Skip to main content

Lethal and Sub-lethal Effects of Nitrofurantoin on Zebrafish Early-Life Stages

Abstract

Antibiotics are among the most extensively used pharmaceuticals worldwide. They are natural or synthetic drugs with the capacity to kill or inhibit the growth of microorganisms. Several antibiotics have been detected in aquatic environments, but little is known about their effects on non-target organisms, especially fish. The aim of this study was to evaluate the effects of the antibiotic nitrofurantoin (NTF) using zebrafish embryos as model organisms. To assess mortality and development effects, the embryos were exposed to 0, 4, 9, 44, 100, 223 and 500 mg/L of NTF. A sub-lethal range of concentrations (0, 0.001, 0.02, 0.32, 5.62 and 100 mg/L) was used for biomarker analyses, namely cholinesterase, lactate dehydrogenase, glutathione S-transferase and catalase. The results indicated low toxicity of NTF to zebrafish, with a 168 h-LC50 value of 129.2 mg/L. The main effect on development was the loss of equilibrium related to the uninflated swim bladder (168 h-EC50 = 96.72 mg/L). Biomarker activity was induced in concentrations as low as 0.02 mg/L (cholinesterase, lactate dehydrogenase, glutathione S-transferase). Exposure to NTF induced no significant effects on zebrafish larvae behaviour. In summary, short-term exposure of zebrafish embryos to NTF induced developmental alterations only at high concentrations. However, biochemical changes occurred at lower levels of exposure, suggesting long-term effects on fish populations.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aebi, H.B.T.-M. in E., 1984. [13] Catalase in vitro, in: Oxygen Radicals in Biological Systems. Academic Press, pp. 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3.

  2. Andrade, T. S., Henriques, J. F., Almeida, A. R., Machado, A. L., Koba, O., Giang, P. T., Soares, A. M. V. M., & Domingues, I. (2015). Carbendazim exposure induces developmental, biochemical and behavioural disturbance in zebrafish embryos. Aquatic Toxicology, 170, 390–399. https://doi.org/10.1016/j.aquatox.2015.11.017.

    CAS  Article  Google Scholar 

  3. Andrade, T. S., Henriques, J. F., Almeida, A. R., Machado, A. L., Koba, O., Giang, P. T., Soares, A. M. V. M., & Domingues, I. (2016). Carbendazim exposure induces developmental, biochemical and behavioural disturbance in zebrafish embryos. Aquatic Toxicology, 170, 390–399. https://doi.org/10.1016/j.aquatox.2015.11.017.

    CAS  Article  Google Scholar 

  4. Andrieu, M., Rico, A., Phu, T. M., Huong, D. T. T., Phuong, N. T., & Van den Brink, P. J. (2015). Ecological risk assessment of the antibiotic enrofloxacin applied to Pangasius catfish farms in the Mekong Delta, Vietnam. Chemosphere, 119, 407–414. https://doi.org/10.1016/j.chemosphere.2014.06.062.

    CAS  Article  Google Scholar 

  5. Ayandiran, T. A., Ayandele, A. A., Dahunsi, S. O., & Ajala, O. O. (2014). Microbial assessment and prevalence of antibiotic resistance in polluted Oluwa River, Nigeria. Egyptian Journal of Aquatic Research, 40, 291–299. https://doi.org/10.1016/j.ejar.2014.09.002.

    Article  Google Scholar 

  6. Baquero, F., Martínez, J.-L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19, 260–265. https://doi.org/10.1016/j.copbio.2008.05.006.

    CAS  Article  Google Scholar 

  7. Bradford, M. (1976). Rapid and sensitive method for quantification of microgram quantities of protein utilizing principle of protein-dye-binding. Analytical Biochemistry, 72, 248–254.

    CAS  Article  Google Scholar 

  8. Carvalho, F. C. T., Sousa, O. V., Carvalho, E. M. R., Hofer, E., & Vieira, R. H. S. F. (2013). Antibiotic resistance of Salmonella spp. Isolated from Shrimp Farming Freshwater Environment in Northeast Region of Brazil. Journal of Pathogens, 2013, 1–5. https://doi.org/10.1155/2013/685193.

    CAS  Article  Google Scholar 

  9. Coelho, S., Oliveira, R., Pereira, S., Musso, C., Domingues, I., Bhujel, R. C., Soares, A. M. V. M., & Nogueira, A. J. a. (2011a). Assessing lethal and sub-lethal effects of trichlorfon on different trophic levels. Aquatic Toxicology, 103, 191–198. https://doi.org/10.1016/j.aquatox.2011.03.003.

    CAS  Article  Google Scholar 

  10. Coelho, S., Oliveira, R., Pereira, S., Musso, C., Domingues, I., Bhujel, R.C., Soares, A.M.V.M., Nogueira, A.J.A. (2011b). Aquatic toxicity of trichlorfon assessing lethal and sub-lethal effects of trichlorfon on different trophic levels aquatic toxicity of trichlorfon.

  11. Deeti, S., O’Farrell, S., & Kennedy, B. N. (2014). Early safety assessment of human oculotoxic drugs using the zebrafish visualmotor response. Journal of Pharmacological and Toxicological Methods, 69, 1–8. https://doi.org/10.1016/j.vascn.2013.09.002.

    CAS  Article  Google Scholar 

  12. Diamantino, T. C., Almeida, E., Soares, A. M. V. M., & Guilhermino, L. (2001). Lactate dehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna straus. Chemosphere, 45, 553–560. https://doi.org/10.1016/S0045-6535(01)00029-7.

    CAS  Article  Google Scholar 

  13. Domingues, I., Oliveira, R., Lourenço, J., Koppe, C., Mendo, S., & Soares, A. M. V. M. (2010). Comparative biochemistry and physiology, part C biomarkers as a tool to assess effects of chromium (VI): comparison of responses in zebra fish early life stages and adults ☆. Comparative Biochemistry and Physiology - Part C, 152, 338–345. https://doi.org/10.1016/j.cbpc.2010.05.010.

    CAS  Article  Google Scholar 

  14. Domingues, I., Oliveira, R., Soares, A. M. V. M., & Amorim, M. J. B. (2016). Effects of ivermectin on Danio rerio: a multiple endpoint approach: Behaviour, weight and subcellular markers. Ecotoxicology, 25, 491–499. https://doi.org/10.1007/s10646-015-1607-5.

    CAS  Article  Google Scholar 

  15. Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.

    CAS  Article  Google Scholar 

  16. Farias, N., Oliveira, D., Oliveira, R., Sousa-moura, D., Carlyle, R., De Oliveira, S., Augusta, M., Rodrigues, C., Alexandre, L., & Koppe, C. (2018). Exposure to low concentration of fl uoxetine affects development, behaviour and acetylcholinesterase activity of zebrafish embryos. Comparative Biochemistry and Physiology - Part C, 215, 1–8. https://doi.org/10.1016/j.cbpc.2018.08.009.

    CAS  Article  Google Scholar 

  17. Frasco, M. F., & Guilhermino, L. (2002). Effects of dimethoate and beta-naphthoflavone on selected biomarkers of Poecilia reticulata. Fish Physiology and Biochemistry, 26, 149–156. https://doi.org/10.1023/A:1025457831923.

    CAS  Article  Google Scholar 

  18. Garcia Martinez, P., Winston, G. W., Metash-Dickey, C., O’Hara, S. C., & Livingstone, D. R. (1995). Nitrofurantoin-stimulated reactive oxygen species production and genotoxicity in digestive gland microsomes and cytosol of the common mussel (Mytilus edulis L.). Toxicology and Applied Pharmacology. https://doi.org/10.1006/taap.1995.1076.

  19. Giger, W., Alder, A. C., Golet, E. M., Kohler, H. E., Mcardell, C. S., Molnar, E., Siegrist, H., & Suter, M. J. (2003). Occurrence and fate of antibiotics as trace contaminants in wastewaters. Sewage Sludges, and Surface Waters, 57, 485–491.

    CAS  Google Scholar 

  20. Habig, W. H., Pabst, M., & Jakoby, W. (1974). Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry.

  21. Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131, 5–17. https://doi.org/10.1016/S0378-4274(02)00041-3.

    CAS  Article  Google Scholar 

  22. Hirsch, R., Ternes, T., Haberer, K., Kratz, K. (1999). Occurrence of antibiotics in the aquatic environment 109–118.

  23. Jemec, A., Drobne, D., Tisler, T., Trebse, P., Ros, M., & Sepcic, K. (2007). The applicability of acetylcholinesterase and glutathione S-transferase in Daphnia magna toxicity test. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. https://doi.org/10.1016/j.cbpc.2006.10.002.

  24. Jemec, A., Drobne, D., Tišler, T., & Sepcic, K. (2010). Biochemical biomarkers in environmental studies-lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species. Environmental Science and Pollution Research.

  25. Jesus, F. T., Oliveira, R., Silva, A., Catarino, A. L., Soares, A. M. V. M., Nogueira, A. J. a., & Domingues, I. (2013). Lethal and sub lethal effects of the biocide chlorhexidine on aquatic organisms. Ecotoxicology, 22, 1348–1358. https://doi.org/10.1007/s10646-013-1121-6.

    CAS  Article  Google Scholar 

  26. Karpman, E., & Kurzrock, E. A. (2004). Adverse reactions of nitrofurantoin, trimethoprim and sulfamethoxazole in children. The Journal of Urology. https://doi.org/10.1097/01.ju.0000130653.74548.d6.

  27. Kimmel, C., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic-development of the zebrafish. Developmental Dynamics. https://doi.org/10.1002/aja.1002030302.

  28. Klüver (2015). Fish embryo toxicity Test: Identi fi cation of compounds with weak toxicity and analysis of behavioral e ff ects to improve prediction of acute toxicity for neurotoxic compounds. https://doi.org/10.1021/acs.est.5b01910.

  29. Knacker, T., Duis, K., Ternes, T., Fenner, K., Escher, B., Schmitt, H., Römbke, J., Garric, J., Hutchinson, T., Boxall, A. (2005). The EU-project ERAPharm. Incentives for the further development of guidance documents? Environmental Science and Pollution Research. https://doi.org/10.1065/espr2005.02.238.

  30. Kosmehl, T., Hallare, A. V., Reifferscheid, G., Manz, W., Braunbeck, T., & Hollert, H. (2006). A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos. Environmental Toxicology and Chemistry, 25, 2097–2106. https://doi.org/10.1897/05-460R.1.

    CAS  Article  Google Scholar 

  31. Kümmerer, K. (2009). Antibiotics in the aquatic environment – a review – Part I. Chemosphere, 75, 417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086.

    CAS  Article  Google Scholar 

  32. Kümmerer, K., & Henninger, A. (2003). Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clinical Microbiology and Infection, 9, 1203–1214. https://doi.org/10.1111/j.1469-0691.2003.00739.x.

    Article  Google Scholar 

  33. Lammer, E., Carr, G. J., Wendler, K., Rawlings, J. M., Belanger, S. E., & Braunbeck, T. (2009). Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 149, 196–209. https://doi.org/10.1016/j.cbpc.2008.11.006.

    CAS  Article  Google Scholar 

  34. Mattappalil, A., & Mergenhagen, K. A. (2014). Neurotoxicity with antimicrobials in the elderly: a review. Clinical Therapeutics, 36, 1489–1511.e4. https://doi.org/10.1016/j.clinthera.2014.09.020.

    CAS  Article  Google Scholar 

  35. Mitchelmore, C. L., Chipman, J. K., Garcia-Martinez, P., Lemaire, P., Peters, L. D., & Livingstone, D. R. (1996). Normal status of hepatic 7-ethoxyresorufin O-deethylase (EROD) activity, antioxidant enzymes and DNA oxidation in turbot (Scophthalmus maximus) and other flatfish species following exposure to nitroaromatic compounds., 42, 329–333. https://doi.org/10.1016/0141-1136(95)00073-9.

  36. Moreno-Bondi, M. C. (2009). Antibiotics in food and environmental samples. Analytical and Bioanalytical Chemistry, 395, 875–876. https://doi.org/10.1007/s00216-009-3004-5.

    CAS  Article  Google Scholar 

  37. Nishimoto, M., Roubal, W. T., Stein, J. E., & Varanasi, U. (1991). Oxidative DNA damage in tissues of English sole (parophrys vetulus) exposed to nitrofurantoin. Chemico-Biological Interactions, 80, 317–326. https://doi.org/10.1016/0009-2797(91)90091-K.

    CAS  Article  Google Scholar 

  38. OECD (2013). Test no. 236: fish embryo acute toxicity (FET) test. OECD Guidel. Test. Chem. Sect. 2, OECD Publ. 1–22. https://doi.org/10.1787/9789264203709-en.

  39. Oliveira, R., Domingues, I., Koppe Grisolia, C., & Soares, A. M. V. M. (2009). Effects of triclosan on zebrafish early-life stages and adults. Environmental Science and Pollution Research International, 16, 679–688. https://doi.org/10.1007/s11356-009-0119-3.

    CAS  Article  Google Scholar 

  40. Oliveira, R., McDonough, S., Ladewig, J. C. L., Soares, A. M. V. M., Nogueira, A. J. a., & Domingues, I. (2013). Effects of oxytetracycline and amoxicillin on development and biomarkers activities of zebrafish (Danio rerio). Environmental Toxicology and Pharmacology, 36, 903–912. https://doi.org/10.1016/j.etap.2013.07.019.

    CAS  Article  Google Scholar 

  41. Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology. https://doi.org/10.1016/S1382-6689(02)00126-6.

  42. Pereira, S. P. P., Oliveira, R., Coelho, S., Musso, C., Soares, A. M. V. M., Domingues, I., & Nogueira, A. J. A. (2014). From sub cellular to community level: toxicity of glutaraldehyde to several aquatic organisms. The Science of the Total Environment, 470–471, 147–158. https://doi.org/10.1016/j.scitotenv.2013.09.054.

    CAS  Article  Google Scholar 

  43. Plhalova, L., Zivna, D., Bartoskova, M., Blahová, J., Sevcikova, M., Skoric, M., Marsalek, P., Stancova, V., & Svobodova, Z. (2014). The effects of subchronic exposure to ciprofloxacin on zebrafish (Danio rerio). Neuro Endocrinology Letters.

  44. Saravanan, M., Karthika, S., Malarvizhi, A., & Ramesh, M. (2011). Ecotoxicological impacts of clofibric acid and diclofenac in common carp (Cyprinus carpio) fingerlings: hematological, biochemical, ionoregulatory and enzymological responses. Journal of Hazardous Materials, 195, 188–194. https://doi.org/10.1016/j.jhazmat.2011.08.029.

    CAS  Article  Google Scholar 

  45. Sauerborn Klobučar, R., Brozovic, A., & Stambuk, A. (2013). Ecotoxicological assessment of nitrofurantoin in fish cell lines, unicellular algae Desmodesmus subspicatus, and bacterial strains of Salmonella typhimurium. Fresenius Environmental Bulletin.

  46. SPSS (2004). Sigma stat for windows (version 3.10).

  47. Sui, Q., Cao, X., Lu, S., Zhao, W., Qiu, Z., & Yu, G. (2015). Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review. Emerging Contaminants, 1, 14–24. https://doi.org/10.1016/j.emcon.2015.07.001.

    Article  Google Scholar 

  48. Teixidó, E., Piqué, E., Gómez-Catalán, J., & Llobet, J. M. (2013). Assessment of developmental delay in the zebrafish embryo teratogenicity assay. Toxicology in Vitro, 27, 469–478. https://doi.org/10.1016/j.tiv.2012.07.010.

    CAS  Article  Google Scholar 

  49. Vassault, A., 1983. Methods of enzymatic analysis. Enzym. 1 Oxidoreductases, Transf. 3:118–126.

  50. Wagenlehner, F. M. E., Wullt, B., & Perletti, G. (2011). Antimicrobials in urogenital infections. International Journal of Antimicrobial Agents, 38, 3–10. https://doi.org/10.1016/j.ijantimicag.2011.09.004.

    CAS  Article  Google Scholar 

  51. Wang, H., Che, B., Duan, A., Mao, J., Dahlgren, R. A., Zhang, M., Zhang, H., Zeng, A., & Wang, X. (2014). Toxicity evaluation of β-diketone antibiotics on the development of embryo-larval zebrafish (Danio rerio). Environmental Toxicology, 29, 1134–1146. https://doi.org/10.1002/tox.21843.

    CAS  Article  Google Scholar 

  52. Wang, X., Zheng, Y., Zhang, Y., Li, J., Zhang, H., & Wang, H. (2016). Effects of β-diketone antibiotic mixtures on behavior of zebrafish (Danio rerio). Chemosphere, 144, 2195–2205. https://doi.org/10.1016/j.chemosphere.2015.10.120.

    CAS  Article  Google Scholar 

  53. Washburn, P. C., & Di Giulio, R. (1988). Nitrofurantoin-stimulated superoxide production by channel catfish (Ictalurus punctatus) hepatic microsomal and soluble fractions. Toxicology and Applied Pharmacology. https://doi.org/10.1016/0041-008X(88)90355-9.

  54. Weidinger, A., Kozlov, V.A., 2015. Biological activities of reactive oxygen and nitrogen Species: Oxidative Stress versus Signal Transduction. Biomol. https://doi.org/10.3390/biom5020472.

  55. Yin, X., Wang, H., Zhang, Y., Dahlgren, A., Zhang, H. R., Shi, M., Gao, M., & Wang, X. (2014). Toxicological assessment of trace β-Diketone antibiotic mixtures on zebrafish (Danio rerio) by proteomic analysis. PLoS One. https://doi.org/10.1371/journal.pone.0102731.

Download references

Acknowledgements

The authors acknowledge the Brazilian Ministry of Education, and the Ministry of Science and Technology of Brazil for the scholarship provided to RO (CNPq BJT-A) through the program Science without Borders and São Paulo Research Foundation–FAPESP (RO: grant no. 2018/03108-0); DSM acknowledges CAPES for the PhD scholarship ‘Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001’. CKG is grateful to CNPq for the ‘Bolsas de Produtividade’; NFO and RCS acknowledge CNPq for the ‘Bolsa de Iniciação Científica’.

Funding

The present study received financial support from the Federal District Research Foundation (FAP-DF; edital da água—05/2016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rhaul Oliveira.

Ethics declarations

The experiments are in accordance with the current laws of the country in which they were performed. The study was approved by the ethics committee, at the University of Brasilia (reference no 100226/2014).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 114 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, R.C.S., Oliveira, R., Rodrigues, M.A.C. et al. Lethal and Sub-lethal Effects of Nitrofurantoin on Zebrafish Early-Life Stages. Water Air Soil Pollut 231, 54 (2020). https://doi.org/10.1007/s11270-020-4414-4

Download citation

Keywords

  • Antibiotics
  • Danio rerio embryos
  • Behaviour
  • Biochemical markers
  • Pharmaceuticals