of Fe/Mn ratio, adsorbent dosage, solution pH, initial Cr(VI) concentration, and temperature were investigated on the Cr(VI) removal efficiency. Results showed that F1M3BC (with an Fe/Mn ratio of 1:3) had the maximum Cr(VI) adsorption capacity of 118.03 mg g−1 at pH 2.0. The removal efficiency of Cr(VI) by F1M3BC (91.79%) was higher than that by the pristine BC (32.17%). Experimental data fitted well with the Langmuir model and the pseudo-second-order kinetics equation. Thermodynamic studies showed that the adsorption process was endothermic and spontaneous. Multiple techniques including BET, SEM, FTIR, and XPS were used to analyze the possible adsorption mechanisms. It was found that the increased adsorption of Cr(VI) on F1M3BC, mainly occurred due to electrostatic attraction and Cr(VI) reduction, together with Cr(III) complexation. Furthermore, regeneration studies indicated that F1M3BC could be recycled for up to six cycles without loss of activity. Therefore, F1M3BC may be promising for environmental applications removing Cr(VI) from aqueous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adhoum, N., Monser, L., Bellakhal, N., & Belgaied, J. E. (2004). Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation. Journal of Hazardous Materials, 112, 207–213.

    CAS  Google Scholar 

  • Agrafioti, E., Kalderis, D., & Diamadopoulos, E. (2014). Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. Journal of Environmental Management, 146, 444–450.

    CAS  Google Scholar 

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Ming, Z., Bolan, N., Mohan, D., Vithanage, M., Sang, S. L., & Yong, S. O. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.

    CAS  Google Scholar 

  • Atun, G., Hisarli, G., Sheldrick, W. S., & Muhler, M. (2003). Adsorptive removal of methylene blue from colored effluents on fuller’s earth. Journal of Colloid and Interface Science, 261, 32–39.

    CAS  Google Scholar 

  • Bai, R. S., & Abraham, T. E. (2003). Studies on chromium(VI) adsorption–desorption using immobilized fungal biomass. Bioresource Technology, 87, 17–26.

    Google Scholar 

  • Baig, S. A., Jin, Z., Muhammad, N., Sheng, T., & Xu, X. (2014). Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions. Biomass and Bioenergy, 71, 299–310.

    CAS  Google Scholar 

  • Chang, F., Qu, J., Liu, R., Liu, H., Lei, P., Zhang, G., & Wu, R. (2006). Preparation of Fe-Mn bimetal oxide adsorbent and its adsorption characteristics of arsenic. Acta Scientiae Circumstantiae, 26, 1769–1774.

    CAS  Google Scholar 

  • Debnath, A., Majumder, M., Pal, M., Das, N. S., Chattopadhyay, K. K., & Saha, B. (2016). Enhanced adsorption of hexavalent chromium onto magnetic calcium ferrite nanoparticles: Kinetic, isotherm, and neural network modeling. Journal of Dispersion Science and Technology, 37, 1806–1818.

    CAS  Google Scholar 

  • Dong, X., Ma, L. Q., & Li, Y. (2011). Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 190, 909–915.

    CAS  Google Scholar 

  • Dönmez, G., & Aksu, Z. (2002). Removal of chromium(VI) from saline wastewaters by Dunaliella species. Process Biochemistry, 38, 751–762.

    Google Scholar 

  • Drake, L. R., Lin, S., Rayson, G. D., & Jackson, P. J. (1996). Chemical modification and metal binding studies of datura innoxia. Environmental Science and Technology, 30, 110–114.

    CAS  Google Scholar 

  • Elovitz, M. S., & Fish, W. (1994). Redox interactions of Cr(VI) and substituted phenols: Kinetic investigation. Environmental Science and Technology, 28, 2161–2169.

    CAS  Google Scholar 

  • Fan, L., Li, M., Lv, Z., Sun, M., Luo, C., Lu, F., & Qiu, H. (2012). Fabrication of magnetic chitosan nanoparticles grafted with β-cyclodextrin as effective adsorbents toward hydroquinol. Colloids and Surfaces B: Biointerfaces, 95, 42–49.

    Google Scholar 

  • Gao, Y., & Xia, J. (2011). Chromium contamination accident in China: Viewing environment policy of China. Environmental Science and Technology, 45, 8605–8606.

    CAS  Google Scholar 

  • Hafez, A., & El-Mariharawy, S. (2004). Design and performance of the two-stage/two-pass RO membrane system for chromium removal from tannery wastewater. Part 3. Desalination, 165, 141–151.

    CAS  Google Scholar 

  • Hokkanen, S., Bhatnagar, A., Repo, E., Lou, S., & Sillanpää, M. (2016). Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 283, 445–452.

    CAS  Google Scholar 

  • Kapoor, A., & Viraraghavan, T. (1997). Heavy metal biosorption sites in Aspergillus Niger. Bioresource Technology, 61, 221–227.

    CAS  Google Scholar 

  • Kumar, P. A., Ray, M., & Chakraborty, S. (2007). Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. Journal of Hazardous Materials, 143, 24–32.

    CAS  Google Scholar 

  • Kumar, R., Bishnoi, N. R., Garima, & Bishnoi, K. (2008). Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chemical Engineering Journal, 135, 202–208.

    CAS  Google Scholar 

  • Lai, C. H., Lo, S. L., & Chiang, H. L. (2000). Adsorption/desorption properties of copper ions on the surface of iron-coated sand using BET and EDAX analyses. Chemosphere, 41, 1249–1255.

    CAS  Google Scholar 

  • Li, Z. Z., Tang, Q., Katsumi, T., Tang, X. W., Inui, T., & Imaizumi, S. (2010). Leaf char: An alternative adsorbent for Cr(III). Desalination, 264, 70–77.

    CAS  Google Scholar 

  • Li, M., Liu, Q., Guo, L., Zhang, Y., Lou, Z., Wang, Y., & Qian, G. (2013). Cu(II) removal from aqueous solution by Spartina alterniflora derived biochar. Bioresource Technology, 141, 83–88.

    CAS  Google Scholar 

  • Li, L., Chen, X., Wu, D., Wang, A., & Yang, L. (2015). Adsorption of aqueous nitrate-N by immobilized modified biochar. Journal of Agro-Environment Science, 34, 1377–1143.

    CAS  Google Scholar 

  • Li, R., Liu, L., & Yang, F. (2016). Corrigendum to “Removal of aqueous Hg(II) and Cr(VI) using phytic acid doped polyaniline/cellulose acetate composite mem brane”. Journal of Hazardous Materials, 303, 183–184.

    CAS  Google Scholar 

  • Lin, L., Qiu, W., Wang, D., Huang, Q., Song, Z., & Chau, H. W. (2017). Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism. Ecotoxicology and Environmental Safety, 144, 514–521.

    CAS  Google Scholar 

  • Lin, L., Li, Z., Liu, X., Qiu, W., & Song, Z. (2018). Effects of Fe-Mn modified biochar composite treatment on the properties of As-polluted paddy soil. Environmental Pollution, 244, 600–607.

    Google Scholar 

  • Liufu, S. C., Xiao, H. N., & Li, Y. P. (2005). Adsorption of cationic polyelectrolyte at the solid/liquid interface and dispersion of nanosized silica in water. Journal of Colloid and Interface Science, 285, 33–40.

    CAS  Google Scholar 

  • Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., & Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research, 46, 854–862.

    CAS  Google Scholar 

  • Luo, X., Wang, C., Luo, S., Dong, R., Tu, X., & Zeng, G. (2004). Adsorption of As (III) and As (V) from water using magnetite FeO-reduced graphite oxide–MnO nanocomposites. Chemical Engineering Journal, 99, 45–52.

    Google Scholar 

  • Luo, S., Xu, X., Zhou, G., Liu, C., Tang, Y., & Liu, Y. (2014). Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater. Journal of Hazardous Materials, 274, 145–155.

    CAS  Google Scholar 

  • Marwani, H. M., Albishri, H. M., Soliman, E. M., & Jalal, T. A. (2012). Selective adsorption and determination of hexavalent chromium in water samples by chemically modified activated carbon with tris (hydroxymethyl) aminomethane. Journal of Dispersion Science and Technology, 33, 549–555.

    CAS  Google Scholar 

  • Min, C., Paulson, S., Wang, H. K., Thangadurai, V., & Birss, V. I. (2015). Surface and bulk study of strontium-rich chromium ferrite oxide as a robust solid oxide fuel cell cathode. Journal of Materials Chemistry, 3, 22614–22626.

    Google Scholar 

  • Mohan, D., & Jr, C. U. P. (2006). Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 137, 762–811.

    CAS  Google Scholar 

  • Mohan, D., Sarswat, A., Ok, Y. S., & Jr, P. C. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent--a critical review. Bioresource Technology, 160, 191–202.

    CAS  Google Scholar 

  • Pang, Y., Zeng, G. M., Tang, L., Zhang, Y., Liu, Y. Y., Lei, X. X., Wu, M. S., Li, Z., & Liu, C. (2011). Cr(VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Bioresource Technology, 102, 10733–10736.

    CAS  Google Scholar 

  • Park, D., Yun, Y. S., Jo, J. H., & Park, J. M. (2005). Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Research, 39, 533–540.

    CAS  Google Scholar 

  • Pu, Y., Yang, X., Hong, Z., Wang, D., Yu, S., & Jie, H. (2013). Adsorption and desorption of thallium(I) on multiwalled carbon nanotubes. Chemical Engineering Journal, 219, 403–410.

    CAS  Google Scholar 

  • Qin, Y., Wang, D., Liang, M., Tang, S., Li, H., & Zhang, T. (2016). Preparation of mulberry stem activated carbon/Fe-Mn oxide composite sorbent and its effects on the adsorption of Cr(VI). Environmental Chemistry, 35, 783–792.

    CAS  Google Scholar 

  • Quiintana, M., Curutchet, G., & Donati, E. (2001). Factors affecting chromium(VI) reduction by Thiobacillus ferrooxidans. Biochemical Engineering Journal, 9, 11–15.

    CAS  Google Scholar 

  • Ran, X., Wang, J. J., Li, R., Park, J., Meng, Y., Zhou, B., Pensky, S., & Zhang, Z. (2018). Enhanced sorption of hexavalent chromium [Cr(VI)] from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite. Chemosphere, 208, 408–416.

    Google Scholar 

  • Rengaraj, S., Joo, C. K., Kim, Y., & Yi, J. (2003). Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. Journal of Hazardous Materials, 102, 257–275.

    CAS  Google Scholar 

  • Sang, D. K., Park, K. S., & Man, B. G. (2002). Toxicity of hexavalent chromium to Daphnia magna : Influence of reduction reaction by ferrous iron. Journal of Hazardous Materials, 93, 155–164.

    Google Scholar 

  • Shen, Y. S., Wang, S. L., Tzou, Y. M., Yan, Y. Y., & Kuan, W. H. (2012). Removal of hexavalent Cr by coconut coir and derived chars – The effect of surface functionality. Bioresource Technology, 104, 165–172.

    CAS  Google Scholar 

  • Shi, Q. T., Terracciano, A., Zhao, Y., Wei, C. Y., Christodoulatos, C., & Meng, X. G. (2019). Evaluation of metal oxides and activated carbon for lead removal: Kinetics, isotherms, column tests, and the role of co-existing ions. Science of the Total Environment, 648, 176–183.

    CAS  Google Scholar 

  • Singh, T. S., & Pant, K. K. (2006). Experimental and modelling studies on fixed bed adsorption of As(III) ions from aqueous solution. Separation and Purification Technology, 48, 288–296.

    CAS  Google Scholar 

  • Stypula, B., & Stoch, J. (1994). The characterization of passive films on chromium electrodes by XPS. Corrosion Science, 36, 2159–2167.

    CAS  Google Scholar 

  • Taffa, D. H., Hamm, I., Dunkel, C., Sinev, I., Bahnemann, D. W., & Wark, M. (2015). Electrochemical deposition of Fe2O3 in the presence of organic additives: A route to enhanced photoactivity. RSC Advances, 5, 103512–103522.

    CAS  Google Scholar 

  • Tamilarasan, P., & Ramaprabhu, S. (2012). Iron-manganese binary oxide coated functionalized multiwalled carbon nanotubes for arsenic removal. Aip Conference Proceedings, 1447, 321–322.

    CAS  Google Scholar 

  • Tang, L., Yang, G. D., Zeng, G. M., Cai, Y. E., Li, S. S., & Zhou, Y. Y. (2014). Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chemical Engineering Journal, 239, 114–122.

    CAS  Google Scholar 

  • Tang, D. Y., Huang, Y., Xu, R. C., Hu, J. L., & Zhang, C. (2016). Adsorption behavior of low concentration phosphorus from water onto modified reed biochar. Environmental Science, 37, 2195–2201.

    Google Scholar 

  • Wang, J., Liao, S., Zhu, D., Ren, L., Zhou, W., & Ding, J. (2006). Mn2+ adsorption characteristics of different B-loaded oxides. Acta Pedologica Sinica, 43, 749–755.

    CAS  Google Scholar 

  • Wang, X. S., Chen, L. F., Li, F. Y., Chen, K. L., Wan, W. Y., & Tang, Y. J. (2010). Removal of Cr (VI) with wheat-residue derived black carbon: Reaction mechanism and adsorption performance. Journal of Hazardous Materials, 175, 816–822.

    CAS  Google Scholar 

  • Wang, W., Li, M., & Zeng, Q. (2012). Column adsorption of chromium(VI) by strong alkaline anion-exchange fiber. Journal of Applied Polymer Science, 126, 1733–1738.

    CAS  Google Scholar 

  • Wu, Y., Luo, H., Wang, H., Wang, C., Zhang, J., & Zhang, Z. (2013). Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide. Journal of Colloid and Interface Science, 394, 183–191.

    CAS  Google Scholar 

  • Yu, J., Jiang, C., Guan, Q., Ning, P., Gu, J., Chen, Q., Zhang, J., & Miao, R. (2018). Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Chemosphere, 195, 632.

    CAS  Google Scholar 

  • Yun, Y. S., Park, D., Park, J. M., & Volesky, B. (2001). Biosorption of trivalent chromium on the brown seaweed biomass. Environmental Science and Technology, 35, 4353–4358.

    CAS  Google Scholar 

  • Zhang, X. D., Yang, Y., Song, L., Chen, J. F., Yang, Y. Q., & Wang, Y. X. (2019). Enhanced adsorption performance of gaseous toluene on defective UiO-66 metal organic framework: Equilibrium and kinetic studies. Journal of Hazardous Materials, 365, 597–605.

    CAS  Google Scholar 

  • Zhou, L., Liu, Y., Liu, S., Yin, Y., Zeng, G., Tan, X., Hu, X., Hu, X., Jiang, L., & Ding, Y. (2016). Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresource Technology, 218, 351–359.

    CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Guangdong Science and Technology Project (2017A030223007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencan Dai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Dai, W., Deng, K. et al. Efficient Removal of Cr(VI) from Aqueous Solution by Fe-Mn Oxide-Modified Biochar. Water Air Soil Pollut 231, 61 (2020). https://doi.org/10.1007/s11270-020-4432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-4432-2

Keywords

Navigation