Sorbent Materials Characterization Based on Mechanical or Thermal Pretreated Montmorillonite Modified by Surfactant Loading for Improved Chromium Retention

Abstract

To improve hexavalent chromium (Cr(VI)) retention of montmorillonite (Mt) at pH 3, Mt sample was subjected to different treatments: thermal ones at 600 °C or 950 °C, 2 h, or mechanical grinding for 300 s. Then, the obtained products were loaded with different octadecyl trimethyl ammonium loading and 50% and 100% of Mt cation exchange capacity (CEC). The samples were characterized by several techniques at each stage. Differential thermogravimetric analysis (DTGA) performed on the products allowed determining the actual surfactant amount related to the internal or external surface by cation exchange and Van der Waals (VdW) mechanisms, respectively, taking into account the CEC of the thermal or mechanical pretreated Mt base sample used. X-ray diffraction (XRD) analyses revealed that the surfactant loading allowed the reversal of the collapsed interlayer after both treatments. The samples subjected to the thermal treatment at 600 °C and the raw Mt samples exhibit higher positive zeta potential values than the mechanical pretreated Mt ones with 100% of the CEC surfactant loaded at pH 3. This was directly related to the external surface covered by the surfactant. The agreement between the results of the surfactant coverage on the external surface and Cr(VI) removal at pH 3 indicates that the electrostatic mechanism is the main driving force for the sorption of Cr(VI). These synthesized sorbents achieve similar Cr(VI) retention using less than half the surfactant amount of already published studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bajda, T., & Kłapyta, Z. (2013). Adsorption of chromate from aqueous solutions by HDTMA-modified clinoptilolite, glauconite and montmorillonite. Applied Clay Science, 86, 169–173. https://doi.org/10.1016/j.clay.2013.10.005.

    CAS  Article  Google Scholar 

  2. Bianchi, A. E., Fernández, M., Pantanetti, M., Viña, R., Torriani, I., Sánchez, R. M. T., et al. (2013). ODTMA+ and HDTMA+ organo-montmorillonites characterization: new insight by WAXS, SAXS and surface charge. Applied Clay Science, 83-84, 280–285. https://doi.org/10.1016/j.clay.2013.08.032.

    CAS  Article  Google Scholar 

  3. Christidis, G. E., Makri, P., & Perdikatsis, V. (2004). Influence of grinding on the structure and colour properties of talc, bentonite and calcite white fillers. [Article]. Clay Minerals, 39(2), 163–175. https://doi.org/10.1180/0009855043920128.

    CAS  Article  Google Scholar 

  4. Clescerl, L. S., Greenberg, A. E., & Eaton, A. D. (1998). APHA standard methods for the examination of water and wastewater. Washington DC: American Public Health Association.

    Google Scholar 

  5. Costa, T. C. D. C., Melo, J. D. D., & Paskocimas, C. A. (2013). Thermal and chemical treatments of montmorillonite clay. [Article]. Ceramics International, 39(5), 5063–5067. https://doi.org/10.1016/j.ceramint.2012.11.105.

    CAS  Article  Google Scholar 

  6. de Paiva, L. B., Morales, A. R., & Valenzuela Díaz, F. R. (2008). Organoclays: properties, preparation and applications. [review]. Applied Clay Science, 42(1–2), 8–24. https://doi.org/10.1016/j.clay.2008.02.006.

    CAS  Article  Google Scholar 

  7. Dellisanti, F., & Valdré, G. (2005). Study of structural properties of ion treated and mechanically deformed commercial bentonite. [Article]. Applied Clay Science, 28(1-4 SPEC. ISS), 233–244. https://doi.org/10.1016/j.clay.2003.12.036.

    CAS  Article  Google Scholar 

  8. Dimos, V., Haralambous, K., & Malamis, S. (2012). A review on the recent studies for chromium species adsorption on raw and modified natural minerals. Critical Reviews in Environmental Science and Technology, 42(19), 1977–2016. https://doi.org/10.4236/ajac.2013.47A002.

    CAS  Article  Google Scholar 

  9. Djukić, A., Jovanović, U., Tuvić, T., Andrić, V., Grbović Novaković, J., Ivanović, N., et al. (2013). The potential of ball-milled Serbian natural clay for removal of heavy metal contaminants from wastewaters: simultaneous sorption of Ni, Cr, Cd and Pb ions. [Article]. Ceramics International, 39(6), 7173–7178. https://doi.org/10.1016/j.ceramint.2013.02.061.

    CAS  Article  Google Scholar 

  10. Dultz, S., An, J.-H., & Riebe, B. (2012). Organic cation exchanged montmorillonite and vermiculite as adsorbents for Cr(VI): Effect of layer charge on adsorption properties. Applied Clay Science, 67–68, 125–133. https://doi.org/10.1016/j.clay.2012.05.004.

    CAS  Article  Google Scholar 

  11. Emmerich, K., Madsen, F. T., & Kahr, G. (1999). Dehydroxylation behavior of heat-treated and steam-treated homoionic cis-vacant montmorillonites. [Article]. Clays and Clay Minerals, 47(5), 591–604. https://doi.org/10.1346/CCMN.1999.0470506.

    CAS  Article  Google Scholar 

  12. Emmerich, K., Steudel, A., & Merz, D. (2017). Dehydroxylation of dioctahedral smectites in water vapor atmosphere. [Article]. Applied Clay Science, 137, 1–5. https://doi.org/10.1016/j.clay.2016.12.003.

    CAS  Article  Google Scholar 

  13. España, V. A. A., Sarkar, B., Biswas, B., Rusmin, R., & Naidu, R. (2019). Environmental applications of thermally modified and acid activated clay minerals: current status of the art. [article]. Environmental Technology and Innovation, 13, 383–397. https://doi.org/10.1016/j.eti.2016.11.005.

    Article  Google Scholar 

  14. Fernández, M., Alba, M. D., & Torres Sánchez, R. M. (2013). Effects of thermal and mechanical treatments on montmorillonite homoionized with mono- and polyvalent cations: insight into the surface and structural changes. [article]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 423, 1–10. https://doi.org/10.1016/j.colsurfa.2013.01.040.

    CAS  Article  Google Scholar 

  15. Gamba, M., Flores, F. M., Madejová, J., & Sánchez, R. M. T. (2015). Comparison of imazalil removal onto montmorillonite and nanomontmorillonite and adsorption surface sites involved: An approach for agricultural wastewater treatment. [Article]. Industrial and Engineering Chemistry Research, 54(5), 1529–1538. https://doi.org/10.1021/ie5035804.

    CAS  Article  Google Scholar 

  16. Hedley, C. B., Yuan, G., & Theng, B. K. G. (2007). Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. [article]. Applied Clay Science, 35(3–4), 180–188. https://doi.org/10.1016/j.clay.2006.09.005.

    CAS  Article  Google Scholar 

  17. Hrachová, J., Komadel, P., & Fajnor, V. Š. (2007). The effect of mechanical treatment on the structure of montmorillonite. Materials Letters, 61(16), 3361–3365. https://doi.org/10.1016/j.matlet.2006.11.063.

    CAS  Article  Google Scholar 

  18. Huang, P., Kazlauciunas, A., Menzel, R., & Lin, L. (2017). Determining the mechanism and efficiency of industrial dye adsorption through facile structural control of organo-montmorillonite adsorbents. ACS Applied Materials & Interfaces, 9(31), 26383–26391. https://doi.org/10.1021/acsami.7b08406.

    CAS  Article  Google Scholar 

  19. Jayrajsinh, S., Shankar, G., Agrawal, Y. K., & Bakre, L. (2017). Montmorillonite nanoclay as a multifaceted drug-delivery carrier: a review. [review]. Journal of Drug Delivery Science and Technology, 39, 200–209. https://doi.org/10.1016/j.jddst.2017.03.023.

    CAS  Article  Google Scholar 

  20. Johnston, J. H., & Cardile, C. M. (1987). Iron substitution in montmorillonite, illite, and glauconite by 57Fe Mossbauer spectroscopy. [article]. Clays & Clay Minerals, 35(3), 170–176. https://doi.org/10.1346/CCMN.1987.0350302.

    CAS  Article  Google Scholar 

  21. Júnior, J. A. A., & Baldo, J. B. (2014). The behavior of zeta potential of silica suspensions. New Journal of Glass and Ceramics, 4(02), 29. https://doi.org/10.4236/njgc.2014.42004.

    CAS  Article  Google Scholar 

  22. Lagarec, K., & Rancourt, D. G. (1998). Recoil-Mössbauer spectral analysis software for sWindows. Ottawa: University Ottawa.

    Google Scholar 

  23. Madejová, J., Pálková, H., & Jankovič, Ľ. (2012). Degradation of surfactant-modified montmorillonites in HCl. [article]. Materials Chemistry and Physics, 134(2–3), 768–776. https://doi.org/10.1016/j.matchemphys.2012.03.067.

    CAS  Article  Google Scholar 

  24. Magnoli, A. P., Tallone, L., Rosa, C. A. R., Dalcero, A. M., Chiacchiera, S. M., & Torres Sanchez, R. M. (2008). Commercial bentonites as detoxifier of broiler feed contaminated with aflatoxin. [article]. Applied Clay Science, 40(1–4), 63–71. https://doi.org/10.1016/j.clay.2007.07.007.

    CAS  Article  Google Scholar 

  25. Martignago, F., Andreozzi, G., & Negro, A. D. (2006). Thermodynamics and kinetics of cation ordering in natural and synthetic Mg (Al, Fe3+) 2O4 spinels from in situ high-temperature X-ray diffraction. American Mineralogist, 91(2–3), 306–312. https://doi.org/10.2138/am.2006.1880.

    CAS  Article  Google Scholar 

  26. Missana, T., & Adell, A. (2000). On the applicability of DLVO theory to the prediction of clay colloids stability. [article]. Journal of Colloid and Interface Science, 230(1), 150–156. https://doi.org/10.1006/jcis.2000.7003.

    CAS  Article  Google Scholar 

  27. Murad, E., & Cashion, J. (2004). Mössbauer spectroscopy of environmental materials and their industrial utilization (1st ed.). Norwell, Massachusetts: Kluwer Academic Publishers.

    Google Scholar 

  28. Önal, M. (2007). Swelling and cation exchange capacity relationship for the samples obtained from a bentonite by acid activations and heat treatments. [article]. Applied Clay Science, 37(1–2), 74–80. https://doi.org/10.1016/j.clay.2006.12.004.

    CAS  Article  Google Scholar 

  29. Orta, M. D. M., Flores, F. M., Morantes, C. F., Curutchet, G., & Torres Sánchez, R. M. (2019). Interrelations of structure, electric surface charge, and hydrophobicity of organo-mica and –montmorillonite, tailored with quaternary or primary amine cations. Preliminary study of pyrimethanil adsorption. [article]. Materials Chemistry and Physics, 223, 325–335. https://doi.org/10.1016/j.matchemphys.2018.10.059.

    CAS  Article  Google Scholar 

  30. Patel, H. A., Somani, R. S., Bajaj, H. C., & Jasra, R. V. (2006). Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. [article]. Bulletin of Materials Science, 29(2), 133–145. https://doi.org/10.1007/BF02704606.

    CAS  Article  Google Scholar 

  31. Pecini, E. M., & Avena, M. J. (2013). Measuring the isoelectric point of the edges of clay mineral particles: the case of montmorillonite. [article]. Langmuir, 29(48), 14926–14934. https://doi.org/10.1021/la403384g.

    CAS  Article  Google Scholar 

  32. Pérez-Rodríguez, J. (2003). Transformation of clay minerals on grinding: A review. In J. Pérez-Rodríguez (Ed.), Applied study of cultural heritage and clays (pp. 425–444). Madrid: Servicio Publicaciones del CSIC.

    Google Scholar 

  33. Praus, P., Turicová, M., Študentová, S., & Ritz, M. (2006). Study of cetyltrimethylammonium and cetylpyridinium adsorption on montmorillonite. Journal of Colloid and Interface Science, 304(1), 29–36.

    CAS  Article  Google Scholar 

  34. Qurie, M., Khamis, M., Manassra, A., Ayyad, I., Nir, S., Scrano, L., et al. (2013). Removal of Cr (VI) from aqueous environments using micelle-clay adsorption. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/942703.

  35. Rasband, W. (1997). ImageJ, US National Institutes of Health, Bethesda, Maryland, USA. https://imagej.nih.gov/ij (Vol. 2012).

  36. Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and interfacial phenomena (4th ed.). New Jersey: John Wiley & Sons.

    Google Scholar 

  37. Sarkar, B., Naidu, R., & Megharaj, M. (2013). Simultaneous adsorption of tri- and hexavalent chromium by organoclay mixtures topical collection on remediation of site contamination. [article]. Water, Air, and Soil Pollution, 224(12). https://doi.org/10.1007/s11270-013-1704-0.

  38. Savas, L. A., & Hancer, M. (2015). Montmorillonite reinforced polymer nanocomposite antibacterial film. Applied Clay Science, 108, 40–44.

    CAS  Article  Google Scholar 

  39. Schampera, B., Tunega, D., Šolc, R., Woche, S. K., Mikutta, R., Wirth, R., et al. (2016). External surface structure of organoclays analyzed by transmission electron microscopy and X-ray photoelectron spectroscopy in combination with molecular dynamics simulations. Journal of Colloid and Interface Science, 478, 188–200. https://doi.org/10.1016/j.jcis.2016.06.008.

    CAS  Article  Google Scholar 

  40. Schoonheydt, R. A., Johnston, C. T., & Bergaya, F. (2018). Clay minerals and their surfaces. Developments in Clay Science, 9, 1–21.

    CAS  Article  Google Scholar 

  41. Stalder, A. F., Melchior, T., Müller, M., Sage, D., Blu, T., & Unser, M. (2010). Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364(1), 72–81. https://doi.org/10.1016/j.colsurfa.2010.04.040.

    CAS  Article  Google Scholar 

  42. Tarasevich, Y. I., & Ovcharenko, F. (1975). Adsorption on clay minerals. Kiev: Naukova Dumka.

    Google Scholar 

  43. Thanos, A. G., Katsou, E., Malamis, S., Psarras, K., Pavlatou, E. A., & Haralambous, K. J. (2012). Evaluation of modified mineral performance for chromate sorption from aqueous solutions. [article]. Chemical Engineering Journal, 211-212, 77–88. https://doi.org/10.1016/j.cej.2012.08.086.

    CAS  Article  Google Scholar 

  44. Thomas, F., Michot, L. J., Vantelon, D., Montargès, E., Prélot, B., Cruchaudet, M., et al. (1999). Layer charge and electrophoretic mobility of smectites. [conference Paper]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 159(2–3), 351–358. https://doi.org/10.1016/S0927-7757(99)00291-5.

    CAS  Article  Google Scholar 

  45. Torres Sánchez, R. M. (1997). Mechanochemical effects on physicochemical parameters of homoionic smectite. [article]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 127(1–3), 135–140. https://doi.org/10.1016/S0927-7757(97)00105-2.

    Article  Google Scholar 

  46. Torres Sánchez, R. M., & Falasca, S. (1997). Specific surface area and surface charges of some Argentinian soils. [article]. Journal of Plant Nutrition and Soil Science, 160(2), 223–226. https://doi.org/10.1002/jpln.19971600216.

    Article  Google Scholar 

  47. Torres Sánchez, R. M., Genet, M. J., Gaigneaux, E. M., dos Santos Afonso, M., & Yunes, S. (2011). Benzimidazole adsorption on the external and interlayer surfaces of raw and treated montmorillonite. Applied Clay Science, 53(3), 366–373. https://doi.org/10.1016/j.clay.2010.06.026.

    CAS  Article  Google Scholar 

  48. Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462. https://doi.org/10.1016/j.cej.2016.09.029.

    CAS  Article  Google Scholar 

  49. Wang, S. L., Chen, C. C., Tzou, Y. M., Hsu, C. L., Chen, J. H., & Lin, C. F. (2009). A mechanism study of light-induced Cr(VI) reduction in an acidic solution. [article]. Journal of Hazardous Materials, 164(1), 223–228. https://doi.org/10.1016/j.jhazmat.2008.07.145.

    CAS  Article  Google Scholar 

  50. Wang, G., Hua, Y., Su, X., Komarneni, S., Ma, S., & Wang, Y. (2016). Cr(VI) adsorption by montmorillonite nanocomposites. [article]. Applied Clay Science, 124-125, 111–118. https://doi.org/10.1016/j.clay.2016.02.008.

    CAS  Article  Google Scholar 

  51. Xu, C. H., Zhu, L. J., Wang, X. H., Lin, S., & Chen, Y. M. (2014). Fast and highly efficient removal of chromate from aqueous solution using nanoscale zero-valent iron/activated carbon (NZVI/AC). [article]. Water, Air, and Soil Pollution, 225(2). https://doi.org/10.1007/s11270-013-1845-1.

  52. Yamagata, S., Hamba, Y., Akasaka, T., Ushijima, N., Uo, M., Iida, J., et al. (2012). The effect of enhancing the hydrophobicity of OMMT on the characteristics of PMMA/OMMT nanocomposites. Applied Surface Science, 262, 56–59. https://doi.org/10.1016/j.apsusc.2012.01.081.

    CAS  Article  Google Scholar 

  53. Yariv, S. (2001). IR spectroscopy and thermo-IR spectroscopy in the study of the fine structure of organo-clay complexes. In S. Yariv & H. Cross(Eds.)Organo-clay complexes and interactions (pp. 357–474): CRC Press.

  54. Zhang, Y., Zhao, Y., Zhu, Y., Wu, H., Wang, H., & Lu, W. (2012). Adsorption of mixed cationic-nonionic surfactant and its effect on bentonite structure. [article]. Journal of Environmental Sciences (China), 24(8), 1525–1532. https://doi.org/10.1016/S1001-0742(11)60950-9.

    CAS  Article  Google Scholar 

  55. Zhao, Q., Choo, H., Bhatt, A., Burns, S. E., & Bate, B. (2017). Review of the fundamental geochemical and physical behaviors of organoclays in barrier applications. [article]. Applied Clay Science, 142, 2–20. https://doi.org/10.1016/j.clay.2016.11.024.

    CAS  Article  Google Scholar 

  56. Zinicovscaia, I., Mitina, T., Lupascu, T., Duca, G., Frontasyeva, M. V., & Culicov, O. A. (2014). Study of chromium adsorption onto activated carbon. [article]. Water, Air, and Soil Pollution, 225(3). https://doi.org/10.1007/s11270-014-1889-x.

Download references

Funding

This study received financial support from the Argentinian Ministry of Science, Technology and Productive Innovation (MINCyT) and the National Agency for Scientific and Technological Promotion (ANPCyT), PICT-2014-0585. M.L. Montes, R.C. Mercader, G. Curutchetm and R.M. Torres Sanchez are members of the National Council for Scientific and Technological Research (CONICET). C. Fernández Morantes and F. Yarza received support from the CONICET fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Torres Sánchez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morantes, C.F., Yarza, F., Montes, M.L. et al. Sorbent Materials Characterization Based on Mechanical or Thermal Pretreated Montmorillonite Modified by Surfactant Loading for Improved Chromium Retention. Water Air Soil Pollut 231, 29 (2020). https://doi.org/10.1007/s11270-020-4403-7

Download citation

Keywords

  • Montmorillonite
  • Thermal and mechanical treatments
  • Structure modification
  • Chromium retention