Naproxen Sorption by Non-viable Rhizopus oryzae Biomass

Abstract

Naproxen is an organic micropollutant widely distributed in municipal wastewaters and water bodies, it is not eliminated by wastewater treatment plants, and it accumulates in soil. In this research, the capability of the non-viable Rhizopus oryzae biomass (wet and dry) to sorb naproxen at environmentally relevant concentrations was assessed in batch experiments. Naproxen sorption was carried out as a function of pH and modeled by kinetic and equilibrium equations. Naproxen sorption increased with increasing pH values using wet biomass, but it also increased at acidic pH values with dried biomass. Dried biomass was more efficient and faster in removing naproxen and the maximum sorption was 1027.45 μg naproxen per gram of dried biomass at pH 4.7. Wet biomass sorption capacity was low and slow, and the equilibrium was achieved at 7 days, whereas with dried biomass at 26 h. Freundlich isotherm describes naproxen sorption by dried biomass.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aßmann, M., Stöbener, A., Mügge, C., Gaßmeyer, S. K., Hilterhaus, L., Kourist, R., et al. (2017). Reaction engineering of biocatalytic (S)-naproxen synthesis integrating in-line process monitoring by Raman spectroscopy. [https://doi.org/10.1039/C7RE00043J]. Reaction Chemistry & Engineering, 2(4), 531–540, doi:https://doi.org/10.1039/c7re00043j.

  2. Bai, R. S., & Abraham, T. E. (2002). Studies on enhancement of Cr (VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Research, 36(5), 1224–1236. https://doi.org/10.1016/S0043-1354(01)00330-X.

    CAS  Article  Google Scholar 

  3. Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73(1), 373–380, doi:https://doi.org/10.1021/ja01145a126.

  4. Bosso, L., Lacatena, F., Cristinzio, G., Cea, M., Diez, M. C., & Rubilar, O. (2015). Biosorption of pentachlorophenol by Anthracophyllum discolor in the form of live fungal pellets. New Biotechnology, 32(1), 21–25. https://doi.org/10.1016/j.nbt.2014.08.001.

    CAS  Article  Google Scholar 

  5. Broekhoff, J. C. P., & de Boer, J. H. (1968). Studies on pore systems in catalysts: XIII. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores B. Applications. Journal of Catalysis, 10(4), 377–390, doi:https://doi.org/10.1016/0021-9517(68)90153-X.

  6. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319. https://doi.org/10.1021/ja01269a023.

    CAS  Article  Google Scholar 

  7. Calderón, A. M., Meraz, M., & Tomasini, A. (2019). Pharmaceuticals present in urban and hospital wastewaters in Mexico City. Journal of Water Chemistry and Technology. In press.

  8. Chatterjee, S., Das, S. K., Chakravarty, R., Chakrabarti, A., Ghosh, S., & Guha, A. K. (2010). Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass. Journal of Hazardous Materials, 174(1), 47–53. https://doi.org/10.1016/j.jhazmat.2009.09.014.

    CAS  Article  Google Scholar 

  9. Chefetz, B., Mualem, T., & Ben-Ari, J. (2008). Sorption and mobility of pharmaceutical compounds in soil irrigated with reclaimed wastewater. Chemosphere, 73(8), 1335–1343. https://doi.org/10.1016/j.chemosphere.2008.06.070.

    CAS  Article  Google Scholar 

  10. Chemicalize-software. Chemicalize was used for predition of naproxen properties, December 2018, https://chemicalize.com/ developed by ChemAxon (http://www.chemaxon.com).

  11. Cheol Min, L., Eun-Min, C., Erdene-Ganbold, O., Uuriintuya, D., & Sung Ik, Y. (2013). Chemotaxonomic Raman spectroscopy investigation of Ascomycetes and Zygomycetes. Bulletin of the Korean Chemical Society, 34(4), 1240–1242. https://doi.org/10.5012/bkcs.2013.34.4.1240.

    CAS  Article  Google Scholar 

  12. Dai, G., Wang, B., Huang, J., Dong, R., Deng, S., & Yu, G. (2015). Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere, 119, 1033–1039. https://doi.org/10.1016/j.chemosphere.2014.08.056.

    CAS  Article  Google Scholar 

  13. De Gisi, S., Lofrano, G., Grassi, M., & Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustainable Materials and Technologies, 9, 10–40. https://doi.org/10.1016/j.susmat.2016.06.002.

    CAS  Article  Google Scholar 

  14. Ebele, A. J., Abou-Elwafa Abdallah, M., & Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3(1), 1–16. https://doi.org/10.1016/j.emcon.2016.12.004.

    Article  Google Scholar 

  15. Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013.

    CAS  Article  Google Scholar 

  16. Freundlich, H. (1906). Concerning adsorption in solutions. Zeitschrift Für Physikalische Chemie--Stochiometrie Und Verwandtschaftslehre, 57(4), 385–470.

    CAS  Google Scholar 

  17. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. https://doi.org/10.1016/s0032-9592(98)00112-5.

    CAS  Article  Google Scholar 

  18. Idowu, S. O., Adeyemo, M. A., & Ogbonna, U. I. (2009). Engineering and validation of a novel lipid thin film for biomembrane modeling in lipophilicity determination of drugs and xenobiotics. [journal article]. Journal of Biological Engineering, 3(1), 14, doi:https://doi.org/10.1186/1754-1611-3-14.

  19. İlbay, Z., Şahin, S., Kerkez, Ö., & Bayazit, Ş. S. (2015). Isolation of naproxen from wastewater using carbon-based magnetic adsorbents. International journal of Environmental Science and Technology, 12(11), 3541–3550. https://doi.org/10.1007/s13762-015-0775-4.

    CAS  Article  Google Scholar 

  20. Khazri, H., Ghorbel-Abid, I., Kalfat, R., & Trabelsi-Ayadi, M. (2017). Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study. Applied Water Science, 7(6), 3031–3040. https://doi.org/10.1007/s13201-016-0414-3.

    CAS  Article  Google Scholar 

  21. Kim, M., Chung, H., Woo, Y., & Kemper, M. (2006). New reliable Raman collection system using the wide area illumination (WAI) scheme combined with the synchronous intensity correction standard for the analysis of pharmaceutical tablets. Analytica Chimica Acta, 579(2), 209–216. https://doi.org/10.1016/j.aca.2006.07.036.

    CAS  Article  Google Scholar 

  22. Kumar, N. S., & Min, K. (2011). Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling. Chemical Engineering Journal, 168(2), 562–571. https://doi.org/10.1016/j.cej.2011.01.023.

    CAS  Article  Google Scholar 

  23. Lagergren, S. (1898). Zur theorie der sogenannten adsorption gelöster stoffe (Vol. 24, Vol. 4): Kungliga Svenska Vetenskapsakademiens, Handlingar.

  24. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I Solids. Journal of the American Chemical Society, 38, 2221–2295. https://doi.org/10.1021/ja02268a002.

    CAS  Article  Google Scholar 

  25. León-Santiestebán, H., Meraz, M., Wrobel, K., & Tomasini, A. (2011). Pentachlorophenol sorption in nylon fiber and removal by immobilized Rhizopus oryzae ENHE. Journal of Hazardous Materials, 190(1), 707–712. https://doi.org/10.1016/j.jhazmat.2011.03.101.

    CAS  Article  Google Scholar 

  26. León-Santiesteban, H. H., Wrobel, K., García, L. A., Revah, S., & Tomasini, A. (2014). Pentachlorophenol sorption by Rhizopus oryzae ENHE: pH and temperature effects. Water, Air, & Soil Pollution, 225(5), 1947. https://doi.org/10.1007/s11270-014-1947-4.

    CAS  Article  Google Scholar 

  27. Li, X., de Toledo, R. A., Wang, S., & Shim, H. (2015). Removal of carbamazepine and naproxen by immobilized Phanerochaete chrysosporium under non-sterile condition. New Biotechnology, 32(2), 282–289. https://doi.org/10.1016/j.nbt.2015.01.003.

    CAS  Article  Google Scholar 

  28. Li, Q., Wang, P., Chen, L., Gao, H., & Wu, L. (2016). Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages. Environmental Science and Pollution Research, 23(18), 18832–18841. https://doi.org/10.1007/s11356-016-7092-4.

    CAS  Article  Google Scholar 

  29. Liu, X., Testa, B., & Fahr, A. (2011). Lipophilicity and its relationship with passive drug permeation. Pharmaceutical Research, 28(5), 962–977. https://doi.org/10.1007/s11095-010-0303-7.

    CAS  Article  Google Scholar 

  30. Lucas, D., Castellet-Rovira, F., Villagrasa, M., Badia-Fabregat, M., Barceló, D., Vicent, T., et al. (2018). The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater. Science of the Total Environment, 610-611, 1147–1153. https://doi.org/10.1016/j.scitotenv.2017.08.118.

    CAS  Article  Google Scholar 

  31. Martínez-Hernández, V., Meffe, R., Herrera, S., Arranz, E., & de Bustamante, I. (2014). Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment. Science of the Total Environment, 472, 273–281. https://doi.org/10.1016/j.scitotenv.2013.11.036.

    CAS  Article  Google Scholar 

  32. Mojiri, A., Andasht Kazeroon, R., & Gholami, A. (2019). Cross-linked magnetic chitosan/activated biochar for removal of emerging micropollutants from water: optimization by the artificial neural network. Water, 11(3). https://doi.org/10.3390/w11030551.

  33. Nguyen, L. N., Hai, F. I., Yang, S., Kang, J., Leusch, F. D. L., Roddick, F., et al. (2014). Removal of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals and pesticides by Trametes versicolor: role of biosorption and biodegradation. International Biodeterioration & Biodegradation, 88, 169–175. https://doi.org/10.1016/j.ibiod.2013.12.017.

    CAS  Article  Google Scholar 

  34. Rafati, L., Ehrampoush, M. H., Rafati, A. A., Mokhtari, M., & Mahvi, A. H. (2016). Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent. Journal of Molecular Liquids, 224, 832–841. https://doi.org/10.1016/j.molliq.2016.10.059.

    CAS  Article  Google Scholar 

  35. Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. The Journal of Physical Chemistry, 63(6), 1024–1024. https://doi.org/10.1021/j150576a611.

    CAS  Article  Google Scholar 

  36. Reza, R. A., & Ahmaruzzaman, M. (2016). Removal of naproxen from aqueous environment using porous sugarcane bagasse: impact of ionic strength, hardness and surfactant. Research on Chemical Intermediates, 42(2), 1463–1485. https://doi.org/10.1007/s11164-015-2097-z.

    CAS  Article  Google Scholar 

  37. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquérol, J., et al. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57, 603–619. https://doi.org/10.1351/pac198557040603.

    CAS  Article  Google Scholar 

  38. Stasinakis, A. S., Mermigka, S., Samaras, V. G., Farmaki, E., & Thomaidis, N. S. (2012). Occurrence of endocrine disrupters and selected pharmaceuticals in Aisonas River (Greece) and environmental risk assessment using hazard indexes. Environmental Science and Pollution Research, 19(5), 1574–1583. https://doi.org/10.1007/s11356-011-0661-7.

    CAS  Article  Google Scholar 

  39. Suárez, S., Carballa, M., Omil, F., & Lema, J. M. (2008). How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Reviews in Environmental Science and Bio/Technology, 7(2), 125–138. https://doi.org/10.1007/s11157-008-9130-2.

    CAS  Article  Google Scholar 

  40. Subbaiah, M. V., & Yun, Y. S. (2013). Biosorption of nickel (II) from aqueous solution by the fungal mat of Trametes versicolor (rainbow) biomass: equilibrium, kinetics, and thermodynamic studies. Biotechnology and Bioprocess Engineering, 18(2), 280–288. https://doi.org/10.1007/s12257-012-0401-y.

    CAS  Article  Google Scholar 

  41. Tang, Y., Li, X.-M., Xu, Z.-C., Guo, Q.-W., Hong, C.-Y., & Bing, Y.-X. (2014). Removal of naproxen and bezafibrate by activated sludge under aerobic conditions: kinetics and effect of substrates. Biotechnology and Applied Biochemistry, 61(3), 333–341. https://doi.org/10.1002/bab.1168.

    CAS  Article  Google Scholar 

  42. Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M., & Barceló, D. (2012). Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of the Total Environment, 430, 109–118. https://doi.org/10.1016/j.scitotenv.2012.04.055.

    CAS  Article  Google Scholar 

  43. Vulliet, E., Cren-Olivé, C., & Grenier-Loustalot, M.-F. (2011). Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters. Environmental Chemistry Letters, 9(1), 103–114. https://doi.org/10.1007/s10311-009-0253-7.

    CAS  Article  Google Scholar 

  44. Wieszczycka, K., Zembrzuska, J., Bornikowska, J., Wojciechowska, A., & Wojciechowska, I. (2017). Removal of naproxen from water by ionic liquid-modified polymer sorbents. Chemical Engineering Research and Design, 117, 698–705. https://doi.org/10.1016/j.cherd.2016.11.024.

    CAS  Article  Google Scholar 

  45. Yang, Y., Jin, D., Wang, G., Liu, D., Jia, X., & Zhao, Y. (2011). Biosorption of Acid Blue 25 by unmodified and CPC-modified biomass of Penicillium YW01: kinetic study, equilibrium isotherm and FTIR analysis. Colloids and Surfaces B: Biointerfaces, 88(1), 521–526. https://doi.org/10.1016/j.colsurfb.2011.07.047.

    CAS  Article  Google Scholar 

  46. Yu, Z., Peldszus, S., & Huck, P. M. (2008). Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound—naproxen, carbamazepine and nonylphenol—on activated carbon. Water Research, 42(12), 2873–2882. https://doi.org/10.1016/j.watres.2008.02.020.

    CAS  Article  Google Scholar 

Download references

Funding

This research was financially supported by CONACYT grant no. 248132, México. Beatriz Melgoza thanks CONACYT for the scholarship (no. 234626).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Tomasini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Melgoza, B., León-Santiesteban, H., López-Medina, R. et al. Naproxen Sorption by Non-viable Rhizopus oryzae Biomass. Water Air Soil Pollut 231, 30 (2020). https://doi.org/10.1007/s11270-020-4396-2

Download citation

Keywords

  • Biosorbent
  • Freundlich isotherm
  • Naproxen
  • Pseudo-first kinetic model
  • Raman spectra
  • Rhizopus oryzae